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Abstract. Driver drowsiness is one of the largest causes of automobile accidents 

worldwide, resulting in thousands of fatalities and injuries annually. Conventional methods 

of monitoring drowsiness using vehicle- mounted observation and biological sensors are 

constrained by their intrusiveness and environmental sensitivity. The developments in the 

deep learning technology, specifically Convolutional Neural Networks (CNNs), have 

allowed for the development of strong, non-invasive eye state moni- tors that can detect 

drowsiness in real-time. This present paper takes into account some of the most popular 

CNN models, like VGG-16, ResNet- 50, MobileNetV2, and EfficientNet-B0, to determine 

the top-performing model for real-time drowsiness detection. EfficientNet-B0 is also 

known as the best choice with its class-leading accuracy-computation ratio. The proposed 

system employs live video stream, image processing using OpenCV, and Softmax 

classification for the identification of excessive eye closure and sending early warnings as 

part of the initiative towards reducing fatigue-related accidents and road safety. The paper 

also com- pares the performance of different CNN models with regard to different metrics 

and describes their implications for field deployment. Finally, low-light detection 

problems, handling real-time behavior, and facial occlusion are addressed with suggestions 

towards improvement. 
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1 Introduction 

Driver drowsiness has been well recognized as a significant risk factor in road safety, accounting 

for a large proportion of traffic accidents globally. Driver fatigue, characterized by reduced 

alertness, delayed reaction times, and reduced decision-making ability, is accountable for over 

100,000 re- ported crashes annually, leading to serious injury and death [1]. The rev- elation of 

such a staggering figure makes the need for an effective driver drowsiness detection system to 

enhance road safety all the more urgent. Traditional detection systems, including vehicle-

mounted observation systems and physiological sensors (e.g., EEG, ECG), as useful as they are, 

are hampered by their invasiveness, the cost of installation, and sensitivity to the environment 

[2]. These limitations have required the creation of non-invasive, vision-based driver-

monitoring systems utilizing computer vision and deep learning advancements for real-time eye 

state observation and drowsiness alert [3]. 
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Deep learning and specifically Convolutional Neural Networks (CNNs) have transformed driver 

monitoring by allowing its real-time and precise examination of eye closures as well as facial 

moods. Although ResNet-50, MobileNetV2, and VGG-16 are some of the CNN-based models, 

more ac- curate and power-efficient alternatives were explored to provide balanced 

recommendations [4]. Objective: The aim of this paper is to minimize fatigue-related accidents 

by coming up with an efficient deep learning- based drowsiness detector that will be capable of 

sending timely notifications when it detects prolonged eye closure, hence reducing the 

prospective dangers involved in driver fatigue. 

The organization of the paper is as follows: Section 2 reviews traditional challenges to 

prediction and recent advances in deep learning. Section 3 describes the approach taken to 

conduct the research, including preparation of data, pre-processing, and model choice. Section 

4 compares the experimental results obtained using various performance metrics. Finally, 

section 5 summarizes the findings, comments on their implications, and suggests areas of future 

research. 

2 Related work 

Vural et al. [1] pointed out limitations in EEG-based driver drowsiness detection systems, more 

so pointing to the unpractically of installing EEG sensors under real-world operating conditions 

considering that they call for invasive installation procedures and user-dependent calibration. 

Authors explained how background conditions, i.e., environmental noise and head movement, 

as well as drivers’ distraction by the external world, even limit the reliability of EEG-based 

approaches, which would need ideal background conditions to allow reliable detection. 

Milan [2] spoke of the drawbacks of drowsiness detection systems based only on yawning or 

head tilts. Such indicators are not reliable as they may differ in the face structure and may cause 

erroneous detection. Milan referred to the issues with the detection of eyes, which becomes 

uncertain with varying levels of light. This affects system performance. 

Magan et al. [3] discussed deep learning-based drowsiness detection and highlighted the 

significance of parameter optimization and rigorous cross-validation methods. They noted that 

most current systems are trained on small datasets, which impacts their generalizability when 

used in the conditions of real-world driving. 

Parmar and Hiscocks [4] identified limitations in binarization-based detection systems, 

particularly their ineffectiveness in accurately detecting eye states in individuals with diverse 

skin tones. This issue arises due to the fixed thresholds used in binarization techniques, which 

fail to account for variations in lighting and facial features across different populations. 

Prasath et al. [5] studied the environmental problems that impact the functioning of camera-

based drowsiness detection systems, such as low lighting and glare. These issues tend to cause 

incorrect eye closures and facial recognition, lowering the system’s overall reliability. 

Jerith et al. [6] indicated that deep learning models employed in drowsiness detection tend to 

have difficulty with real-time applicability because they have high computational demands. This 

characteristic complicates using these models in environments that lack sufficient resources, 

including the embedded systems of vehicles. 

Chirra et al. [7] observed that using eye-state features alone leads to incomplete evaluations 

since other behavioral cues, including head movements and facial expressions, are not 



considered. They mentioned that such systems can make inaccurate detections, especially when 

drivers show subtle drowsiness cues that are not evident in eye behavior. 

Tyagi et al. [8] found that abrupt changes in road conditions, e.g., sharp turns and distraction, 

would influence the performance of drowsiness detection systems. They pointed out the 

shortcomings of single- static-threshold-based systems that can fail to cope with dynamic 

driving scenes. 

Jahan et al. [9] elaborated on the limitations of SVM-based drowsiness detection systems, such 

as the difficulty in kernel selection and data limitations. They observed that the incorrect choice 

of kernel can result in poor model performance and lower detection accuracy. 

Faisal et al. [10] pointed out the performance issues in detecting drowsiness at night due to 

constrained dataset diversity and unavailability of night vision cameras. They indicated that 

conventional camera-based systems cannot effectively detect facial features under poor lighting, 

thus affecting the reliability of overall detection. 

Shahrudin et al. [11] pointed out user discomfort with intrusive approaches, like ECG-based 

detection, that involve sensors being strapped to the driver’s body. They pointed out that such 

approaches, though ac- curate, are impractical for extended use because they are inconvenient. 

Jabbar et al. [12] have indicated that CNN-based models performed moderately well in 

drowsiness detection but needed more parameter tuning to make them effective for real-world 

use. They stated that the performance of such models is typically affected by the small size and 

limited diversity of the training sets. 

Arunasalam et al. [13] found inadequate accuracy in current drowsiness detection systems and 

pointed out the inadequacy of effective alert mechanisms to notify drivers in real-time. They 

found that most systems alert too late, which lowers their effectiveness in avoiding drowsiness-

related accidents. 

Lyu et al. [14] alluded to the problem of dataset diversity and parameter optimization, 

mentioning that there is a need for careful testing in order to improve the detection performance. 

They elucidated that most existing models are learned from representative datasets that do not 

reflect real driving conditions, thus leading to low generalizability. 

Adarsh et al. [15] set forth the problems of varying lighting conditions, camera orientation, and 

face occlusions, which are accountable for most of the job of maintaining the drowsiness 

detection systems dependable. They recognized that the traditional systems cannot detect small 

facial expressions if these environmental factors are there. 

2.1 Limitations 

Detection accuracy is determined by external conditions such as light- ing conditions, weather 

changes, and driver-specific behaviors, leading to performance inconsistencies Vural et al. [1], 

Mag´an et al. [3], Jerith et al. [6] 

High computational complexity and resource demands make real-time implementation 

challenging, requiring optimized models and efficient hardware Faisal et al. [10], Jabbar et al. 

[12] 



Dataset limitations, including lack of diversity and insufficient real- world testing, reduce model 

robustness and generalizability across different driving scenarios. Lyu et al. [14], Adarsh et al. 

[15]. 

3 Methodology 

The project includes real-time eye state detection using the application of deep learning 

methods. Actions include data recording, preprocessing, model training, testing, and real-time 

execution. The data set includes open and closed eyes and are labeled and utilized as training 

for deep learning classifier models. Performance is evaluated with accuracy, precision, recall, 

F1-score, and confusion matrix to identify the best per- forming model to be used in real-time 

detection and drowsiness monitoring. Furthermore, the system incorporates an alerting 

mechanism that produces a warning when drowsiness is identified for successive frames. Fig 1 

shows the proposed flowchart. 

 

Fig. 1. Proposed workflow for driver drowsiness detection. 

 

3.1 Data Collection:  

A human eye image database is used, which is divided into two classes: 

• Open eyes 

• Closed eyes 

It is derived from the public domain and augmented with further samples for added solidity. 



3.2 Pre-processing Data: 

Image Preprocessing to ensure high-quality inputs to the deep learning models, the following 

preprocessing methods are applied: 

• Resize: Each of the images is resized uniformly to 32×32 pixels. 

• Normalize: Values of the pixel range from [0,1] to speed up convergence: 

• Data Augmentation: ±15° rotation compensates for head movement. Brightness 

controls to best fit varied lighting. Horizontal flipping is adapted for extra data set 

variability. Hot Encoding for categorical labeling of classes. 

3.3 Data Splitting:  

After preprocessing, the dataset is fragmented into training and testing subsets. Therefore, the 

subsets. Therefore, the model tested on data that has not been observed yet gives a fair 

performance rating. It is common to train at 80 percent and set aside the remaining 20 percent 

for testing. 

3.4 Training:  

Deep learning models namely EFFICIENTNETB0, RES- NET101, MOBILENETV2 and 

VGG16 are employed in training the net- work. They learn from the training data to establish 

models that may predict energy output trends based on historical trends. 

3.5 Testing:  

The test data set to gauge the important performance metric. They all are accuracy, precision, 

recall, and F1 score. Metrics like Mean Absolute Error, Mean Squared Error and Root Mean 

Squared Error estimate how well the models generalize to novel test data. 

• Mean Absolute Error (MAE):  

Average magnitude of errors, ignoring the direction, whether it is negative or positive. 

It is an easy measure that provides an intuitive view of how far the predictions are from 

the truth’s corresponding values. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑢𝑙 − 𝑢𝑙̂|𝑚

𝑙=1                          (1)              

• Mean Squared Error (MSE):  

MSE estimates the mean of the squared differences between actual and predicted 

values. Since it squares the errors, it generally biases towards larger errors, which is a 

good measure for using significant deviation penalties. 

𝑀𝑆𝐸 =
1

𝑘
∑ (𝑦𝑗 − 𝑦𝑗̂)

2𝑘
𝑗=1       (2)              

• Root Mean Squared Error (RMSE):  

RMSE is the square root, giving an error measure in the same units as the predicted 

output. It penalizes large errors greatly and gives a far more sensitive measure than 

MAE if larger deviations are a concern. 

𝑅𝑀𝑆𝐸 = √
1

𝑘
∑ (𝑦𝑗 − 𝑦𝑗̂)

2𝑘
𝑗=1          (3)              

 



3.6 Driver drowsiness detection:  

Drowsiness of drivers is forecast by the model through eye state classification. The data is 

critical for road safety because it aids in preventing accidents through real-time warning of 

drivers, thus reducing the risk of drowsiness crashes. 

3.7 Architecture of VGG16 

Fig. 2. Architecture of VGG16 model. 

VGG16 is a 16-layer deep convolutional neural network (CNN) model as shown in fig 2 put 

forward by the Visual Geometry Group (VGG) of the University of Oxford. It is extensively 

utilized for image classification and feature ex- traction. The model is specifically renowned to 

employ small-sized 3×3 filters in the convolutional layers, hence the model is capable of 

recognizing detailed patterns within images and yet has a basic structure. 

Convolutional Layer: 

𝑪𝑶 =
(𝑪𝑰−𝑪𝑲+𝟐𝑪𝑷)

𝑪𝑺
+ 𝟏        (4)              

where: 

CO = Output size (height/width) 



CI = Input size (height/width) 

CK = Kernel (filter) size 

CP = Padding 

CS = Stride 

Max-Pooling Layer Formula 

𝑂 =
(𝐽−𝐿)

𝑇
+ 1          (5)  

where: 

O = Output size 

J = Input size 

L = Pooling window size 

T = Stride 

Fully Connected Layer Formula 

𝑂 =  𝑊 ·  𝑋 +  𝐵        (6) 

where: 

CO = Output vector 

CW = Weight matrix 

CX = Input vector 

CB = Bias vector 

RELU: 

𝑓(𝑥) = ma x(0, 𝑥)                 (7) 

SOFTMAX: 

σ(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
         (8) 

zi is the input of the Softmax function for class i. 

Alarm Trigger Condition for Drowsiness Detection 

∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑡 = 𝐶𝑙𝑜𝑠𝑒𝑑)𝑇
𝑡=1 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑     (9) 

Where: 

 Prediction t is the model’s output at frame t. 



T is the consecutive time frames checked. 

3.8 Architecture of MobileNetV2 

 

 

Fig. 3. Architecture of mobileNetV2. 

MobileNetV2 is a resource-efficient deep CNN optimized for mobile and embedded systems to 

execute. It is commonly used for image classification, object detection, and real-time video 

processing because it is efficient. Depth wise separable convolutions are employed in 

MobileNetV2, which reduces the computational expense and increases speed without any fall 

in accuracy. Fig 3 gives the architecture of mobilenetv2. 

Depth wise Separable Convolution Formula: 

𝑪𝑶 =
(𝑪𝑰−𝑪𝑲+𝟐𝑪𝑷)

𝑪𝑺
+ 𝟏        (10)              

Where: 

CO: Output size, height/width 

CI: Input size, height/width 

CK: Kernel size, filter 



CP: Padding 

CS: Stride 

Max-Pooling Layer Formula The equation to calculate the output size in a max-pooling layer 

is: 

𝐶𝑂 =
(𝐶𝐼−𝐶𝐾)

𝐶𝑆
+ 1        (11)              

where: 

CO: Output size, height/width 

CI: Input size, height/width 

CK: Pooling window size 

CS: Stride 

Softmax Function The softmax function for classifying probabilities 

𝛔(𝒛𝒊) =
𝒆𝒛𝒊

∑ 𝒆
𝒛𝒋

𝒋
          (12)              

Alarm Trigger Condition for Drowsiness Detection To trigger an alarm when drowsiness is 

detected, the following condition is used: 

∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑡 = 𝐶𝑙𝑜𝑠𝑒𝑑)𝑇
𝑡=1 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑     (13) 

3.9 Architecture of Efficient-netB0 

EfficientNet-B0 is a member of the EfficientNet model series, which is best known for its 

scalability and resource-efficient use. EfficientNet- B0 is highly accurate with fewer parameters 

since the compound scaling method is employed for depth, width, and resolution optimization. 

EfficientNet-B0 applies a variety of applications like object detection in real-time, face 

recognition, and image classification. Fig 4 gives the architecture of efficient netB0. 



 

Fig. 4. Architecture of efficient-netB0. 

Compound Scaling Formula: With a compound coefficient, EfficientNet-B0 deepens the 

network’s depth, width, and resolution. ϕ: 

𝐶𝐴 =  𝛼𝜙, 𝐶𝑞 =  𝛽𝜙, 𝐶𝑙 =  𝛾𝜙      (14)              

Where: 

CA: Network depth—number of layers 

Cq: Network width—number of channels per layer 

Cl: Input resolution 

α, β, γ: Scaling coefficients 

ϕ: Compound scaling factor 

Depthwise Separable Convolution Formula: EfficientNet-B0 uses depthwise separable 

convolutions, calculated as: 

𝑪𝑶 =
(𝑪𝑰−𝑪𝑲+𝟐𝑪𝑷)

𝑪𝑺
+ 𝟏        (15)              

Where: 



CO: Output size, height/width 

CI: Input size, height/width 

CK: Kernel size, filter 

CP: Padding 

CS: Stride 

Squeeze-and-Excitation Formula: EfficientNet-B0 uses squeeze- and-excitation (SE) layers 

to improve feature extraction: 

𝑋 𝑜𝑢𝑡 =  𝜎(𝑊2𝛿(𝑊1𝑋𝑖𝑛))  ·  𝑋𝑖𝑛      (16)  

Where: 

Xin: input vector 

W1, W2: weight matrices 

δ: ReLU activation 

σ: sigmoid activation 

Activation Function (Swish): EfficientNet-B0 uses the Swish activation function: 

𝑓 (𝑥)  =  𝑥 ·  𝜎(𝑥)       (17)              

Where: 

σ(x): Sigmoid activation, σ (x) =    −
1

1+e−cz
 

Softmax Function: The softmax function for classifying probabilities: 

𝛔(𝒛𝒊) =
𝒆𝒛𝒊

∑ 𝒆
𝒛𝒋

𝒋
        (18)              

Alarm Trigger Condition for Drowsiness Detection: An alarm will trigger when the number 

of consecutive” Closed” frame classifications reach the defined threshold: 

∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑡 = 𝐶𝑙𝑜𝑠𝑒𝑑)𝑇
𝑡=1 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑    (19)              

3.10 Architecture of Resnet50 

ResNet-50 represents a deep convolutional neural network consisting of 50 layers known for 

implementing residual connections to overcome training limitations in deep architectures. the 

vanishing gradient issue in deep networks. The application scope of ResNet-50 extends to 

regular image classifying as well as detecting objects and recognizing faces. The model benefits 

from residual connections since they enable learning of identity mappings which simplifies 

training deep networks. 



 

Fig. 5. Architecture of Resnet-50. 

Fig 5 ResNet-50 architecture has stacked residual blocks, two or three layers of convolution 

with a skip connection each. These allow the network to bypass some of the layers without 

breaking gradient flow. 

Residual Block Formula: ResNet-50 uses residual connections to learn identity mappings, 

which help preserve gradient flow: 

𝑋𝑜𝑢𝑡 =  𝑋𝑖𝑛 +  𝐹 (𝑋𝑖𝑛)       (20)              

Where: 

Xout: Output vector 

Xin: Input vector 

F (Xin): Residual mapping (the learned transformation) 

Convolutional Layer formula: The formula to calculate the output size of a convolutional layer 

is: 

𝑪𝑶 =
(𝑪𝑰−𝑪𝑲+𝟐𝑪𝑷)

𝑪𝑺
+ 𝟏        (21)              

Where: 

CO: Output size (height/width) 



CI: Input size (height/width) 

CK: Kernel (filter) size 

CP: Padding 

CS: Stride 

Max-Pooling Layer Formula: The output size of a max-pooling layer is calculated as: 

𝐶𝑂 =
(𝐶𝐼−𝐶𝐾)

𝐶𝑆
+ 1        (22)              

Where:   

CO: Output size (height/width) 

CI: Input size (height/width) 

CK: Pooling window size 

CS: Stride 

Fully Connected Layer Formula: The output vector in a fully connected dense layer is 

computed as : 

𝐶𝑂 =  𝐶𝑊 ·  𝐶𝑋 +  𝐶𝐵𝑠       (23) 

Where: 

CO: Output vector 

CW: Weight matrix 

CX: Input vector 

CBs: Bias vector 

Softmax Function: The Softmax function for classifying probabilities is: 

𝛔(𝒛𝒊) =
𝒆𝒛𝒊

∑ 𝒆
𝒛𝒋

𝒋
          (24) 

Alarm Trigger Condition for Drowsiness Detection: An alarm will trigger when the number 

of consecutive” Closed” frame classifications reaches the defined threshold 

∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑡 = 𝐶𝑙𝑜𝑠𝑒𝑑)𝑇
𝑡=1 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑     (25) 

 

 

4 Experimental Results and Discussion 



4.1 About Dataset 

The data set includes images of eyes (open or close) that were captured for driver drowsiness 

detection taking into account the state transition of the eyes for measuring the alertness levels. 

The data set includes varied samples captured under various light, angle, and orientation of the 

face to enhance generalizability in the model. The data set exists as labeled images and therefore, 

supervised learning and proper classification of pat- terns of drowsiness is possible. The dataset 

is also metadata-rich, including timestamps and ambient conditions, and can be helpful for 

secondary analysis. The dataset serves as an essential component which guides deep learning 

models particularly CNNs toward detecting real-time drowsiness as part of their training 

process. Analysis of this dataset supports safe driving through smart vehicles thus helping to 

avoid accidents stemming from driver fatigue. 

4.2 Evaluation Metrics 

The performance analysis requires accuracy, precision, recall, and F1- score metrics for 

assessment of our driver drowsiness detection system. Accuracy is the ratio of correctly 

classified eye states (open or closed) that determine the model’s overall effectiveness. Precision 

measures the ratio of true drowsiness detections among all predicted drowsy states so that the 

model maintains minimal false alarms. Recall is the degree to which the system identifies all 

actual cases of drowsiness, keeping the chances of missing critical cases to a minimum. The F1-

score is a trade-off between precision and recall, providing a general estimate of the reliability 

of the model in day-to-day life applications, i.e., monitoring drivers to enhance road safety. 

• Precision: A model’s precise measurement appears as the ratio of its correct positive 

predictions to all total positive predictions. positives to the total number of positive 

predictions of the model. The ratio demonstrates which proportion of predicted positive 

outcomes turns out to be accurate. High levels of precision matter in scenarios where 

wrong positive identifications produce substantial expenses. 

Precision =
𝐶𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐶𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐶𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
     (26)              

Recall: Recall, or sensitivity, is the ratio of true positive receiver classifies all actual positives 

as such. This would imply that the model can return all positive class instances. 

  Recall =
𝐶𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐶𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐶𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
      (27)              

 

• F1-Score: It is the harmonic mean of precision and recall so that it could balance the 

two measures. It can be especially useful in imbalanced datasets wherein the essential 

levels of precision and recall are unlike each other. A higher F1 score often refers to a 

better general performance in terms of both precision and recall. 

F1-Score = 2 ⋅
Precision⋅Recall

Precision+Recall
       (28)              

• Accuracy: Accuracy measures how well the model correctly predicted what was true 

and not true, true positives and true negatives about all predictions. It is widely applied 



to classification tasks as an estimate of overall performance. It will not help to identify 

imbalanced datasets. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶 𝑇𝑃 + 𝐶 𝑇𝑁

𝐶 𝑇𝑃+𝐶 𝑇𝑁+𝐶 𝐹𝑃+𝐶 𝐹𝑁
     (29)              

4.3 Model Performance Summary 

Fig. 6. Evaluation metrics Comparison of Models. 

Fig. 6 illustrates the performance of ResNet101, VGG16, EfficientNet- B0, and MobileNetV2 

based on accuracy, precision, recall, and F1-score. The best performance is achieved by VGG16, 

followed by EfficientNet-B0. ResNet101 and MobileNetV2 are less effective, so the most 

appropriate model is VGG16. 

 

Fig. 7. Classification report for VGG16 model. 



Fig. 7 The model demonstrates strong performance in distinguishing between open and closed 

eyes based on data in the confusion matrix. The model accurately labels 6,898 closed-eye 

images and 3,186 open-eye images with few misclassifications of 268 and 261, respectively, 

showing excellent performance. 

Fig. 8. Driver drowsiness detection system in action. 

Fig. 8 This figure illustrates the driver drowsiness detection system in action, showing different 

eye states captured in real time. The images rep- resent three conditions: half-closed eyes 

(drowsy state), no eyes detected, and fully open eyes (awake state). 

4.4 Discussion 

Accuracy for real-time driving drowsiness detection was verified for VGG16, EfficientNet-B0, 

MobileNetV2, and ResNet-50. The best was obtained for VGG16 as 95% strongly signified its 

excellent feature extraction capability as well as effective eye state classifying capacity. 

EfficientNet-B0 ranked as second-best at 92% accuracy with appropriate performance-compute 

balance. MobileNetV2 (75%) was observed to be perfect for edge devices and smartphones due 

to its lightness, whereas ResNet-50 (74%) performed reasonably but consumed more processing 

power and is not suitable for day-to-day activities. 

VGG16 achieved the superior precision-recall ratio according to the confusion matrix and 

evaluation metrics, which made it the optimal model to detect live drowsiness. The high 

accuracy results of EfficientNet-B0 occurred alongside minimal resource requirements. 

MobileNetV2 offers an exceptional capability for embedded systems that need low-power 

performance even if its accuracy level is lower than some models. The deep architecture of 

ResNet-50 produced signs of overfitting because of its excessive depth. Eye state classification 

succeeds exceptionally through deep learning approaches, but the most suitable choice depends 

on attaining either better computational performance or higher accuracy that fits real- time 

application needs. 

5 Conclusion and Future Work 

The research project implemented a real-time system for driver drowsiness detection that used 

deep learning models VGG16, EfficientNetB0, MobileNetV2, and ResNet-50. The testing of 

these models validated that VGG16 (95%) yielded the highest accuracy and reliability, while 

Effi- cientNetB0 (92%), MobileNetV2 (75%), and ResNet-50 (74%) were good but needed 

optimization for real-time use. The system efficiently detects drowsiness by constantly 

monitoring eye states and providing reminders when it detects extended eye closure. The 



combination of image preprocessing, feature extraction, and deep learning-based classification 

ensures robust prediction accuracy and reliability for the prevention of drowsy driving-caused 

accidents. 

Future work: Future work will emphasize the combination of Transformerbased models like 

Vision Transformers (ViTs) to ensure improved classification efficiency and accuracy. Real-

time processing optimization techniques will be considered to reduce computational latency and 

enhance performance on embedded automotive platforms. In addition, the data set will be 

enriched for multi-angle facial tracking, low-light environments, and occlusion management to 

determine strong generalizability in many real-world environments. Deployment of the system 

within car systems using Edge AI solutions will allow real-time identification and processing 

and support improved road safety and convenient real-world functionality. 
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