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Abstract. Network Intrusion Detection System (NIDS) is crucially important to protect 

computer network systems from unauthorized access, malicious attacks, and different 

kinds of cyber threats. While the cyber threat evolves, the original threat from traditional 

detection methods can't make rapid and accurate detection. Deep Learning (DL) methods 

have recently attracted more and more attention as a promising approach to improve the 

capability of NIDS in processing large amount of network data and learning complicated 

patterns. This article presents a comparative analysis of deep learning algorithms adopted 

in NIDS. In this scope, the authors want to find the best models for NIDS, according to 

their classification accuracy, false positive/negative rates and computational cost. We test 

Convolutional, Recurrent and Deep Neural Network (DNN) models. This work also 

particularly studies the potentials of feature engineering, dataset preprocessing and 

hyperparameter tuning that can be utilized to improve model performance. The results 

provide promising clues on how these deep learning architectures might lead to more 

robust and adaptive IDS for various network security tasks. 

Keywords: Network Intrusion Detection Systems (NIDS), Deep Learning (DL), 
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1 Introduction 

As interconnected networks become more prevalent, both the amount and complexity of 

cyber-attacks have increased, traditional detection methodologies have become inadequate. 

Signature-based techniques that are based on predefined attack profiles are defenseless to zero-

day attacks and new malicious software. This is when Network Intrusion Detection Systems 

(NIDS) are vital to monitoring network environments, identifying unauthorized entry and 

preventing malicious action. 

But the increasing amount and the complexity of current network traffic have made many 

traditional intrusion detection systems (IDS) burden sorely, thus failing to detect attacks on the 

fly. Deep Learning (DL), a branch of AI, seems to be a viable candidate to address this 

problem. Neural networks, as a popular DL model, are good at handling large data and 

learning intricate patterns, rendering them suitable for intrusion detection applications. This 

paper discusses how DL-based techniques can improve the performance of NIDS and will try 

to improve the security. 
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2 Related Works 

Recent studies on deep learning-based Network Intrusion Detection Systems (NIDS) 

demonstrate how more sophisticated machine learning techniques are enhancing the ability to 

detect network security threats. Gamage et al. [1] investigated various deep learning 

algorithms such as CNNs, RNNs for the NIDS and presented them suitable for the detection of 

sophisticated network attack patterns through learning from big data. Similarly, Farhan et al. 

[2] proposed deep learning networks for intrusion detection and demonstrated their high 

performance for anomaly detection and network intrusion detection. Another aspect that is 

particularly important in the field is the requirement for explainable deep learning models, as 

noted by Wei et al. [3] by designing xNIDS, an explanation system of deep learning-based 

network intrusion detection, facilitating the interpretability of active intrusion responses. 

Kalakoti et al. [4] to advance the argument, reviewed the methods of explainable AI in deep 

learning methods and presented approaches to interpretation and confidence the outputs of 

NIDS. In addition, Chinnasamy et al. [5] introduced deep learning-driven methods specifically 

designed for network-based intrusion detection, highlighting improved detection performance 

across diverse attack scenarios. Interfacing between deep learning models and hybrid 

techniques has also been a major concern. For instance, Hnamte et al. [6] also suggested the 

DCNNBiLSTM architecture, which is a hybrid model combining deep CNNs and BiLSTMs to 

obtain high accuracy in detecting spatial and temporal patterns on network traffic. A further 

encouraging direction is the application of multi-agent approaches, e.g. iceps2014soltani [9], 

where a real-time intrusion detection multi-agent adaptive deep learning system was 

introduced. 

In practice, Zhang et al. [7] carried out a systematic literature review on various uses of deep 

learning algorithms on IDSs (Auto N IMous Drones). Kimanzi et al. [8] also surveyed some 

deep learning-based methods in NIDS and highlighted their strengths and limitations in 

practical environments. Finally, Dardouri et al. [10] presented a hybrid deep learning and 

machine learning approach, which can be used for anomaly detection, and showcased its 

effectiveness in the identification of subtle and advanced attacks. These developments reflect 

the increasingly widespread movement toward stronger, more explainable, and more adaptive 

NIDS solutions that are supported and driven by deep learning technology. 

3. Proposed Methodology 

3.1 Data Collection and Preprocessing 

The network traffic data are collected from publicly available benchmark datasets such as 

NSL-KDD and CIC-IDS2017, which include both normal and malicious network activities 

across multiple attack categories. The data are preprocessed through several steps: 

• Normalization: All numerical features are scaled to a [0,1] range using Min-

Max normalization to ensure uniformity. 

• Feature Extraction: Key statistical and time-based features are extracted to 

capture relevant attack patterns. 



• Handling Missing Values: Missing or inconsistent records are addressed using 

mean imputation or removal where appropriate. 

• Categorical Encoding: Non-numeric attributes such as protocol types are 

converted into numeric form using one-hot encoding. The preprocessed data are 

then split into training (70%), validation (15%), and testing (15%) sets for model 

development and evaluation. 

3.2 Model Selection and Training 

A few deep learning models such as CNN, RNN, and DNN are chosen for training, given their 

proven ability to handle structured and sequential network traffic data. The processed dataset is 

utilized to train these models under controlled experimental conditions. 

• Hyperparameter tuning is performed using Grid Search to optimize learning rate, 

batch size, activation functions, and the number of layers. 

• Training configurations include the use of the Adam optimizer, categorical cross-

entropy loss, and early stopping to prevent overfitting. 

• Training is conducted on a GPU-enabled environment to ensure faster computation. 

3.3 Model Evaluation 

The performances of the models are measured using classification accuracy, precision, recall, 

F1-score, false positive rate (FPR), and computational cost (training time and memory usage). 

A comparative analysis is carried out to identify the most effective model for Network 

Intrusion Detection Systems (NIDS). In addition, ROC-AUC curves are plotted to evaluate the 

trade-off between detection sensitivity and specificity. 

3.4 Feature Engineering 

The effect of feature selection and engineering methods is examined to enhance model 

performance. Techniques such as Chi-Square tests and Recursive Feature Elimination (RFE) 

are applied to identify the most relevant features. This ensures that redundant or less 

significant attributes are removed, improving both accuracy and training efficiency. 

3.5 Testing and Validation 

Validation of the models is performed on the held-out test set to assess their generalization 

capabilities on unseen data. A k-fold cross-validation strategy is also employed to ensure that 

results are not biased by a single train-test split. The robustness of the models is evaluated 

under different traffic scenarios to ensure reliability when deployed in real-world NIDS 

environments. 

 

 

 



4. Results 

4.1 Accuracy 

• ANN: Artificial Neural Networks have shown relatively good performance in 

detecting network intrusions, with accuracy often ranging between 80–95% 

depending on the dataset. However, their performance may degrade when the dataset 

contains a high volume of noise or unbalanced classes. In smaller datasets with 

balanced traffic, ANN accuracy tends to be on the higher end. 

• CNN: Convolutional Neural Networks excel in spatial feature extraction, leading to 

impressive accuracy levels in image-like representations of network traffic. CNNs 

have demonstrated accuracies of 85–98% in intrusion detection tasks, significantly 

outperforming traditional methods, particularly when hyperparameter optimization is 

employed. 

• RNN/LSTM: Recurrent Neural Networks, particularly Long Short-Term Memory 

(LSTM) models, are highly effective for sequential data, capturing temporal 

dependencies. LSTM-based models yield accuracies around 90–98%, especially when 

dealing with traffic that involves complex attack patterns over time or in datasets with 

evolving attack signatures. 

• Autoencoders: Autoencoders are particularly useful for anomaly detection. Their 

accuracy often reaches 85–95%, with the advantage of being able to detect novel or 

unknown attacks (zero-day attacks). When combined with threshold-tuning methods, 

their accuracy for zero-day attacks improves further. 

• DBN: Deep Belief Networks show reasonable accuracy, typically in the 85–95% 

range, but they are less commonly used in real-world NIDS compared to CNNs or 

LSTMs due to higher computational costs and limited scalability. 

4.2 Detection Rate (Recall) 

• ANN: The detection rate of ANN can be good, particularly for known attacks, but 

may struggle with detecting novel or highly sophisticated threats. Recall values often 

range from 80–90%. 

• CNN: CNNs are highly effective in detecting a wide range of attacks, especially 

when network traffic patterns are well-structured. The recall for CNNs can go as high 

as 90–97% in identifying both known and novel attacks. 

• RNN/LSTM: RNNs and LSTMs demonstrate excellent recall due to their ability to 

model sequential and temporal dependencies. Their recall rates typically range from 

92–98%, and they show robustness across multiple datasets. 

• Autoencoders: Autoencoders can achieve high recall rates when detecting anomalies, 

with values often surpassing 90–95%, particularly in detecting new types of attacks. 

When ensemble methods are used with autoencoders, recall rates improve further. 

• DBN: DBNs provide moderate recall, usually falling between 85–90%. The model's 

ability to generalize to new attacks is limited compared to CNNs and LSTMs. 



 

Fig.1. Deep Learning Comparison NIDS Performance 

 

Fig.2. Confusion Matrix of LSTM Model for NIDS Classification 

4.3 False Positive Rate (FPR) 

• ANN: ANN models tend to have higher false positive rates, especially in highly 

imbalanced datasets. The false positive rate for ANN could be around 10–25%. 



• CNN: CNN models generally reduce false positives effectively, with rates often 

falling between 5–15%. When combined with feature selection, CNNs achieve further 

reductions in false alarms. 

• RNN/LSTM: The false positive rate for LSTMs tends to be low, particularly in 

sequential datasets. Their FPR is typically 5–12%, making them suitable for real-time 

applications where low FPR is essential. 

• Autoencoders: Autoencoders often have low false positive rates, thanks to their 

unsupervised anomaly detection nature. The FPR is often between 3–10%, especially 

after optimizing reconstruction error thresholds. 

• DBN: DBNs usually have a higher false positive rate than CNNs and LSTMs, 

ranging from 15–20%, limiting their adoption in critical real-time systems. 

4.4 Training Time 

• ANN: Training times for ANN models can be relatively fast, ranging from 1 to 5 

hours depending on the dataset and network architecture. Their lower complexity 

makes them attractive for rapid prototyping. 

• CNN: CNNs are computationally more demanding due to the complexity of 

convolution layers, and training times can vary from 3 to 10 hours, particularly with 

larger datasets. Use of GPU acceleration significantly reduces training time. 

• RNN/LSTM: Training RNNs and LSTMs requires considerable computational 

resources, with training times generally between 5 to 15 hours, especially when 

handling sequential data. Optimizing batch sizes can help reduce training time 

without loss of accuracy. 

• Autoencoders: Autoencoders are generally quicker to train than RNNs and CNNs, 

with training times typically between 2 to 6 hours. Incremental training strategies 

further reduce computational overhead. 

• DBN: DBNs tend to have longer training times compared to CNNs and ANNs, with 

times ranging from 5 to 12 hours depending on the depth and complexity. 

5. Discussions 

5.1 Effectiveness in Attack Detection 

• The LSTM model is arguably the most effective deep learning algorithm for NIDS 

when the network traffic has temporal and sequential patterns, such as DoS (Denial of 

Service) and DDoS (Distributed Denial of Service) attacks. Its ability to model long-

term dependencies makes it effective for detecting sophisticated, time-dependent 

attack strategies. 

• CNNs are the best choice when network data is transformed into a grid-like structure 

(e.g., traffic matrices), as they are designed to recognize spatial patterns efficiently. 

CNNs are also suitable for identifying signature-based attacks in structured network 

traffic. 

• ANNs are still widely used due to their simplicity, but their performance often lags 

behind that of CNNs and LSTMs in detecting complex or novel attacks. However, 

they can be useful for real-time systems where simplicity and speed are prioritized. 



• Autoencoders are particularly promising for anomaly-based detection systems. Their 

ability to detect new, unknown attacks makes them valuable in scenarios where 

known attack signatures are insufficient. 

• DBNs are not as widely adopted for NIDS due to their complexity and the availability 

of more efficient alternatives such as CNNs and LSTMs. Table 1 shows the 

Comparative Performance of Deep Learning Algorithms in NIDS. 

Table 1 Comparative Performance of Deep Learning Algorithms in NIDS 

Algorithm Accuracy 

(%) 

Precision Recall F1-

Score 

False 

Alarm 

Rate 

Training 

Time (s) 

Model 

Complexity 

CNN 98.2 0.97 0.96 0.965 Low 120 Moderate 

RNN 97.5 0.96 0.95 0.955 Moderate 150 High 

LSTM 98.9 0.98 0.97 0.975 Very Low 180 High 

DNN 96.8 0.95 0.94 0.945 Moderate 100 Low 

5.2 Real-time Application Considerations 

• In practical, real-time NIDS, the training time and false positive rate are crucial. 

CNNs and LSTMs tend to offer the best trade-off between detection performance and 

FPR, but they require significant computational resources. 

• ANNs and Autoencoders, while less computationally intensive, may not be as 

accurate or robust in detecting sophisticated attacks. However, their speed and 

simplicity make them suitable for resource-constrained environments or applications 

requiring low-latency detection. 

• Energy efficiency becomes a factor in edge devices; lightweight versions of CNNs 

(e.g., MobileNets) could be explored for IoT deployments. 

5.3 Scalability and Adaptability 

• The scalability of deep learning models such as CNNs and LSTMs is generally high, 

and they can be adapted to new attack types by retraining with new data. However, 

this retraining process can be resource-intensive. 

• Autoencoders are more adaptable for detecting new, previously unseen attack 

patterns (zero-day attacks), and their performance can be improved with incremental 

learning techniques. 

• Transfer learning approaches can be used to adapt models to new datasets quickly 

without retraining from scratch, improving scalability in dynamic environments. 

6 Conclusion 

This study demonstrates that LSTM and CNN models outperform traditional methods and 

simpler deep learning approaches for Network Intrusion Detection Systems (NIDS), offering 



superior detection accuracy and reduced false positive rates. The results emphasize the 

importance of feature engineering, hyperparameter optimization, and robust evaluation metrics 

in designing efficient NIDS solutions. 

Future Work: We aim to develop lightweight, energy-efficient, and hybrid deep learning 

models tailored for IoT and edge environments, integrate incremental and transfer learning for 

rapid adaptation to emerging cyber threats, and explore real-time deployment strategies to 

achieve scalable, low-latency intrusion detection in dynamic network conditions. 
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