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Abstract 

The face recognition method based on deep convolutional neural network is difficult to deploy in the embedding devices. In this work, 

we optimize the MobileFaceNet face recognition network MobileFaceNet so as to deploy it in embedding environment. Firstly, we 

reduce the model parameters by reducing the number of layers in MobileFaceNet. Then, the h-ReLU6 activation function is used to 

replace PReLU in the original model. Finally, the effective channel attention module efficient channel attention is introduced to obtain 

the importance of each feature channel by learning. After the optimization, the MobileFaceNet parameters are compressed to 3.4 MB, 

which is smaller than the original model (4.9 MB), and the mAPs reach 98.52%, 97.54% and 91.33% on the test sets of LFW, 

VGGFace2 and the self-built database, respectively, and the recognition time is about 85 ms/photo. It shows that the proposed method 

achieves a good balance between the model complexity and model performance. 

Keywords: Face recognition, MobileFaceNet, weak computing environment, channel attention mechanism. 

Received on 02 February 2022, accepted on 26 February 2022, published on 28 February 2022. 

Copyright © 2022 Jianyu Xiao et al., licensed to EAI. This is an open access article distributed under the terms of the Creative 

Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work 

is properly cited. 

doi: 10.4108/eai.28-2-2022.173547
_______________ 
*Corresponding author. Email: liuhuanhua@hufe.edu.cn

1. Introduction

Face recognition, as a biometric identification technology, 

has been used in a wide range of applications, such as 

security systems and identity verification systems. The 

traditional face recognition methods are based on 

Principal Component Analysis (PCA)[2]. Turk M et al.[1] 

proposed Eigenface which extracts main features and 

reduces the data dimension for face recognition. Fisher 

face proposed by BELHUMEUR P N et al.[3] calculates 

the minimum dispersion by Linear Discriminant Analysis 

(LDA) to distinguish faces. However, these algorithms are 

not robust to the change of illumination and face pose. 

Between 2009 and 2012, face recognition algorithm based 

on sparse representation[4] became a hot research topic 

because of its better robustness to the occlusion problem. 

Researchers also proposed algorithms such as face super-

resolution, face illumination normalization, and face pose 

correction to solve the effects of illumination and pose 

change.  

With the rapid development of deep learning 

technology, it has also made an important breakthrough in 

the field of face recognition[5]. This approach trains the 

model in a large dataset in advance, which enables it to 

extract more generalized face features[6]. The Alexnet 

network proposed by Krizhevsky et al. started a wave of 

research in the field of deep convolutional neural 

networks for face recognition[7]. Facebook proposed the 

DeepFace algorithm which used a face detection method 

based on detection point to extract 4096-dimension 

features through a 9-layer CNN network and achieved an 

accuracy of 97.35% on Labeled Faces in the Wild (LFW) 

database. Florian Schroff[8] et al. proposed the FaceNet 

algorithm to apply triplet loss to the CNN network 

structure and achieved 99.63% accuracy on LFW. 

However, these networks have huge number of 

parameters that means with low computational efficiency, 

which cannot be deployed on mobile and embedded 

devices[9], so a large number of scholars started to 

research on lightweight neural networks. SqueezeNet was 

the first model proposed by Berkeley et al.[10], and Google 

proposed the Xception[11] model, which implements a 

lightweight neural network by compressing the neural 

network parameters. Google proposed a lightweight 

network based on deep separable convolution 

MobileNet[12]  model, which introduces two hyper 
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parameters, not only reduces the network weight 

parameters, but also improves the computational speed. 

The MobileNetV2[13] improved by adopting the strategy 

of expansion and compression, which not only improves 

the accuracy on but also reduces the number of 

parameters of the model. MobileNetV2 reduces the 

storage size and improves the computation speed, which 

is suitable for mobile devices. 

MobileFaceNet[14] model is a lightweight face 

recognition network based on MobileNetV2 with only 4M 

and high accuracy, which is tailored for mobile and 

embedded devices and is ideal for implementing face 

recognition in weak computing environments. The model 

replaced the average pooling layer with a separable 

convolution, used the insight face loss function for 

training, and introduced batch normalization[15]. Zhang [16] 

et al. introduced the style attention mechanism in the 

MobileFaceNet network[17] to enhanced the feature 

representation and use AdaCos[18] face loss function to 

train the model to improve its accuracy and robustness. 

Hang[19] et al. introduced the SE module in 

MobileFaceNet[20] and successively used softmax loss and 

insightface loss[21]. The two loss functions were used to 

train the model to improve the recognition accuracy in 

mobile. Bihao [22] et al. optimized the network structure of 

MobileFaceNet and proposed a new loss function, Focal-

angle Loss, to improve its recognition rate. 

Although MobileFaceNet is already a lightweight 

neural network for embedded devices, however, there are 

still many shortcomings when the model is ported to 

embedded devices due to its hardware condition 

limitations. The higher resolution input image results a 

deeper network structure to gradually extract face features, 

and the computational effort increases. Therefore, in this 

paper, we lightened the network structure of 

MobileFaceNet, and the accuracy of the model is ensured 

by replacing the activation function and introducing the 

effective channel attention module ECA[23]. 

2. MobileFaceNet Network Structure

As shown in Table 1, the MobileFaceNet network takes a 

112 × 112 resolution image as input and extracts the face 

features from it, while the output features are 512-

dimension. The model contains a total of 20 layers of 

network, and the input feature image is received at the 

beginning stage using a fast down sample strategy. The 

next five bottleneck layers are repeated 1, 5, 1, 6, and 1 

times to extract the shallow to deep features of the face, 

and the last few convolutional layers are down sampled 

and a 1×1 linear convolutional layer is added after the 

linear global depth wise convolutional layer as the feature 

output. 

In MobileFaceNet convolutional neural network, the 

average pooling layer is replaced with global depth 

convolution (GDConv), and the output of global depth 

convolution is given by the following equation (1), where 

K is the depth-separable convolution kernel, F is the 

dimension of the input feature map, i, j are the spatial 

width and height dimension, and r is the current channel. 

Gr = ∑ Ki,j,r × Fi,j,ri,j       (1) 

When both the input feature map size and the 

convolution kernel size are W × H × R, and the output 

feature map G has a size of 1 × 1 × R, the ratio of the 

computational overhead of the global depth convolution 

layer to the computational overhead of the global average 

pooling layer is given by the following equation (2), 

where W, H, R indicate width, height and number of 

channels respectively, and Q is the number of filters. 

𝑊×𝐻×𝑅

𝑊×𝐻×𝑅×𝑄
=

1

𝑄
     (2) 

The specific network structure of MobileFaceNet is 

shown in Table 1, where t denotes the "expansion" 

multiplier, i.e., the channel expansion multiplier of the 

reverse residual network, c denotes the number of output 

channels, n denotes the number of repetitions, and s 

denotes the step stride. 

Table 1. MobileFaceNet network structure 

Input Operator t c n s ECA 

1122×3 conv3×3 - 64 1 2 - 

562×64 depthwise conv3×3 - 64 1 1 - 

562×64 bottleneck 2 64 5 2 √ 

282×64 bottleneck 4 128 1 2 - 

142×128 bottleneck 2 128 6 1 - 

142×128 bottleneck 4 128 1 2 - 

72×128 bottleneck 2 128 2 1 √ 

72×128 conv1×1 - 512 1 1 - 

72×512 Linear GDConv7×7 - 512 1 1 - 

12×512 linear conv1×1 - 128 1 1 - 

Conv 1×1

Depthwise Conv 

3×3

Conv 1×1

bottleneck

Figure 1. Bottleneck layer structure in 
MobileFaceNet 
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MobileFaceNet continues the bottlenecks in 

MobileNetV2[24] and uses it as the main module to build 

the network, as shown in Figure 1 for the structure of the 

bottleneck layer in MobileFaceNet. The expansion factor 

in bottlenecks is also reduced, and PReLU is chosen as 

the activation function and insight face loss as the loss 

function. In addition, MobileFaceNet network also 

introduces 7×7 separable convolution before the fully 

connected layer to replace the original average pooling 

layer, so that the features extracted by the network are 

more generalized. 

Deep Separable Convolution[25] is an important part 

of the MobileFaceNet network because mapping the 

channels and spaces of the convolutional layers separately 

gives better results. As shown in Figure 2, the depth-

separable convolution is based on this decomposition of 

the traditional convolution into a depth convolution plus a 

1×1 convolution, and then followed a 1×1 point-by-point 

convolution. 

  

N 
KD

KD

M

(a) Standard convolution filters

  

M 

KD

KD

1

(b) Depth-wise convolution filters

1

1

M

  

N 

(c) 1×1 convolution filters of depth-wise separable
convolution 

Figure 2. Deeply separable convolution 

Under standard convolution, the input Df × Df × M 

feature map F, the obtained output is Dg × Dg× N feature 

map G. The parameters of the convolution kernel used are 

Dk × Dk × M × N, where Dk is the convolution kernel size, 

Df is the feature map size, M is the number of input 

channels, and N is the number of output channels, then the 

calculation formula is shown below. 

𝐺𝑘,𝑙,𝑛 = ∑ 𝐾𝑖,𝑗,𝑚,𝑛 ∙ 𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑚𝑖,𝑗,𝑚   (3) 

Then the calculated amount is shown in the 

following equation. 

𝑆1 = 𝐷𝑘 ∗ 𝐷𝑘 ∗ 𝑀 ∗ 𝑁 ∗ 𝐷𝑓 ∗ 𝐷𝑓  (4) 

The depth separable convolution is calculated as 

shown in Figure 3. Firstly, the depth convolution is 

multiplied by bit according to the channels, and one 

convolution kernel is responsible for one channel, and the 

number of channels does not change at this time. Since 

one convolution kernel can only obtain part of the 

information of the feature map, it is necessary to use 1×1 

convolution kernels to perform the traditional convolution 

operation to combine all the feature maps to obtain a new 

feature map with all the information. At this time, the 

number of channels can be changed. 

Conv 3×3

BN

ReLU

Depthwise Conv 

3×3

BN

ReLU

Conv 3×3

BN

ReLU

Figure 3. Conventional convolution (left) and depth-
separable convolution (right) 

The computational effort is given in the following 

equation (5), which will decrease by 1/N + 1/ Dk² 

compared to traditional convolution. 

𝑆2 = 𝐷𝑘 ∗ 𝐷𝑘 ∗ 𝑀 ∗ 𝐷𝑓 ∗ 𝐷𝑓 + 1 × 1 ∗ 𝑀 ∗ 𝑁 ∗ 𝐷𝑓 ∗ 𝐷𝑓  (5)

Compared with MobileNet, MobileFaceNet is more 

lightweight, with only 0.99 million parameters. The 

model with smaller size and higher accuracy is more 

suitable in computation limited environment. Table 2 

shows the accuracy and number of parameters comparison 

between MobileFaceNet and MobileNet. 

Table 2. Comparison of MobileFaceNet and 
MobileNet 

Network LFW 
AgeDB-

30 

Number of 

parameters 

MobileNetV1 98.63% 88.95% 3.2M 

MobileNetV2 98.58% 88.81% 2.1M 

MobileFaceNet 99.28% 93.05% 0.99M 
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In this paper, the neural network in the 

MobileFaceNet algorithm is appropriately optimized to 

make it better applicable to the embedded platform with 

limited computation capacity. The computation capacity 

of the embedded platform is limited, since this paper 

adopts the way of transmitting feature values to achieve 

the overall process of face recognition, the number of 

feature points in the recognition process and the size of 

the output feature values can be appropriately reduced. 

However, this will inevitably lead to a lower recognition 

accuracy and cause bad results. In this paper, we use 

replacement of the activation function and the 

introduction of the Efficient Channel Attention (ECA) 

module to optimize the neural network to ensure that the 

model has a high recognition accuracy. In this paper, the 

network model is optimized in the following aspects. 

1) We adjust the input of the model to 96×96

resolution images, then appropriately reduce the

number of network layers by reducing the number of

repetitions of the first and third bottleneck layers to

reduce the number of network parameters and

lowering the computational effort.

2) We replace the activation function of the bottleneck

layer from PReLU to h-ReLU6 to improve the

network performance.

3) We used ECA module in the first and last bottleneck

layers to optimize the parameters automatically.

3. MobileFaceNet Optimization

3.1. Network Structure 

Considering that this paper targets face recognition in a 

weak computing environment and does not need to 

process complex images, the network input is adjusted to 

a 96×96 resolution image. Since the biggest advantage of 

small embedded devices is their small size and portability, 

the face is close to the camera when acquiring face 

images. Figure 4(a), (b), and (c) shows the image with the 

detected face image, processed image with resolution 112

× 112, and processed image with resolution 96 × 96, 

respectively. It can be found that the image with 

resolution 96×96 is sufficient to contain most of the 

information of a human face. 

(a)      (b)         (c) 

Figure 4. Face image processing. (a) Detected face 

(b) 112×112，(c) 96×96

Due to the reduction of features in the input image, it 

is no longer necessary to have an excessively deep 

network structure. Therefore, we reduce one of the 

bottleneck layers to make the number of neural network 

parameters smaller and lighter. In order to reduce the 

computation without affecting the accuracy too much, we 

introduce the ECA module in the first and last bottleneck, 

and the adjusted network structure is shown in Figure 5. 

Input 96×96 

resolution images

Convolutional 

layer conv3×3

Dilated 

Convolution 

upgrade

bottleneck

bottleneck

7×7 global depth 

convolution

Fully Connected 

Layer
Output Classification

 

ECA 

module

ECA 

module

Five 

layers

Figure 5. Adjusted network structure diagram 

3.2. Activation function 

MobileFaceNet uses bottleneck architecture as feature 

extraction network, i.e., bottleneck layer design, which 

adds one step of deep convolution between two point-by-

point convolutions. Since the Sigmoid[26] function 

involves exponential and division operations, which is 

computationally intensive and the embedded devices 

cannot afford this level of computational consumption. 

The activation function in the bottleneck layer of the 

original model is PReLU, which is optimized compared to 

the ReLU6 used in MobileNetV2, but the effect is very 

limited. The PReLU is used as the activation function 

after the first point-by-point convolution and deep 

convolution, and the linear activation function after the 

last point-by-point convolution. Figure 6(a) shows the 

PReLU function, and Figure 6(b) shows the function 

image of ReLU. ReLU6 function limits the upper bound 

to 6, which alleviates the problem of Relu[27] gradient 

disappearance caused by large gradients flowing through 

the neurons during the computation. In fact, this does not 

completely prevent this phenomenon, we replace it with 

the h-ReLU6 function, which is based on the Swish 

function proposed by Google[28][29]. Google has proven 

through extensive experiments that the Swish function 
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outperforms all current activation functions, and its 

function image is shown in Figure 7. 

(a) PReLU (b) ReLU

Figure 6. PReLU(a) and ReLU(b) action function 

Figure 7. Swish and h-ReLU6 action function 

As shown in the equation (6), the h-ReLU6 function 

is improved by imitating the Swish function though. As 

shown in Figure 7, the function image is also 

morphologically close to the Swish function, but it is still 

essentially a ReLU6 function rather than a Sigmoid 

function, which enables excellent activation performance 

to be achieved by a smaller computational effort. 

f(x) = x ∙
ReLU6∙(x+3)

6
 (6) 

Figure 8 shows the structure of the bottleneck layer 

after replacing the activation function. 

Conv 1×1，
h-ReLU6

Depthwise Conv 3×3,

h-ReLU6

Conv 1×1，
Linear

Figure 8. Replace the activated bottleneck 

3.3. ECA Module 

The ECA module assigns weights to individual channels 

by introducing a small number of parameters and to help 

neural network learn important features. There have been 

many studies from the spatial dimension[30] perspective of 

optimizing neural networks. We make an attempt from the 

perspective of weight optimization. In the literature[19], the 

Squeeze-and-Excitation (SE) module[31][32] is introduced 

in MobileFaceNet. The structure is shown in Figure 9, and 

it can be seen from the experimental results that the 

channel attention mechanism using the feature 

repositioning[33] strategy improve the recognition rate of 

the MobileFaceNet model in some cases, but it has some 

impact on the memory and computational power occupied 

by the model. 

Figure 9. SE module 

In this paper, we choose the effective channel 

attention ECA module, whose structure is shown in 

Figure 10. It improves on SE to avoid dimensionality 

reduction and effectively capture cross-channel 

interactions and calculates the weights of each channel by 

a very simple structure. The module implements a local 

cross-channel interaction strategy without dimensionality 

reduction. An adaptive selection of the one-dimensional 

convolutional kernel size reduces the complexity of the 

model while achieves a performance gain from the 

complex attention module. Figure 11 shows the process of 

ECA module, firstly, the global average pooling (GAP) is 

performed on the original features of the input image to 

obtain all the unidimensional features. Then ECA 

captures the local cross-channel interactions by fast one-

dimensional convolution of size k, where the parameter k 

can be generated by the adaptive function according to the 

size of the input channel C. The next step is to generate 

the weight shared of each channel by the Sigmoid 

function, and to combine the original input features with 

the channel weights to obtain the features with channel 

attention. Unlike the SE module, the ECA module aims to 

learn effective channel attention with low model 

complexity, which minimizes its additional parameters 

and computational effort. 

The ECA module has only one 1×1 convolutional 

layer with kernel size k, which indicates the coverage of 

local cross-channel interactions, because it is unnecessary 

to calculate the attention between two channels in the SE 

module. Two fully connected layers will introduce too 

many parameters and computation, which is not suitable 

for the weak computational environment in this paper. 

Considering that the introduction of additional modules 

will inevitably increase a small amount of parameters and 

computation, only the ECA module is embedded in the 

 ′

 ′
 ′

(∙)

1 × 1 ×  1 × 1 ×  

(∙ , )

(∙ , ∙)
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very first and last bottleneck for extracting shallow and 

deepest features, respectively. Figure 12 shows the 

structure of the bottleneck layer after the ECA module is 

embedded. 

Figure 10. Structure of ECA module 

Figure 11. ECA module 

4. Experimental Results and Analysis

4.1. Experimental Configuration 

The experiments were conducted using Pytorch as the 

framework for building deep learning network structures, 

with Windows 10 as the operating system, and Python 3.6 

as the programming language for training and testing. The 

hardware platform is an Intel Core TM i7-10700 CPU 

with 32 GB of memory and a NVIDIA GeForce RTX 

2080 Ti GPU with 11 GB of video memory. Opencv is 

used to complete the work related to image preprocessing. 

The total number of training rounds of the network model 

is 500, and the batch size is 32. The learning rate is 

initially 0.1 using the SGD optimizer, and gradually 

decreases as the training progresses, and the minimum 

learning rate is 0.0001. 

In addtion, we deployed the network structure of 

MobileFaceNet before and after optimization to the 

embedded platform in turn, and evaluate the merits of the 

model in terms of memory consumption, recognition rate 

and recognition accuracy. 

Conv 

1×1

ReLU

Depthwise 

Conv 3×3

ReLU

Conv 

1×1

ECA

 
ReLU

Figure 12. Bottleneck after embedding ECA 

4.2. Data Processing

In this paper, we use the CASIA-Webface[33] face dataset 

as the training dataset. Using MTCNN[35] face detection 

method is used to re-detect the images in the dataset, and 

the detected face images are cropped to 96 × 96. As 

shown in Figure 13, the algorithm is based on the three-

level neural networks P-Net, R-Net, and O-Net, 

progressively generating, correcting, and accurating 

candidate frames and finally generate the positions of five 

feature points of the left eye center, right eye center, nose 

tip, left mouth corner, and right mouth corner of the face. 

Since the captured faces have a certain angle of in-

plane deflection and some different distances between the 

faces and the camera, which leads to inconsistent face 

sizes. Therefore, it is necessary to align the captured 

faces. In this paper, we directly calculate the 

transformation matrix based on the positions of the five 

feature points localized by MTCNN and the standard face 

template feature point positions using Similarity 

Transformation. 

Assuming that the original coordinates are (x, y) and 

the coordinates after similarity transformation are (x1, y1). 

As shown in formula (7), s1 and s2 is the scaling factor, 

Avgpool

Transpose 

Squeeze

Conv1d

Transpose 

Squeeze

Sigmoid

⊗

 ×  × 

 × 1 × 1

1 ×  

1 ×  

 × 1 × 1

Efficent Channel Attention

⊗

 = 5

1 × 1 ×  1 × 1 ×  

⊗ : element − wise product

Adaptive Selection of 
Kernel Size: =   
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(t1, t2) is the translation factor, r = 1 means x-flip, 

otherwise no flip, and θ  is the rotation angle. The 

transformation matrix is solved according to the 

coordinates of the feature points generated by MTCNN 

and the standard face template feature points to achieve 

face alignment. 

[
𝑥1

𝑦1

1
] = [

𝑠1 cos 𝜃 𝑠1 sin 𝜃 𝑡1

−𝑟 ∙ 𝑠2 sin 𝜃 𝑟 ∙ 𝑠2 cos 𝜃 𝑟 ∙ 𝑡2

0 0 1

] [
𝑥
𝑦
1

]    (7) 

Figure 13. MTCNN detection effect 

4.3. Accuracy Evaluation 

The purpose of this experiment is to verify the degree of 

improvement of the recognition effect of each step of the 

MobileFaceNet network compared with the original 

network, so the original MobileFaceNet network is 

chosen as the reference object. The LFW[36] and 

VGGFace2[37] of the public dataset and the self-built test 

set were chosen respectively, where the self-built test set 

contains 30 people with 12 photos each, which is divided 

into two parts. Firstly, two photos are randomly selected 

from each person, totaling 60 photos, to form the face 

library. The remaining 10 photos from each person are 

used as test samples, totaling 300 photos. The number of 

people and the number of images in each data set are 

shown in Table 3 below. 

Table 3. Face data set 

Dataset 
Number of 

people 

Number of 

images 

CASIA-Webface 10575 494414 

LFW 5749 13233 

VGGFace2 9131 3.31M 

Self-built face 30 360 

dataset 

The accuracy test results are shown in Figure 14. The 

accuracies of the original network on LFW, VGGFace2 

and the self-built dataset are 98.62%, 97.48%, 90.67%, 

respectively, which become to 98.14%, 96.64%, 90.13%, 

after adjusting the network structure. The accuracies after 

replacing the activation function are 98.35%, 96.25%, 

90.33%, respectively, which are 98.52%, 97.54%, 91.33% 

after introducing the ECA module. Theoretically, 

reducing the number of network layers will lead to a 

significant decrease in recognition accuracy, but from the 

experimental results, it seems that the recognition 

accuracy of the model for the three test sets of LFW, 

VGGFace2 and self-built datasets decreases by 0.48%, 

0.84% and 0.52%, respectively. It is not a significant 

decrease, which shows that there are few features in face 

recognition, the resolution of the input image can be 

reduced appropriately, and the number of network layers 

and parameters can be reduced accordingly. 

Figure 14. Recognition accuracy in different 
databases 

After replacing the activation function, the model 

improves the accuracy by 0.21% and 0.20% in LFW, and 

self-built datasets, respectively, compared to the previous 

step, although the accuracy is reduced by 0.39% in 

VGGFace2. It proves that in some cases h-ReLU6 

outperforms the original PReLU. 

Finally, the accuracy of all three datasets improved 

after introducing the ECA module, especially in the 

VGGFace2 and self-built datasets, and were even higher 

than before the lightweight treatment. Overall, the 

recognition rate of the model after the lightweighting 

treatment still performs well, reaching 98.52%, 97.54%, 

and 91.33% in the LFW, VGGFace2, and self-built 

datasets, respectively. 
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4.4. Complexity Test 

In this paper, we use the memory occupied by the model 

and the recognition speed on the embedded device as the 

criteria for complexity testing. The test results are shown 

in Table 4, where the recognition speed is the average 

time taken to recognize each face image in the embedded 

device. From Table 4, we can see that the model initially 

occupies 4.9 MB of memory, and the recognition speed is 

117 ms per image. For the optimized network structure, 

the network layers and the amount of computation are 

significantly reduced, which makes it occupy 1.8 MB of 

memory and the recognition speed per image is increased 

by 34 ms. After replacing the activation function, the 

memory occupancy is increased by 0.1 MB and the 

recognition speed per image is increased by 5 ms. As 

shown in the following equation (8) for the function of 

PReLU, compared with it, the complexity of h-ReLU6 as 

shown in the equation(6) is relatively higher and the 

computation is larger, but the overall impact seems to be 

small. The introduction of the ECA module also leads to 

an increase of 0.2MB of occupied memory and an 

increase of 0.4 ms per image recognition speed. It 

increases the complexity of the model, however, 

compared with other channel attention modules, the 

complexity of the ECA module occupies less memory and 

computation. 

𝑓(𝑥) = {
𝑥      , 𝑥 > 0
𝑎𝑥   , 𝑥 ≤ 0

    (8) 

Although replacing the activation function and 

introducing ECA both lead to an increase in the model's 

memory and a decrease in recognition speed, overall it 

takes up 1.5 MB less memory than processing and 

increases recognition speed by 32 ms per image. 

Table 4. Model Complexity Test Results 

Models Memory(MB) Time(ms/sheet) 

MobileFaceNet 4.9 117 

Restructuring the 

network 
3.1 76 

Replacement activation 

function 
3.2 81 

Introduction of ECA 

module 
3.4 85 

5. Conclusion

In this work, we optimized the face recognition model 

MobileFaceNet for limited computation environments. 

Firstly, we reduced the resolution of the input image and 

the number of network layers to reduce the parameters of 

the model and the computation complexity. Then, the 

activation function in the bottleneck layer is replaced with 

h-ReLU6, and the ECA mechanism is introduced to

achieve automatic parameter tuning. Finally, the

proposed model was test on public datasets LFW,

VGGFace2 and the self-built datasets. Moreover, we

deployed the optimized model in the embedded devices

for testing.  Experiment results shows that there is a slight

decrease in the recognition rate in the LFW dataset for the

optimized model, however it is negligible overall. In

general, the lightly processed model is more suitable for

use in a weak computing environment than the original

model.
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