
Random Aggregation: Differential Privacy in k-

Anonymity 

Liyuan Yang 
yangly7@chinatelecom.cn 

Security Technology Research Division Research Institute of China Telecom Corporation Limited 

Shanghai 201315, China 

Abstract—Microaggregation is used to solve the problem of privacy protection. A new 

method of microaggregation is proposed in this paper to satisfy differential privacy. It adds 

random noises to the centroids of equivalence classes, which reduces the risks of 

differential attacks and link attacks. Since the process of k-partition is very time-

consuming, a top-down method is used to divide the original dataset into equivalence 

classes. Firstly, a matrix of distances is built and the original dataset is divided into several 

smaller datasets. And then the equivalence classes are formed by splitting datasets 

repeatedly. The experiments are conducted on two different datasets. Comparing with the 

existing methods, the results show that the proposed methods have the advantage of high 

efficiency and less information loss. 

Keywords—random k-anonymity, privacy protection, statistical disclosure control, 

differential privacy, random aggregation, microaggregation 

1 INTRODUCTION  

In recent years, people pay more and more attention to the protection of personal data. As 

releasing microdata about individuals poses privacy threat due to the privacy-related attributes, 

existing laws and regulations require that statistical disclosure control (SDC) technology should 

be used to protect microdata in cloud computing [1]. The purpose of SDC is precisely to ensure 

that only useful macrotrends are learned by the recipients of such data and individual privacy is 

therefore protected. Among them, k-anonymity is a widely used method. It requires a certain 

number (at least k) of records that are indistinguishable on quasi-identifiers presence in the 

published data. The set of these records is called equivalence class. It only has 1/k probability 

for an attacker to link to the correct result. The larger k is, the more privacy information is 

protected, but the more information is lost. 

There are two common ways to implement k-anonymity. One is generalization, and the other is 

microaggregation. Generalization is a method of expanding the value of a specific quasi-

identifier into a larger value range, so that it can no longer uniquely represent a record in the 

dataset [2]. For example, “male” and “female” can be generalized into “gender unknown”, age 

“25” can be generalized to an age domain “20~29”. Generalization is more suitable for typed 

data. For continuous data, it has no method to determine the reasonable domain of identifiers, 

which will lose more information. Whereas, microaggregation (Fig.1) classifies at least k nearest 

records of original data into one equivalence class, and replaces the identifiers of these records 
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with the identifiers of centroid. It is more suitable to aggregate continuous data, because 

algorithms require calculating distances of records [3].  

According to the size of each equivalence class, heuristic microaggregation algorithms can be 

divided into two types: fixed-size heuristic and variable-size heuristic. The most famous fixed-

size heuristic is Maximum Distance to Average Vector (MDAV) [4]. However, being a fixed-

size heuristic, it lacks flexibility for adapting the group size to the distribution of the records. 

Variable-size Maximum Distance to Average Vector (V-MDAV) adds a step that allows MDAV 

to adapt to the dataset distribution and generates variable-size groups [5]. In order to further 

improve the efficiency of algorithm, Song, Ma and Tian et al. [6] proposed a bottom-up 

microaggregation algorithm. Before searching for equivalence classes, they split datasets into 

several parts to reduce the search size. Experiments show that this method is effective. But the 

bottom-up steps are highly dependent on random sampling. If inappropriate samples are chosen, 

it will result in low quality clustering results. 

 

Fig.1. Microaggregation. 

Microaggregation has some disadvantages when it anonymizes continuous attributes. Firstly, as 

shown in Fig.1, the quasi-identifiers of records near centroid just change a little bit after 

microaggregation. It could result in more frequent link attacks on these records, such as Company 

E, with a high disclosure risk. Secondly, anonymous tables 𝑇′ cannot resist differential attacks. 

Assuming that an attacker knows 𝑘 − 1 records in an equivalence class, the remaining record can 

easily be guessed. For example, in Fig.1, if an attacker knows information about Company A and 

B, columns (Surface, No.emp) of lines 1 and 2 in 𝑇′ probably be guessed through sensitive 

attribute (Turnover). Then, the quasi-identifiers of line 3 will be inferred from the mean value 

and company C may be linked successfully. 

In view of differential attacks, differential privacy (DP) method can be used in microaggregation 

algorithms to enhance privacy protection. Dwork, Kenthapadi and Mcsherry et al. [7] randomly 

selected records in the original data through a sampling algorithm satisfying DP. They proved 

that these secure k-anonymous tables could resist differential attacks. In addition, Song, Ma and 

Tian et al. [6] proposed a random k-anonymous method to solve the above two disadvantages. 

As shown in Fig.2b, this method makes anonymous records appear randomly anywhere within 

the equivalence class range. Attackers cannot obtain the quasi-identifiers of the unknown 

individuals through differential reasoning. At the same time, records near the centroid may move 

away after being anonymous, so that link attacks are successfully resisted. Experimental results 

showed that this method could keep useful macro trends of microdata. However, squared errors 

of random k-anonymous is always larger than the one of microaggregation (Fig.2a). This is 



because the data after adding noise may be much different from the original data. But in the 

traditional method, the sum of squared distances from the centroid to all records is minimum. 

Data availability versus security is a difficult trade-off. 

  

(a) Microaggregation (b) Random k-anonymity 

Fig.2.Two ways to anonymize equivalence class. 

This paper mainly makes the following contributions.  

• A top-down method for finding equivalence classes is proposed, which is more efficient in 

experiments. It is suitable for continuous data. 

• A new microaggregation method, called random aggregation, is proposed. It adds noises on 

the centroids to satisfy DP, and also protects the records close to the centroid of equivalence 

classes. 

• An algorithm is proposed to implement random aggregation. A scale factor 𝜌 is considered 

to balance data availability and disclosure risk. 

The rest of the paper is organized as follows. Section 2 contains background on k-anonymity, 

microaggregation, DP and random k-anonymity. In section 3, random aggregation is proposed. 

In order to achieve k-anonymous efficiently, a top-down partition method is adopted as well. 

Section 4 shows experimental results of two datasets. And conclusions are given out in section 5. 

2 BACKGROUND 

2.1 Notations 

Table 1 gives the key notations used in this paper. 

Table 1 Key Notations 

Notations Definition 

𝑇 The original data. 

𝑇’ The k-anonymous data. 

𝑇𝑖 The i-th partition of 𝑇. 



𝑀 
A matrix of distances containing the distances 

between any two records. 

𝐸 Equivalence classes of 𝑇. 

𝐸𝑖 Equivalence classes of 𝑇𝑖. 

k A positive integer. 

c A positive integer. 

𝜌 A float in the range [0, 1]. 

𝐴𝑛 The n-th attribute of records. 

𝑥𝑖 The i-th record in data. 

2.2 k-Anonymity 

k-Anonymity is a kind of privacy protection method proposed by Samarati and Sweeney [2]. The 

following is a brief introduction of its definition. 

Definition 1 (k-anonymity): Let  𝑇(𝐴1, 𝐴2, … , 𝐴𝑛)  be a table and 𝑄𝐼 be the quasi-identifiers 

associated with it. 𝑇 is said to satisfy k-anonymity with respect to 𝑄𝐼, if and only if each sequence 

of values in 𝑇[𝑄𝐼] appears at least with 𝑘 times.  

k-Anonymity protects personal privacy to a certain extent, but at the same time reduces data 

availability. Therefore, the researches on k-anonymity mainly focus on improving data 

availability while protecting private information. Recent studies evaluated k-anonymity 

algorithms by availability and security indicators [5, 6, 8, 10]. 

Considering a microdata set T with p numeric attributes and n records, each record 𝑥𝑖  is 

represented as a vector in a p-dimensional space. The mean of all records is 𝑥̅. For a given 

positive integer k, an anonymization method partitions T into g classes, where each class 

contains at least k records to satisfy k-anonymity. 𝑥𝑖′ is the 𝑖th record of anonymous data T’. On 

this basis, Equation (1) is usually used to represent information loss (IL) [5, 8, 10]. 𝑆𝑆𝐸 in (2) 

is the sum of squared errors. And 𝑆𝑆𝑇  in (3) is the total sum of squares (sum of squared 

Euclidean distances from all records to the centroid of original data), which is fixed regardless 

of how T is partitioned. 

𝐼𝐿 = 𝑆𝑆𝐸 𝑆𝑆𝑇⁄ ∙ 100, (1) 

𝑆𝑆𝐸 = ∑ ‖𝑥𝑖 − 𝑥𝑖′‖2

𝑛

𝑖=1
, (2) 

𝑆𝑆𝑇 = ∑ ‖𝑥𝑖 − 𝑥̅‖2

𝑛

𝑖=1
 . (3) 

k-Anonymity and its variants can resist many attacks. For example, l-diversity model can resist 

homogenization attack [9], and t-closeness model can resist skew attack [10]. However, all k-

anonymous microdata need to face up to the link attack. Attackers would link an anonymous 

record to the most similar individual. One way to measure the disclosure risk is to calculate the 

percentage of records in anonymous data T’ which are successfully linked. For example, (740, 

44) is the first noisy record in Fig.1, its first and second nearest records in T are (710, 44) and 

(720, 33). So it is not linked to the original record (790, 55). However, the second noisy record 



is successfully linked, because its original record is (710, 44). As shown in (4), distance linked 

disclosure (DLD) risk is the ratio of successfully linked records to total records [11]. 

𝐷𝐿𝐷 =
𝑙𝑖𝑛𝑘𝑒𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
(4) 

2.3 Microaggregation 

The definitions about microaggregation were given in [3] as follows. 

Definition 2 (k-partition): Let  𝑇(𝐴1, 𝐴2, … , 𝐴𝑛)   be a table and 𝑄𝐼  be the quasi-identifiers 

associated with it. 𝑇 is partitioned into 𝑔 classes, and 𝑛𝑖 is the size of the 𝑖-th class. If ∀𝑖, 𝑛𝑖 > 𝑘, 

this partition is called k-partition. 

Definition 3 (aggregation): Let  𝑇(𝐴1, 𝐴2, … , 𝐴𝑛)  be a table and 𝑄𝐼  be the quasi-identifiers 

associated with it. 𝑇 is k-partitioned into 𝑔 classes with respect to 𝑄𝐼, and 𝑐𝑖 is the centroid of the 

𝑖-th class. For ∀𝑖 = 1, … , 𝑔, replacing all elements of the 𝑖-th class with 𝑐𝑖 is called aggregation. 

Microaggregation consists of two steps: k-partition and aggregation. Optimal microaggregation 

is based on optimal k-partition, which requires maximum homogeneity within the classes after 

partition. Finding optimal k-partition is NP-hard, so heuristic algorithms are often used [5]. 

Some studies have proved that the optimal size of classes should be [k, 2k-1] [12]. 

2.4 Differential Privacy 

Differential privacy (DP) was proposed by Dwork [13], without making assumptions about the 

background knowledge of the attacker which could be proved mathematically. The definition 

was given as follows. 

Definition 4 (differential privacy): A randomized function 𝐾 gives 𝜀-differential privacy if 

𝑒−𝜀 ≤
Pr[𝐾(𝐷1) = 𝑆]

Pr[𝐾(𝐷2) = 𝑆]
≤ 𝑒𝜀 , (5) 

for both datasets 𝐷1 and 𝐷2 differing on at most one element, and all 𝑆 ∈ 𝑅𝑎𝑛𝑔𝑒(𝐾). 

The notation Pr[𝐾(𝐷) = 𝑆] represents the probability that the function 𝐾 takes as input a dataset 

𝐷 and outputs the result 𝑆. DP makes it impossible for an attacker to identify the source dataset 

for 𝑆. The record that 𝐷1 and 𝐷2 differs on is protected. 

2.5 Random k-Anonymity 

Random k-anonymity was proposed by Song, Ma and Tian et al. [6]. The definition was given as 

follows. 

Definition 5 (random k-anonymity): 𝑞 is a random query on table 𝑇, the probability that 𝑞(𝑇) is 

generated by 𝑥1, 𝑥2, … , 𝑥𝑘′  is equal, where 𝑥𝑖 ∈ 𝑇, 𝑘′ ≥ 𝑘 . It is said that 𝑇  satisfies random k-

anonymity for query 𝑞. 

To implement this definition, they k-partitioned table 𝑇 into 𝑔 classes firstly. But 𝑘 records no 

longer shared the same quasi-identifiers. Their goal was that 𝑘 records were indistinguishable. 

For each equivalence class, they added random noise to 𝑥𝑖. Consider 𝑥𝑖 in class 𝑔 has 𝑝 numeric 



attributes. For 𝑗 = 1, … , 𝑝, the noise 𝑛𝑗 is uniform random numbers on [−
𝑎𝑗−𝑏𝑗

2
,

𝑎𝑗 −𝑏𝑗

2
], where 

𝑎𝑗 and 𝑏𝑗 is the maximum and minimum of the 𝑗-th attribute in class 𝑔. Anonymous attributes 

𝑥𝑖𝑗′ =  𝑥𝑖𝑗 + 𝑛𝑗 . In order to keep 𝑥𝑖𝑗′  within [𝑎𝑗 , 𝑏𝑗] , 𝑥𝑖𝑗′  is further processed by (6). The 

information entropy between the anonymous table and the original table is low, but IL in (1) will 

be large. 

𝑥𝑖𝑗
′ = {

𝑥𝑖𝑗′ − (𝑎𝑗 − 𝑏𝑗), 𝑖𝑓 𝑥𝑖𝑗′ > 𝑎𝑗

𝑥𝑖𝑗′ + (𝑎𝑗 − 𝑏𝑗), 𝑖𝑓 𝑥𝑖𝑗′ < 𝑏𝑗

(6) 

Compared with Definition 1, k records may have different quasi-identifiers, which means that 

every record can have its own unique identifier. The only requirement is the probability that each 

record corresponding to the query results is equal to each other, so that Definition 4 is satisfied. 

Definition 1 is only one of the methods in the implementation of Definition 5. If the one that 

satisfies Definition 1, it certainly satisfies Definition 5. Definition 5 is an extension of Definition 

1 on DP. 

3 A NEW METHOD FOR RANDOM K-ANONYMITY 

3.1 Normalization of Data 

To avoid attribute bias, microdata should be normalized before applying microaggregation 

methods. In this paper, the following normalization formulae is used in order to adjust values 

measured on different scales to a notionally common scale [8]: 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
(7) 

This unity-based normalization carried out in order to bring all values into the range [0, 1]. 

3.2 A Top-Down Partition Method 

A new method for random k-anonymity is proposed in this paper. There are two steps to achieve 

k-anonymity. Firstly, the original data will be k-partitioned as Algorithm 1. And secondly, the 

quasi-identifiers of records in each equivalence class will be replaced with noisy centroid as 

Algorithm 4.  

 



 



 

Algorithm 1 uses two methods to find equivalence classes faster. One is dividing the original 

dataset into smaller datasets (line 1), and the other is building a matrix of distances in advance to 

avoid repetitive computing (line 2). Some studies [5, 6] have proved that these methods obtain 

high quality clustering results faster. Algorithm 2 is the specific steps for finding subclasses, 

which is based on the principle of c-means++. The first clustering centroid 𝐶1is selected randomly. 

Then, the minimum distances 𝐷(𝑥𝑖) between remaining records and centroids are calculated. On 

this basis, the next cluster centroid is selected by roulette wheel selection. Once all centroids are 

selected, all records are assigned to the closest centroid. And the new centroid is the mean value 

of records in each cluster. Then the partition is updated with this strategy until the cluster 

centroids do not change or the number of iterations exceeds a certain value. Compared with the 

c-means method, it has fewer errors and less iterations [14]. 

Algorithm 3 is a top-down method to find equivalence classes for each subclass. It starts by 

treating all records as an equivalence class. Next, select the farthest pair in the class. Once the 

pair is found, two groups of k records are formed by selecting 𝑘 − 1 records closest to the pair. 

And the remaining records are assigned to the nearest group. The method will apply this 

strategy to each group until the size of group is [k, 2k-1]. Compared with the bottom-up 

method [6], Algorithm 3 is significantly less dependent on random numbers. Fixed 

distribution of dataset results in fixed partition. 



3.3 Random 𝛒-Aggregation for DP 

Random aggregation is a new method proposed in this paper to anonymize equivalence classes. 

Its definition is as follows. 

Definition 6 (random aggregation): Let  𝑇(𝐴1, 𝐴2, … , 𝐴𝑛)   be a table and 𝑄𝐼  be the quasi-

identifiers associated with it. 𝑇 is k-partitioned into 𝑔 classes with respect to 𝑄𝐼, and 𝑐𝑖 is the 

centroid of the 𝑖-th class. 𝑛𝑖  is a series of random numbers. For ∀𝑖 = 1, … , 𝑔 , replacing all 

elements of the 𝑖-th class with 𝑐𝑖 + 𝑛𝑖 is called random aggregation. 

Obviously, Definition 3 is a special case of Definition 6 when 𝑛𝑖 = 0. Algorithm 4 gives a 

method to implement random aggregation. Before replacing the records with centroids, there is 

an additional step (line 3~5) to add random noises. Consider 𝑎, 𝑏, 𝑚  are respectively the 

maximum, minimum and mean of 𝐸𝑖. The noises are uniformly chosen from [𝜌(𝑏 − 𝑚), 𝜌(𝑎 −
𝑚)] at random. 𝜌 is a scale factor that controls the scope of noisy records, just like Fig.3. If 𝜌 =
0, the following method is the same as Definition 3 (Fig.2a). If 𝜌 = 1, noisy records will be 

uniformly distributed between intervals [𝑎, 𝑏], which is the same as Fig.2b. 

At the same time, Algorithm 4 satisfies the definition of random k-anonymity in Definition 5. 

The following is a brief proof [6]. 

 

Fig.3.Random 𝜌-Aggregation (𝜌 = 0.5). 

Proof: 𝑥𝑗′ is a noisy record in the output 𝑇′ of Algorithm 4. 𝑥𝑗  is the corresponding original 

record in 𝑇 , and 𝑥𝑖  is another record. 𝑛𝑗  is the random number uniformly distributed in 

[𝜌(𝑏 − 𝑚), 𝜌(𝑎 − 𝑚)]. ∆𝑥 is the difference between 𝑥𝑗′ and 𝑥𝑖, also in the interval. 

Pr(𝑥𝑗
′) = Pr(𝑛𝑗 = 𝑥𝑗

′ − 𝑥𝑗) = Pr(∆𝑥 = 𝑥𝑗
′ − 𝑥𝑖) (8) 

There are at least k records that have the same probability in one equivalence class, so Algorithm 

4 satisfies the Definition 5 and DP. Even if an attacker knows 𝑘 − 1 records in an equivalence 

class, the remaining record cannot be guessed. On the other hand, noisy records protect the 

original records near the centroid, which are no longer easy to link successfully. To sum up, the 

larger 𝜌, the lower disclosure risk. 



 

3.4 Analysis 

In Algorithm 1, the time complexity of computing distances matrix is 𝑂(𝑛2). And the complexity 

of Algorithm 2 (c-means++) is 𝑂(𝑐 ∙ 𝑛), which 𝑐 is the number of clusters and 𝑛 is the size of 

data [14]. The original dataset 𝑇 is divided into {𝑇1, 𝑇2, … , 𝑇𝑐}. Each class has 𝑛/𝑐 records on 

average. The complexity of line 5 (Algorithm 3) is 𝑂(𝑛2/𝑐2). So, the total complexity of k-

partition method (Algorithm 1) is 𝑂(𝑛2) +  𝑂(𝑐 ∙ 𝑛) + 𝑐 ∙ 𝑂(𝑛2/𝑐2) = 𝑂(𝑛2 + 𝑛2/𝑐 + 𝑐 ∙ 𝑛). 

Since 𝑐 is much smaller than 𝑛, the complexity of Algorithm 1 is 𝑂(𝑛2). On the other hand, the 

time complexity of random aggregation (Algorithm 4) is 𝑐 ∙ 𝑂(𝑛/𝑐) = 𝑂(𝑛).  

Dividing the original dataset into 𝑐 clusters can speed up k-partition. However, too many clusters 

may reduce the quality of equivalence classes. How to determine the best values of 𝑐 is not 

straightforward and due to space limitations it will not be discussed in this paper. 

4 EXPERIMENTAL RESULTS 

4.1 Experiments Design 

This paper carries on 3 experiments to test the performance of methods. Experiment 1 uses the 

k-partition method proposed in this paper and the bottom-up method proposed in latest reference 

[6] to microaggregate the datasets. They are compared in terms of running time and cluster 

similarity. Experiment 2 compares the information loss (IL) of random k-anonymity, 

microaggregation and random 𝜌 -aggregation on two datasets. Experiment 3 compares their 

distance linked disclosure (DLD) risk in the same way. 

The following two datasets from the related website of UCI machine learning (https://archive-

beta.ics.uci.edu) are used in this section: 

• Breast Cancer. It consists of 699 records with 13 numeric attributes. 

• Diabetes. It consists of 769 records with 8 numeric attributes. 

All experiments are conducted on a laptop with Intel(R) Core (TM) i7-1165G7 @ 2.80GHz, 16.0 

GB RAM, Windows 10 64-bit and Python 3.7. 



4.2 Efficiency of k-Partition 

The top-down method and the bottom-up method are used to microaggregate the datasets in this 

experiment. As can be seen from Fig.4, the top-down method takes much less time than the 

bottom-up method in both datasets. On the other hand, IL in (1) is used to represent the cluster 

similarity of equivalence classes. As shown in Fig.5, the top-down method has less IL in most 

cases. This is because the bottom-up method frequently makes random choice, and a bad choice 

may produce a poor-quality result. In a few cases of Fig.5b, the top-down method has more IL 

because of the distribution of dataset and the value of k. But on the whole it is more efficient than 

the bottom-up method. 

  

(a) Breast Cancer (b) Diabetes 

Fig.4.Running Time (sec) 

  

(a) Breast Cancer (b) Diabetes 

Fig.5.IL Comparison of Two k-Partition Methods 

4.3 IL of Random 𝛒-Aggregation 

Microaggregation, random 𝜌 -aggregation and random k-anonymity are used to anonymize 

datasets in this experiment. In fact, microaggregation and random k-anonymity are special cases 

of random 𝜌-aggregation when 𝜌=0.0 and 𝜌=1.0. Fig.6 shows the IL of random 𝜌-aggregation 

with different values of 𝜌. With the same value of k, the larger 𝜌, the more information loss. The 

difference among them is obvious, because the noisy records are widely distributed with large 𝜌. 



With the same value of 𝜌, the larger k, the more information loss. The trend is very smooth, 

because a bigger equivalence class will cause more errors in the aggregation process. 

  

(a) Breast Cancer (b) Diabetes 

Fig.6.IL Comparison of different 𝜌 

4.4 DLD of Random 𝛒-Aggregation 

Experiment 3 tests the DLD risk by (4) in the case of 𝜌=0.0, 0.5, 0.8 and 1.0. Fig.7 shows that 

microaggregation (𝜌=0.0) is poorer at resisting link attack, and a larger 𝜌  has lower DLD. 

Sometimes random 𝜌 -aggregation (𝜌=0.8) has lower DLD than 𝜌=1.0. It is related to the 

distribution of datasets. Overall, a larger k generates a smaller DLD risk, because the attacker 

needs to try linking more records. In Fig.7b, there are upward trends when k=9 and k=11. This is 

because the randomly distributed noisy records are close to the original records accidently. 

  

(a) Breast Cancer (b) Diabetes 

Fig.7.DLD Risk of different 𝜌 

4.5 Discussion 

The above experimental results and analyses show that random aggregation method has the 

advantage of high efficiency and less information loss to provide privacy protection. The 

algorithm proposed in this paper balances data availability and disclosure risk by using the 𝜌 

scale factor. In general, a larger 𝜌 will result in greater information loss and lower disclosure risk. 



But in a few cases, random noises may have a negative effect on the disclosure risk. For example, 

in the case of k=8 and k=9, 𝜌=0.8 performs lower disclosure risk than 𝜌=1.0 in two datasets. So 

it is necessary to adjust 𝜌 several times for best results. 

5 CONCLUSION 

Random aggregation, a new method for multivariate microaggregation has been presented. 

Random aggregation adds random noises to the centroids of equivalence classes, which reduces 

the risks of differential attacks and link attacks. At the same time, a top-down method is proposed 

to k-partition microdata in this paper. The original dataset is divided into several smaller datasets, 

and the equivalence classes are formed by splitting datasets repeatedly until the size of each class 

is [k, 2k-1]. Experimental results show that the top-down method consumes less time to form 

better equivalence classes. 
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