A Study with AI Quantization on the Performance Evaluation of Chinese Securities Investment Funds ——Based on the Pharmaceutical Sector

Xinyi Rao zoey_rao@163.com

Business School, The University of Aberdeen Aberdeen, United Kingdom

Abstract—The healthcare sector is getting a lot of attention under the impact of COVID-19 in 2019. The medical and pharmaceutical industry has a very high investment value as an investment that can maintain stable demand and growth certainty over the long term. Since funds occupy such an important position in national investment, it is essential to assess the performance of funds. The research question in this paper is to find indicators that provide a comprehensive, realistic and unbiased picture of the performance of pharmaceutical equity funds. This paper measures the comprehensive performance of the pharmaceutical fund from two aspects. On the one hand, it evaluates the actual performance and earning capacity of the pharmaceutical fund relative to the market benchmark, mainly through the analysis of the fund income index, risk-adjusted earnings index; On the other hand, it evaluates the fund management and returns from the fund manager's ability, focusing on the fund manager's stock selection ability and timing ability. The final conclusions of the study are, most medical funds outperformed the market portfolio and obtained excess returns. In both the T-M and H-M models, a considerable number of pharmaceutical fund managers have this ability in terms of stock selection ability, but only a small number of pharmaceutical fund managers have this ability in terms of timing ability.

Keywords: pharmaceutical funds; performance evaluation indicators; stock selection and timing ability

1 INTRODUCTION

Most investors in the market today are reluctant to take high risks, so most choose to invest in pharmaceutical securities investment funds to minimise and diversify the risks they have to take through pooled investments. Pharmaceutical funds are now seen to be a pivotal part of asset allocation and investment. Investors who are unaware of the funds and the market can be attracted by misleading information in fund advertisements or follow popular trends to invest blindly. This paper therefore selects funds in medicine and healthcare and conducts an in-depth study of their performance. The above information has identified three dimensions and eight indicators for evaluating the performance of funds related to the pharmaceutical sector: (1) traditional fund evaluation indicators: fund compounded net return, standard deviation, beta coefficient [1]; (2) risk-adjusted indicators: Treynor Index, Sharpe Index, Jensen Index [2]; (3) fund manager's stock selection and timing ability: T-M model, H-M model [3]. This paper hopes to evaluate the performance of relevant funds from a more scientific and impartial perspective with the help of fund performance evaluation indicators and methods, and to provide a theoretical basis for

investors to invest in pharmaceutical funds in the future. To establish a scientific and reasonable fund performance evaluation system, which is of great practical significance to the regulator's supervision and governance of the fund, the fund manager's management and operation of the fund, and the investor's choice and investment of funds.

The healthcare industry has received a lot of attention due to the impact of COVID-19 2019. As far as investment projects are concerned, the medical and pharmaceutical sector is of high quality and can maintain long-term stable demand and certainty of growth. In general, the investment value of the medical and pharmaceutical industries is very high. But at present, most investors in the market are unwilling to take high risks, so most investors choose to invest in medical securities investment funds, which have become an essential part of asset allocation and investment. In the theoretical sense, this paper hopes to evaluate the performance of pharmaceutical funds with the help of fund performance evaluation indicators and methods, improve the market order of funds to improve the efficiency of fund management and the financing ability of the securities market to a certain extent.

2 TRADITIONAL FUND PERFORMANCE EVALUATION INDICATORS

2.1 Compounded NAV per unit growth rate

This paper adopts a more scientific and reasonable index to measure the performance of medical funds - compounded net unit growth rate, specifically. It refers to adding dividends back to the net unit value, and then reinvesting and compounding interest again. Compared with the previous method, this method can solve the problems existing in the previous method, compare the historical performance of the fund fairly and justly, and better calculate and evaluate the fund's NAV return. The specific formula is as follows:

$$R_i = \frac{d_e - d_f}{d_f} \tag{1}$$

The analysis of the compounded NAV per unit growth indicators for the 60 pharmaceutical funds can first be presented as follows.

Figure 1. Top 10 Pharmaceutical Funds Net Return

Figure 2. Back 10 Pharmaceutical Funds Net Return

Analysis of the results obtained from Excel shows that the average compound return growth rate of the 60 pharmaceutical funds over the 2017-2020 period was 0.021, and 35 pharmaceutical funds exceeded this average. In the above graph, three of the pharmaceutical funds, 003095.OF, 001717.OF and 000960.OF, have the highest compounded return growth rates of 0.036, 0.032 and 0.030, respectively, while three pharmaceutical funds, 150148.OF, 150271.OF and 501011.OF, have the lowest average returns of 0.004, 0.004 and 0.003, respectively.

2.2 The standard deviation of return

The higher the value, the more severe the volatility of the NAV growth rate and the greater the overall risk of the fund. The standard deviation has been explained in detail in modern investment theory. It is an indicator to measure the risk degree of a portfolio. The formula is as follows:

$$\sigma = \sqrt{\sum_{i=1}^{n} [R_i - E(R_i)]^2} \tag{2}$$

2.3 The β coefficient

The sensitivity of an asset's return to market changes is measured by β , which indicates to some extent the volatility and systemic risk of a fund relative to the market as a whole. The specific formula is as follows:

$$\beta_i = \frac{COV(R_i, R_m)}{VAR(R_m)} \tag{3}$$

2.4 CAPM model

60 funds in the pharmaceutical industry were selected as samples for modelling analysis. CAPM model was used to measure the performance level and systemic risk β of 60 pharmaceutical funds. OLS method was used to estimate the CAPM model, and the following results were obtained [4].

Table 1 Regression results of the CAPM model

Fund Code	α	β	R2	F	Sig(a)	Sig(β)
000059.OF	0.002	1.179	0.592	66.690	0.712	0.000
000220.OF	0.018	0.973	0.296	19.348	0.042	0.000
000339.OF	0.017	1.124	0.519	49.699	0.008	0.000

000452.OF	0.017	0.859	0.302	19.860	0.035	0.000
000523.OF	0.008	1.082	0.499	45.846	0.211	0.000
000711.OF	0.014	1.181	0.483	42.903	0.064	0.000
000727.OF	0.014	1.215	0.457	38.753	0.067	0.000
000780.OF	0.013	1.109	0.395	29.984	0.124	0.000
000831.OF	0.017	1.065	0.381	28.345	0.040	0.000
000878 OF	0.019	1 1 2 3	0.473	41 355	0.008	0.000
000913 OF	0.017	1 254	0.422	33 531	0.058	0.000
000945 OF	0.010	1 149	0.490	44 211	0.157	0.000
000960 OF	0.020	1 197	0.415	32 640	0.021	0.000
001171 OF	0.020	1.177	0.419	33 180	0.021	0.000
001230 OF	0.015	1.070	0.41	36 350	0.020	0.000
001230.01	0.015	1.100	0.400	30.666	0.033	0.000
001558 OF	0.010	1 307	0.400	48 122	0.035	0.000
001535.0F	0.010	1 3/18	0.511	57 /17	0.045	0.000
001045.0F	0.010	1.340	0.333	28 122	0.020	0.000
001717.0F	0.022	0.741	0.382	20.452	0.011	0.000
001750.OF	0.002	0.741	0.423	21 909	0.750	0.000
001/00.OF	0.021	1 1 2 0	0.323	21.090	0.008	0.000
001913.OF	0.015	1.139	0.330	23.411	0.090	0.000
002300.OF	0.015	0.072	0.377	27.650	0.005	0.000
002408.OF	0.017	0.075	0.251	25 527	0.007	0.000
002708.OF	0.018	1.045	0.537	25.527 55.002	0.020	0.000
002919.OF	0.005	1.045	0.545	56 135	0.050	0.000
002938.OF	0.000	1.155	0.330	22 259	0.551	0.000
003095.0F	0.020	0.016	0.330	23.230	0.009	0.000
003230.OF	0.018	0.910	0.322	21.654	0.023	0.000
003284.OF	0.013	1.020	0.394	29.904	0.045	0.000
050026 OF	0.012	1.029	0.441	26 080	0.075	0.000
090020.0F	0.019	1.149	0.578	20.989 62.989	0.030	0.000
110023 OF	0.010	1.205	0.378	35.038	0.114	0.000
150130 OF	0.017	0.000	0.437	0.080	0.011	0.000
150130.0F	0.003	0.000	0.002	0.009	0.000	0.707
150261 OF	0.003	0.001	0.000	0.074	0.000	0.044
150201.0F	0.003	0.000	0.000	0.002	0.000	0.908
150271.0F	0.002	1 225	0.001	64 442	0.000	0.014
159929.OF	0.007	1.323	0.585	70.15	0.323	0.000
160210 OF	0.000	1.524	0.004	52.063	0.558	0.000
160635 OF	0.010	1.252	0.531	52.005 65.061	0.145	0.000
161035 OF	0.003	1.277	0.360	30 733	0.410	0.000
161616 OF	0.015	1.150	0.405	26 333	0.005	0.000
161726 OF	0.013	1.210	0.304	42 163	0.123	0.000
162412 OF	0.013	1.40	0.478	42.105	0.132	0.000
163001 OF	0.012	1.202	0.400	32.008	0.132	0.000
163118 OF	0.011	1 330	0.584	52.000 64 520	0.140	0.000
165519 OF	0.010	1 310	0.504	66 176	0.147 0.142	0.000
240020 OF	0.007	1.510	0.370	12 810	0.142 0.017	0.000
240020.01 300011 OF	0.017	1.170	0.462	38 31	0.017	0.000
470006 OF	0.015	1 151	0.386	28 876	0.007	0.000
501005 OF	0.013	1 462	0.500	<u>49</u> 101	0.005	0.000
501011 OF	-0.006	1 1 9 9	0.647	84 299	0.263	0.000
510660 OF	0.012	1 378	0.572	61 431	0.088	0.000
512010.OF	0.013	1.304	0.48	42.527	0.102	0.000
				· _ · • _ ·		

512120.OF	0.008	1.358	0.565	59.812	0.276	0.000
512300.OF	0.001	1.281	0.582	64.048	0.829	0.000
512610.OF	0.005	1.348	0.585	64.759	0.460	0.000
519171.OF	0.014	1.175	0.428	34.402	0.080	0.000

As can be seen from the table above, in the test of systemic risk β , only four pharmaceutical funds have no significant β coefficient, and most of them are significant. From this data, it can be seen that the pharmaceutical index fund has a generally significant explanatory effect on pharmaceutical funds; While 24 medical funds failed to pass the significance test of α , and the α values of the rest of medical funds were significantly greater than 0, indicating that 36 medical funds had advantages in performance. In the fit effect test, 56 pharmaceutical funds have Rsquared above 0.2, which shows that the CAPM model fits relatively well for most pharmaceutical funds. In addition, in the overall significance test of the equation, only four pharmaceutical funds failed to pass the significance test of the F-statistic. So the linear relationship of the CAPM is not significant, the linear relationship between the variables of the CAPM model for the remaining pharmaceutical funds was also significant.

3 RISK-ADJUSTED RETURN ANALYSIS

3.1 Treynor Index

The Treynor Index is an important indicator to evaluate fund performance [5]. Precisely, it measures the fund's return on investment per unit of systemic risk to determine how well the fund is performing. Investors use this index to judge whether the risks and returns of the fund are reasonable. The higher the Traynor index, the higher the fund's return on investment per unit of systemic risk. If the value of the Traynor index is smaller, it means that the investment value of the fund is lower and the performance is worse, which is calculated according to the formula:

$$T_i = \frac{\overline{R_i} - R_f}{\beta_i} \tag{4}$$

3.2 Sharpe Index

The Sharpe ratio means that investors are generally rational, choosing the most efficient portfolio to hold for the long term. The Sharpe ratio shows that investors are rewarded for each additional point of risk they take, with a higher return per unit of total risk [6].

$$S_i = \frac{\overline{R_i} - R_f}{\sigma_i} \tag{5}$$

3.3 Jensen Index

The Jensen index refers to the difference between the actual and expected returns of the fund and is directly related to the fund manager's performance [7]. The Jensen Index represents the excess return by outperforming its market benchmark portfolio. If the Jensen Index is greater than 0, the fund has an advantage over the market benchmark portfolio. The Jensen index is an excellent way to measure whether a fund is earning excess returns above its exposure and can reasonably rank different funds' performance. A Jensen Index α_i greater than 0 indicates that the fund is in a good situation, and the fund's ability to obtain excess returns increases with the increase of the

Jensen index. The Jensen index is more intuitive and effective, telling us exactly how much each fund has outperformed its benchmark portfolio.

$$\overline{R}_i - R_f = \alpha_i + \beta_i (R_m - R_f) + \varepsilon_i \tag{6}$$

Below we will rate the performance of 60 pharmaceutical funds in the pharmaceutical industry according to three classic indexes: Treynor index, Sharpe Index and Jensen Index. The following table shows the results of the calculations.

		1				
Fund Code	Treynor	Rank	Sharp	Rank	Jensen	Rank
000059.OF	0.006	54	0.117	53	0.002	57
000220.OF	0.023	7	0.368	9	0.018	10
000339.OF	0.020	17	0.365	12	0.017	14
000452.OF	0.023	5	0.331	21	0.017	17
000523.OF	0.012	42	0.207	44	0.008	44
000711.OF	0.016	31	0.304	28	0.014	29
000727.OF	0.016	29	0.322	25	0.014	27
000780.OF	0.016	32	0.283	30	0.013	34
000831.OF	0.020	15	0.349	16	0.017	15
000878.OF	0.021	11	0.392	6	0.019	7
000913.OF	0.018	22	0.361	13	0.017	16
000945.OF	0.013	39	0.241	42	0.010	41
000960.OF	0.021	13	0.407	3	0.020	4
001171.OF	0.021	12	0.367	11	0.018	12
001230.OF	0.017	23	0.332	20	0.015	22
001417.OF	0.020	16	0.333	18	0.016	21
001558.OF	0.016	30	0.367	10	0.016	19
001645.OF	0.016	27	0.360	14	0.016	20
001717.OF	0.024	4	0.445	2	0.022	2
001730.OF	0.006	53	0.078	55	0.002	58
001766.OF	0.028	1	0.402	4	0.021	3
001915.OF	0.018	21	0.328	22	0.015	23
002300.OF	0.018	20	0.324	24	0.015	24
002408.OF	0.023	6	0.332	19	0.017	18
002708.OF	0.023	8	0.369	8	0.018	9
002919.OF	0.007	52	0.117	52	0.003	54
002938.OF	0.009	46	0.171	50	0.006	49
003095.OF	0.027	2	0.502	1	0.026	1
003230.OF	0.024	3	0.358	15	0.018	11
003284.OF	0.019	18	0.273	34	0.013	32
003581.OF	0.016	28	0.273	33	0.012	35
050026.OF	0.021	14	0.389	7	0.019	8
090020.OF	0.012	41	0.259	38	0.010	39
110023.OF	0.022	10	0.395	5	0.019	5
150130.OF	-	-	0.053	56	0.003	52
150148.OF	-	-	0.043	58	0.003	55
150261.OF	-	-	0.053	57	0.003	53
150271.OF	-	-	0.040	59	0.002	56
159929.OF	0.009	47	0.199	45	0.007	47
159938.OF	0.009	49	0.187	48	0.006	48
160219.OF	0.012	40	0.255	39	0.010	40
160635.OF	0.008	50	0.173	49	0.005	50

Table 2 Pharmaceutical fund performance results based on the three indices

161035.OF	0.015	33	0.292	29	0.013	33
161616.OF	0.016	25	0.326	23	0.015	26
161726.OF	0.013	37	0.318	26	0.013	31
162412.OF	0.014	36	0.281	31	0.012	36
163001.OF	0.015	34	0.265	36	0.011	38
163118.OF	0.011	44	0.250	40	0.010	42
165519.OF	0.011	43	0.212	43	0.009	43
240020.OF	0.019	19	0.316	27	0.017	13
399011.OF	0.022	9	0.338	17	0.019	6
470006.OF	0.017	24	0.280	32	0.015	25
501005.OF	0.009	48	0.188	47	0.007	46
501011.OF	-0.001	56	-0.011	60	-0.006	60
510660.OF	0.013	38	0.243	41	0.012	37
512010.OF	0.014	35	0.264	37	0.013	30
512120.OF	0.010	45	0.189	46	0.008	45
512300.OF	0.005	55	0.096	54	0.001	59
512610.OF	0.008	51	0.150	51	0.005	51
519171.OF	0.016	26	0.270	35	0.014	28

Note: The CAPM models of the four pharmaceutical funds 150130.OF, 150148.OF, 150261.OF and 150271.OF are not significant, so their Treynor indices cannot be measured.

The table above shows that the top five pharmaceutical fund performance rankings based on the Treynor Index are: 001766.OF, 003095.OF, 003230.OF, 001717.OF, 000452.OF; the top five pharmaceutical fund performance rankings based on the Sharp Index are: 003095.OF, 001717.OF, 000960.OF, 001766.OF, 110023.OF in that order; then the pharmaceutical fund performance evaluation levels based on the Jensen Index, the top five are 001766.OF, 000960.OF, 001766.OF, 110023.OF in that order. OF, 001717.OF, 000960.OF, 001766.OF, 110023.OF; finally, the performance evaluation level of pharmaceutical funds based on the Jensen Index, the top five are: 003095.OF, 0017166.OF, 10023.OF; finally, the performance of pharmaceutical funds, it can be seen that the top five are: 003095.OF, 001717.OF, 001766.OF, 110023.OF. The Treynor Index deviates from both the Sharp and Jensen Indices.

The following is a comparison of the underperforming pharmaceutical funds based on the results of the three indices: the five worst-performing pharmaceutical funds according to the Treynor Index are: 501011.OF, 512300.OF, 000059.OF, 001730.OF, 002919.OF; the five worst performing pharmaceutical funds are 501011. 150271.OF, 150148.OF, 150261.OF, 150130.OF; Jensen Index shows the five worst pharmaceutical funds are: 501011.OF, 512300.OF, 001730.OF, 000059.OF, 001730.OF, 000059.OF, 150271.OF.

4 RESULTS OF THE EVALUATION OF THE FUND'S TIMING AND STOCK SELECTION ABILITY

4.1 T-M model

Treynor and Mazuy (1966) first proposed the T-M model to measure a fund manager's stock picking and timing ability [8]. Treynor and Mazuy argued that as a qualified fund manager, he should adjust his portfolio in response to changes in market conditions. Specifically, he should observe the β value in the portfolio. When the stock market sector is doing well, the fund manager

should increase the β value and when the stock market is depressed, the fund manager should reduce the beta value. In this model, α measures the fund manager's stock selection ability. If α is significantly greater than 0, it indicates that the fund manager's stock selection ability is strong, and vice versa. γ measures its timing ability. If γ is significantly greater than 0, then regardless of whether the market is $\log((R_m - R_f) > 0)$ or short $((R_m - R_f) < 0)$, the fund's risk premium $(R_m - R_f)^2 > 0$ shows that the fund's risk premium $(R_i - R_f)$ is greater than the market's risk premium $(R_m - R_f)$ and the fund manager's timing ability is better, and vice versa.

$$R_i - R_f = \alpha + \beta_1 (R_m - R_f) + \gamma (R_m - R_f)^2 + \varepsilon_i$$
(7)

4.2 H-M model

Henriksson and Merton (1981) added dummy variables to the Jensen index to allow β to take on different values in different phases of bullish and bearish markets. They proposed the H-M model [9].

The dummy variable D can be assigned different values under different market conditions. For example, 0 or 1 can be selected, and the β_1 coefficient of the fund manager's investment strategy can be changed by changing the assignment. Similar to the TM model, α in the model represents the difference between the fund risk premium and the market risk premium, which measures the fund manager's stock selection ability. If α is significantly greater than 0, the fund manager is a strong stock picker and vice versa. β_2 represents the manager's adjustment of the fund's β_1 coefficient in response to market conditions and measures the fund manager's timing ability.

If β_2 is significantly greater than 0, regardless of whether the market is long $((R_m - R_f) > 0, D = 1)$ or short $((R_m - R_f) > 0, D = 0)$, the fund's risk premium $(R_i - R_f)$ is always greater than or equal to the market's risk premium $(R_m - R_f)$, and the fund manager's timing ability is better, and vice versa.

$$R_i - R_f = \alpha + \beta_1 (R_m - R_f) + \beta_2 D(R_m - R_f) + \varepsilon_i$$
(8)

4.3 Analysis based on the T-M model

Table 3 T-M model results

Fund Code	α	β1	γ	\mathbb{R}^2	F	Sig (α)	Sig (β)	Sig (r)
000059 .OF	0.025	9.158	-397.784	0.277	8.602	0.002	0.044	0.021
000220 .OF	0.019	0.761	2.023	0.723	58.840	0.012	0.003	0.325
000339 .OF	0.054	0.710	2.721	0.311	10.135	0.000	0.000	0.528
000452 .OF	-0.027	-0.179	47.808	0.694	51.011	0.010	0.473	0.000
000523 .OF	0.076	5.134	55.942	0.595	33.076	0.000	0.000	0.007
000711 .OF	-0.031	1.824	21.812	0.901	204.734	0.001	0.000	0.000
000727 .OF	-0.029	-0.032	16.737	0.739	63.629	0.000	0.982	0.255

000780 .OF	0.059	-1.806	-73.930	0.589	32.302	0.000	0.000	0.000
000831 .OF	0.040	-2.829	-108.674	0.869	149.795	0.000	0.001	0.000
000878 .OF	-0.010	4.708	46.298	0.829	109.361	0.761	0.086	0.281
000913 .OF	0.023	0.451	-112.983	0.676	46.915	0.002	0.059	0.000
000945 .OF	0.063	2.731	-49.550	0.760	71.107	0.000	0.000	0.000
000960 .OF	0.028	11.777	-489.042	0.315	10.364	0.000	0.005	0.002
001171 .OF	0.019	0.814	1.641	0.777	78.571	0.005	0.000	0.360
.OF	0.061	0.882	-2.990	0.368	13.109	0.000	0.000	0.497
.OF	-0.006	0.167	32.090	0.552	27.776	0.637	0.584	0.007
.OF	0.073	4.749	48.768	0.660	43.704	0.000	0.000	0.007
.OF	-0.022	1.619	18.716	0.813	97.933	0.048	0.000	0.000
.OF	-0.028	0.272	13.929	0.736	62.579	0.000	0.851	0.356
.OF	0.055	-1.540	-65.662	0.584	31.633	0.000	0.001	0.000
.OF	0.023	-1.227	-66.989	0.794	86.878	0.016	0.210	0.008
.OF	-0.011	4.899	50.631	0.821	102.892	0.732	0.070	0.231
.OF	0.019	0.374	-92.855	0.571	29.915	0.012	0.125	0.000
.OF	0.050	2.531	-44.608	0.686	49.144	0.000	0.000	0.000
.OF	0.027	5.059	-238.815	0.258	7.820	0.000	0.195	0.106
.OF	0.019	0.844	1.082	0.777	78.346	0.004	0.000	0.532
.OF	0.061	0.597	-3.532	0.230	6.732	0.000	0.001	0.394
.OF	-0.023	0.101	38.794	0.653	42.354	0.047	0.713	0.000
.OF	0.068	3.958	36.591	0.636	39.308	0.000	0.000	0.034
.OF	-0.022	1.715	18.092	0.836	114.459	0.044	0.000	0.000
.OF	-0.028	0.287	12.771	0.741	64.297	0.000	0.831	0.361
.OF	0.056	-1.603	-64.665	0.540	26.403	0.000	0.001	0.000
.090020	0.028	-1.434	-74.228	0.803	91.851	0.005	0.156	0.005

110023 .OF	0.017	2.275	10.678	0.804	92.073	0.599	0.388	0.797
150130 .OF	0.013	0.233	-96.622	0.647	41.318	0.052	0.290	0.000
150148 .OF	0.061	2.228	-42.824	0.633	38.807	0.000	0.000	0.000
150261 .OF	0.017	10.339	-420.574	0.275	8.555	0.006	0.004	0.002
150271 .OF	0.016	0.866	0.638	0.687	49.370	0.042	0.001	0.762
159929 .OF	0.056	0.821	-4.561	0.312	10.223	0.000	0.000	0.325
159938 .OF	-0.032	-0.165	47.836	0.687	49.459	0.003	0.520	0.000
160219 .OF	0.071	6.022	74.795	0.706	54.082	0.000	0.000	0.000
160635 .OF	-0.022	1.657	16.186	0.835	113.579	0.040	0.000	0.000
161035 .OF	-0.025	0.727	7.615	0.706	53.926	0.001	0.606	0.603
161616 .OF	0.047	-1.133	-58.336	0.655	42.670	0.000	0.005	0.000
161726 .OF	0.040	-2.707	-99.974	0.758	70.447	0.000	0.008	0.000
162412 .OF	-0.014	4.546	45.019	0.874	156.162	0.600	0.039	0.191
163001 .OF	0.017	0.473	-95.882	0.605	34.444	0.013	0.043	0.000
163118 .OF	0.055	2.790	-48.836	0.791	85.384	0.000	0.000	0.000
165519 .OF	0.019	6.810	-287.029	0.154	4.093	0.008	0.097	0.064
240020 .OF	0.019	0.938	0.853	0.844	121.558	0.001	0.000	0.566
399011 .OF	0.047	0.800	-0.140	0.367	13.066	0.000	0.000	0.973
470006 .OF	-0.042	-0.387	56.443	0.693	50.851	0.000	0.145	0.000
501005 .OF	0.059	4.533	47.490	0.653	42.414	0.000	0.000	0.005
501011 .OF	-0.018	1.654	15.162	0.803	91.588	0.120	0.000	0.000
510660 .OF	-0.030	2.460	-8.127	0.712	55.508	0.000	0.130	0.626
512010 .OF	0.064	-1.770	-72.006	0.555	28.024	0.000	0.001	0.000
512120 .OF	0.036	-2.666	-100.161	0.737	63.066	0.001	0.017	0.001
512300 .OF	0.059	-1.496	-51.257	0.812	97.089	0.093	0.592	0.248
512610 .OF	0.014	0.629	-81.875	0.459	19.057	0.066	0.017	0.000

519171	0.040	2261	12 510	0 675	16 771	0.000	0.000	0.000
OF	0.049	2.304	-45.518	0.075	40.774	0.000	0.000	0.000

In the T-M model, from the perspective of α value, 54 medical funds have passed the significance test at the level of 10%, among which 41 medical funds have coefficients significantly greater than 0, indicating that the medical industry funds have a strong stock selection standard. The five pharmaceutical funds with the best stock selection are: 000523.OF, 001558.OF, 160219.OF, 003230.OF, 512010.OF. OF, 003230.OF, 512010.OF. From the point of view of γ value, 39 medical funds have passed the significance test of 10% level, among which 17 medical funds' γ coefficient is significantly greater than 0, which shows that these 17 medical funds also have very good timing ability. Combining the alpha and gamma indices, five pharmaceutical funds - 000523.OF, 001558.OF, 003230.OF, 160219.OF and 501005.OF - have stable stock selection standards and good timing ability.

4.4 Analysis based on the H-M model

Table 4 H-M regression results

Fund Code	α	β1	β2	\mathbb{R}^2	F	Sig	Sig	Sig
000059	0.013	1.355	-0.020	0.605	34.502	0.223	0.000	0.222
.OF 000220	0.028	1.141	-0.019	0.305	9.883	0.078	0.001	0.447
.OF 000339	0.023	1.216	-0.010	0.523	24.663	0.049	0.000	0.563
.OF 000452	0.026	1.022	-0.018	0.313	10.235	0.061	0.000	0.398
.OF 000523	0.017	1.229	-0.017	0.509	23.291	0.146	0.000	0.356
.OF 000711	0.028	1.428	-0.028	0.504	22.884	0.030	0.000	0.168
.OF 000727	0.019	1.294	-0.009	0.459	19.107	0.175	0.000	0.686
.0F 000780 OE	0.020	1.238	-0.015	0.400	15.007	0.167	0.000	0.524
.0F 000831 OF	0.024	1.195	-0.015	0.387	14.209	0.092	0.000	0.517
.0F 000878	0.031	1.328	-0.023	0.490	21.587	0.014	0.000	0.238
.0F 000913	0.025	1.390	-0.015	0.427	16.743	0.116	0.000	0.532
.0F 000945 OE	0.017	1.268	-0.013	0.495	22.097	0.176	0.000	0.491
.0F 000960 OF	0.036	1.478	-0.032	0.438	17.565	0.017	0.000	0.178
.0F 001171 OF	0.021	1.128	-0.006	0.420	16.298	0.124	0.000	0.779
.0F 001230 .0F	0.024	1.303	-0.016	0.448	18.277	0.089	0.000	0.460

001417 .OF	0.021	1.103	-0.010	0.403	15.182	0.115	0.000	0.642
001558 .OF	0.024	1.530	-0.015	0.516	23.990	0.096	0.000	0.510
001645 .OF	0.028	1.546	-0.022	0.568	29.529	0.031	0.000	0.263
001717 .OF	0.028	1.237	-0.011	0.385	14.074	0.072	0.000	0.652
001730 .OF	-0.005	0.626	0.013	0.435	17.333	0.567	0.001	0.366
001766 .OF	0.022	0.906	-0.003	0.323	10.724	0.105	0.001	0.895
001915 .OF	0.017	1.174	-0.004	0.356	12.448	0.290	0.001	0.877
002300 .OF	0.020	1.156	-0.009	0.380	13.765	0.170	0.000	0.679
002408 .OF	0.018	0.905	-0.004	0.251	7.542	0.252	0.006	0.886
002708 .OF	0.031	1.193	-0.025	0.375	13.511	0.026	0.000	0.257
002919 .OF	0.000	0.997	0.005	0.546	27.031	0.989	0.000	0.735
002938 .OF	0.011	1.222	-0.010	0.553	27.833	0.320	0.000	0.564
003095 .OF	0.032	1.257	-0.013	0.339	11.545	0.062	0.001	0.638
003230 .OF	0.022	0.991	-0.008	0.324	10.798	0.116	0.001	0.703
003284 .OF	0.011	0.826	0.004	0.395	14.708	0.350	0.001	0.804
003581 .OF	0.017	1.114	-0.010	0.445	18.005	0.160	0.000	0.619
050026 .OF	0.040	1.502	-0.040	0.406	15.356	0.013	0.000	0.106
.OF	0.006	1.211	0.008	0.580	31.061	0.610	0.000	0.648
.OF	0.031	1.315	-0.023	0.453	18.664	0.021	0.000	0.276
.OF	0.003	-0.001	0.000	0.009	0.194	0.000	0.554	0.586
.OF	0.003	0.002	0.000	0.010	0.231	0.000	0.520	0.758
.OF	0.003	-0.001	0.000	0.007	0.167	0.000	0.708	0.567
.OF	0.002	0.001	0.000	0.005	0.120	0.000	0.642	0.669
.OF	0.020	1.549	-0.025	0.601	33.843	0.093	0.000	0.171
.OF	0.019	1.540	-0.024	0.620	36.788	0.099	0.000	0.168
.OF	0.023	1.467	-0.024	0.547	27.174	0.065	0.000	0.212

160635 .OF	0.019	1.508	-0.026	0.605	34.521	0.096	0.000	0.142
161035 .OF	0.021	1.295	-0.015	0.470	19.957	0.115	0.000	0.458
161616 .OF	0.025	1.385	-0.019	0.371	13.287	0.148	0.000	0.476
161726 .OF	0.029	1.744	-0.030	0.494	21.949	0.080	0.000	0.246
162412 .OF	0.014	1.300	-0.004	0.481	20.837	0.314	0.000	0.841
163001 .OF	0.012	1.125	-0.002	0.410	15.663	0.375	0.000	0.927
163118 .OF	0.022	1.540	-0.024	0.599	33.550	0.065	0.000	0.205
165519 .OF	0.025	1.572	-0.030	0.614	35.806	0.030	0.000	0.100
240020 .OF	0.031	1.394	-0.025	0.500	22.523	0.018	0.000	0.208
399011 .OF	0.030	1.291	-0.021	0.467	19.739	0.021	0.000	0.302
470006 .OF	0.023	1.294	-0.016	0.392	14.489	0.130	0.000	0.506
501005 .OF	0.019	1.656	-0.022	0.526	24.932	0.212	0.000	0.352
501011 .OF	0.013	1.525	-0.037	0.696	51.537	0.126	0.000	0.010
510660 .OF	0.028	1.604	-0.031	0.597	33.361	0.021	0.000	0.099
512010 .OF	0.033	1.645	-0.038	0.514	23.812	0.020	0.000	0.084
512120 .OF	0.025	1.655	-0.033	0.593	32.777	0.043	0.000	0.087
512300 .OF	0.007	1.383	-0.011	0.586	31.819	0.518	0.000	0.525
512610 .OF	0.019	1.582	-0.026	0.603	34.156	0.114	0.000	0.158
519171 .OF	0.021	1.292	-0.013	0.432	17.130	0.145	0.000	0.559

In the H-M model, 31 medical funds have passed the significance test of 10% level from the α index, and the coefficients of α index are significantly greater than 0, indicating that the average stock selection level of medical funds is relatively stable. From the β 2 value, only 4 medical funds passed the significance test of 10% level, indicating that the overall timing ability of medical funds is relatively weak.

5 CONCLUSION

(1) In the sample period from January 2017 to December 2020, pharmaceutical industry-related funds returned well, with the average return of the sample funds reaching a peak of 3.2%. Among

the 60 pharmaceutical industry-related funds, the R2 of 56 funds reached or exceeded 0.2, indicating a high degree of fitting with THE CAPM model.

(2) The Treynor Sharpe and Jensen indices show that most funds have achieved excess returns compared to market portfolios.

(3) Regarding stock selection and timing ability, 54 pharmaceutical funds in the T-M model passed the significance test for this index, with coefficients all significant at the 10% level. Among them, the alpha index coefficient of 41 medical funds is greater than 0, which has a strong stock selection standard. However, from the gamma value, only 13 funds have a gamma coefficient significantly greater than 0, which indicates that the fund manager's timing ability is very poor. In the H-M model, 31 funds passed the significance test of the 10% index level, and the alpha index coefficients were significantly greater than 0, indicating that the average stock selection level of pharmaceutical funds was relatively stable and did not have timing ability.

This paper summarises the dimensions and index selection of the comprehensive evaluation of fund performance by previous scholars, and adds new perspectives to the original research results to enrich the comprehensive evaluation system and make its evaluation more comprehensive. Moreover, by establishing a complete set of comprehensive fund performance evaluation system, investors can be better guided to make reasonable, scientific and rational investments, as well as to integrate various factors to select fund allocation, thereby enhancing people's financial awareness and promoting a scientific and rational investment culture.

As society progresses and the industry evolves, the theoretical, policy and technical contexts in which some academic fields are situated are constantly changing. Over the past 60 years, academics have evaluated the causes of research fund performance from the perspective of economic theory and financial modelling. While the importance of these theoretical studies for understanding economic systems and in the functioning of human society cannot be denied. But from a practical point of view, the evaluation of fund performance can be viewed from a more enlightened perspective. It would therefore be a better option to redirect future research towards the prediction of the future performance of funds.

REFERENCES

[1] A. Marhfor, "Portfolio Performance Measurement: Review of Literature and Avenues of Future Research", American Journal of Industrial and Business Management, vol. 06, no. 04, pp. 432-438, 2016.

[2] Md. Bokhtiar Hasan, A. F. M. Mainul Ahsan. Can Mutual Funds Outguess the Market: Evidence from Bangladesh?. *Journal of Finance and Accounting*. Vol. 4, No. 1, pp 11-19, 2016.

[3] J. Gao, N. O'Sullivan and M. Sherman, "An evaluation of Chinese securities investment fund performance", The Quarterly Review of Economics and Finance, vol. 76, pp. 249-259, 2020.

[4] H. Markowitz, "Portfolio Selection", The Journal of Finance, vol. 7, no. 1, p. 77, 1952.

[5] J. Treynor, "How to rate management of investment funds", Harvard Business Review, vol.43, pp. 63-75, 1965.

[6] W. Sharpe, "Mutual Fund Performance", The Journal of Business, vol. 39, no. 1, p. 119-138, 1966.

[7] M. Jensen, "THE PERFORMANCE OF MUTUAL FUNDS IN THE PERIOD 1945-1964", The Journal of Finance, vol. 23, no. 2, pp. 389-416, 1968.

[8] J. Treynor, K. Mazuy. "Can mutual funds outguess the market", Harvard Business Review, vol.44, pp. 131-136, 1966.

[9] R. Henriksson and R. Merton, "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills", *The Journal of Business*, vol. 54, no. 4, p. 513, 1981.