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Abstract

Ransomware is one kind of malware using cryptography to prevent victims from normal use of their
computers. As a result, victims lose the access to their files and desktops unless they pay the ransom to
the attackers. By the end of 2019, ransomware attack had caused more than 10 billion dollars of financial
loss to enterprises and individuals. In this work, we propose a Network-Assisted Approach (NAA), which
contains local detection and network-level detection, to help user determine whether a machine has been
infected by ransomware. To evaluate its performance, we built 100 containers in Docker to simulate network
scenarios. A hybrid ransomware sample which is close to real-world ransomware is deployed on stimulative
infected machines. The experiment results show that our network-level detection mechanisms are separately
applicable to WAN and LAN scenarios for ransomware detection.
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1. Introduction
Ransomware is a type of malware which blocks
computer users’ access to their data or systems by
encrypting important files in computers. Victims have
to pay the requested ransom to get decryption keys
from the attackers so that they can recover their data
and systems. Sometimes the files cannot be recovered
even if ransom is paid either because by accident
the victim destroys the file which contains decryption
key or because the attacker breaks promise. Since
ransomware attack is easy to implement and attackers
can extort a large amount of money once it succeeds,
a lot of ransomware have emerged in recent years and
caused huge losses worldwide.

Here are some examples of ransomware attacks. Petya
[29] is a family of ransomware first discovered in March
2016. It targeted Microsoft Windows-based systems
and encrypted a hard drive’s file system table to prevent
the system from booting. Victims had to pay the ransom
in Bitcoin in order to regain access to the system.
In June 2017, a derivative of Petya called NotPetya
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[29] launched a global attack on Microsoft Windows
systems again via EternalBlue exploits and totally
caused more than 10 billion dollars financial losses. In
October 2017, a new ransomware attack named Bad
Rabbit [1] was discovered in Russia and Ukraine, which
follows a similar pattern to Petya. It encrypted the
Windows user’s file tables and then demanded a Bitcoin
payment to decrypt them. Some researchers believed
that Bad Rabbit had been distributed due to a bogus
update to Adobe Flash software. At that time, a lot of
agencies were affected by this ransomware including
Interfax, Odessa International Airport, Kiev Metro and
the Ministry of Infrastructure of Ukraine. In 2018 and
2019, ransomware still played an important role in
malware family and exerted a significant impact on
global computer users, especially Microsoft Windows
operating system users. GrandGrab, Hermes2.1, Ryuk,
Scarab, LockerGoga, etc. are all ransomware emerged
during these two years targeting at Microsoft Windows
since this system is the most common operating
system used by enterprises and organizations that are
potential blackmail objects for whom large ransoms are
affordable.
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As Linux operating system becomes increasingly
popular in recent years and more businesses than ever
are running on Linux now, Linux-oriented ransomware
have sprung up to attack Linux users for exorbitant
profits. In 2017, KillDisk [2] ransomware encrypted
files, demanded bitcoin ransoms and left Linux systems
unbootable. Erebus [3] ransomware affected about
3400 of NAYANA’s clients via malware-containing
advertisements. In 2019, Lilocked [4] ransomware
targeted Linux servers and gain root access to encrypt
the files with extensions such as PHP, HTML, CSS,
etc. The victims were guided to dark web to make a
payment in bitcoin in order to recover their files. The
mechanism behind this ransomware is still a secret,
researchers are looking out for a sample to discover the
solution for decrypting affected files. Compared with
ransomware targeted for Microsoft Windows operating
system, Linux-oriented ransomware have not made a
huge impact on enterprises and individuals up to now.
However, this situation could change in the near future
because the ransomware makers are always driven
by profits. It is inevitable that more companies and
individuals in industry will adopt Linux system due to
its security, stability and open-source-ness, which will
lead to the generation of many ransomware targeted at
Linux operating system.

Among all types of ransomware in ransomware
family, cryptoworm is one of the most troublesome
genre. It spreads in the form of a worm, which
means it can replicate itself and spread to other
computers. Thus, cryptoworm can produce more
serious consequence than other kinds of ransomware
from the overall point of view once it is successfully
designed and put into use by attackers. WannaCry
[30] is an example of cryptoworm which broke out in
May 2017. It used EternalBlue exploits to gain accesses
to Microsoft Windows operating systems. As soon as
the cryptoworm infected a computer, it encrypted
data on the computer and later extorted Bitcoin
cryptocurrency from the victim. Many organization
systems were infected and helped spread WannaCry at
that time because those systems did not apply newest
patches released by Microsoft. This attack affected
about 200,000 computers across 150 countries and
resulted in total damages ranging from hundreds of
millions to billions of dollars.

Since ransomware attacks emerge in endlessly, people
all around the world is suffering from unanticipated
threats to their property. To help individuals and
collectives to get rid of this kind of financial loss,
ransomware detection is an indispensable topic in
study.

To mitigate the damage of ransomware attacks
especially cryptoworm attacks, we proposed a Network-
Assisted Approach (NAA) for ransomware detection,
which combines local detection and network-level

detection that successively give user a local report and a
comprehensive report about respective detection result.
The comprehensive detection report uses wisdom of the
crowd to help computer users determine whether they
are undergoing a ransomware attack so that they can
take actions timely and avoid ransomware extortion.

We designed a local detection algorithm that is
applicable on all kinds of operating systems and
implemented a local detection mechanism prototype
targeted at Linux system. In the local detection
algorithm, we considered three features displayed on
local hosts, among which there is a brand new feature
never been used by previous works to the best of our
knowledge, to generate a local report in an accurate and
instant manner.

As for network-level detection, we adapted ant
colony optimization algorithm to our problem and
implemented an ACO-based Mechanism (ACOM)
which sufficiently collects information from other
machines so that a comprehensive report can be
generated to help user determine whether the local host
is attacked by ransomware or not. We also implemented
a simple method named Broadcasting Mechanism
(BM) which exhaustively collects information and
used wisdom of the crowd to help user determine
current safety state. These two network-level detection
mechanisms are separately suitable for ransomware
detection in WAN and LAN.

To estimate the performance of NAA, we established
100 containers in Docker and applied a Linux
ransomware sample GonnaCry to simulative infected
containers to mimic network scenarios. Then, we
launched NAA in each container to achieve the
evaluation of accuracy, message overheads and latency.

The main contributions of this paper are:

(1) Propose a ransomware detection approach NAA
especially targets at cryptoworm, which combines
local detection and network-level detection to
generate a report for user’s reference.

(2) Present a local detection algorithm applicable to
all operating systems and implement a prototype
on Linux system.

(3) Apply ACO algorithm to network-level detection
to implement a sufficient and reliable network-
level detection mechanism ACOM to collect
information from network.

(4) Build a network scenario by establishing 100
containers in Docker and launching a ransomware
sample on simulative infected machines to
estimate the performance of NAA.

The rest of this paper is organized as follows:
Section 2 describes the background knowledge of both
ransomware and ransomware detection approaches;
Section 3 explains our motivations and generalizes
the outline of NAA; Section 4 describes the design
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and implementation of our local detection mechanism;
Section 5 describes the details of ACOM and BM;
Section 6 evaluates NAA’s performance from accuracy,
message overheads and latency; Section 7 concludes the
paper and discusses future work.

2. Related Work
Cryptographic ransomware is also called crypto
ransomware, which always encrypts user files and
then extorts users for cryptocurrencies before providing
the decryption key. It is favored by attackers because
digital currencies such as Ukash or Bitcoin and other
cryptocurrency provide strong anonymity, making it
difficult to trace and prosecute the perpetrators based
on ransom payment transactions. Previous works on
ransomware detection mainly focused on checking
the features that are displayed due to ransomware
behaviors on local hosts. And, they were designed for
Microsoft Windows operating system because Windows
is more vulnerable and is the target of most crypto
ransomware.

In 2015, Ahmadian et al. [9] proposed a compre-
hensive ransomware taxonomy and presented a con-
nection monitor and connection breaker technique for
detecting highly survivable ransomwares in the key
exchange protocol step. In 2016, Paik et al. [23] pro-
posed a storage-level detection method, which detects
the existence of ransomware based on storage-access
activities, e.g., number of files accessed and read/write
frequency. Scaife et al. [25] presented an early-warning
detection system that alerts users during suspicious file
activity using a set of behavior indicators like entropy,
file differences, magic bytes and read/write frequency.
K. Cabaj et al. [12] analyzed the behavior of a popu-
lar ransomware named CryptoWall and proposed two
real-time mitigation methods using SDN-based algo-
rithm. C. Moore [20] investigated ransomware detec-
tion methods that implement canary files to monitor
changes under folders and ascertained that canary files
offer limited value as there is no way to influence the
ransomware to access the folder containing monitored
files. Sgandurra et al. [26] presented a machine learn-
ing approach for dynamically analyzing and classify-
ing ransomware. It monitors application behaviors and
checks characteristic signs of ransomware including file
extension, read/write frequency and function calls.

In 2017, Y. Feng et al. [16] proposed a new approach
based on deception and behavior monitoring to detect
crypto ransomware with no loss. Their approach creates
decoy files and makes ransomware operate on decoy
files firstly, and then monitor the decoy files by
checking whether they are encrypted by ransomware
through the comparison of Shannon entropy, file type
and sdhash between original files and changed files.
Chadha et al. [13] discussed several machine learning

algorithms for discovering DGA domains and analyzed
their performance. Kirda et al. [18] presented a dynamic
analysis system which automatically generates an
artificial environment and detects when ransomware
interacts with user data. In their system, entropy,
removed files and read/write frequency are considered
as monitor objects. Chen et al. [15] monitored the actual
behaviors of software to generate API call flow graphs
and used data mining techniques to build a detection
model for decide whether the software is benign or is
a ransomware. Kharraz et al. [17] proposed a defense
approach which maintains a transparent buffer for all
storage I/O and then monitors the I/O request patterns
of applications on a per-process basis for signs of
ransomware-like behaviors including entropy, removed
files, file extension and read/write frequency.

In 2018, Khashif et al. [28] presented a hybrid
approach that combined static and dynamic analysis
to generate a set of features that characterizes the
ransomware behavior. This approach analyzes software
binary code first, and then checks entropy, canary files,
read/write frequency and function calls. Alaam et al.
[10] presented a detection tool which uses artificial
neutral network and Fast Fourier Transformation (FFT)
to develop a solution to ransomware detection by
checking functions and frequency. Quinkert et al. [24]
presented a defense system that learns features of
malicious domains by observing the domains involved
in known ransomware attacks and then monitors newly
registered domains to identify potentially malicious
ones. Moussaileb et al. [22] presented a graph-based
ransomware countermeasure which uses per-thread
file system to highlight the malicious behaviors such
as modification of canary files and accesses to large
number of directories in a small time period. Morato
et al. [21] proposed an algorithm that can detect
ransomware action over shared documents by applying
a network traffic inspection device between local users
and shared volumes. The inspection device extracts
SMB protocol commands through every access to the
shared volumes it monitored and analyzes SMB traffic
to determine whether the network volumes shared
using SMB protocol is attacked by ransomware or not.

In 2019, A. O. Almashhadani et al. [11] demonstrated
a comprehensive behavioral analysis of crypto ran-
somware network activities including DGA, SMB traffic
and general traffic for detection of ransomware. Lee et
al. [19] proposed a method that utilizes an entropy tech-
nique to measure a characteristic of the encrypted files.
Machine learning is applied for classifying infected-
files-based file entropy analysis.

The above literature covers almost all features that
characterizes the ransomware behaviors. Our local
detection mechanism also uses some of this kind of
features to help determine whether a local host is a
suspicious victim or not whereas a brand new feature
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"read/write pattern" is considered as well to help
make accurate diagnosis on local hosts. Moreover, our
approach contains network-level detection to offer more
accurate detection results. While the papers mentioned
above designed defense methods for Windows system,
our prototype of the local detection mechanism targets
at Linux system which is the next popular attack
object of ransomware attacks although our approach is
applicable on both Windows system and Linux system.
We can easily derive a Windows version using the same
design but different system libraries and tools.

3. Our Network-Assisted Approach
3.1. Background Knowledge
Characteristics of Ransomware Behaviors. Ransomware
attacks always access victim’s operating system in some
way and encrypt a large number of user files or system
files or both automatically in a short time. During this
process, the infected system performs differently from
what it should be when there is no ransomware attack.
This common trace provides various kinds of useful
information that can be extracted from a suspected
victim when a ransomware is running. Although
there are some differences on key generation and key
preservation strategies among different ransomware,
we can still conclude the following common features
that show so obvious distinctions between safe and
infected circumstances that can be used for ransomware
detection.

(1) Keywords
If a software is a ransomware, it probably
contains some keywords that are commonly used
in ransomware binaries. For example, “bitcoin”,
“crypto”, “ransom”, etc. are common strings
frequently appear in ransomware binaries. By
inspecting software binaries, we can figure out
some suspicious software even before ransomware
attack happens.

(2) Function Calls
Since ransomware needs to encrypt files, it
always calls functions related to cryptographic
algorithms, including key generation, encryption
and decryption functions. These functions may be
written by the attacker or invoked from existing
libraries. We can inspect binaries to locate the
software that call these functions.

(3) Data Information
Once a file is encrypted, we can observe some
changes on this file. The file extension may be
modified to a specific extension designated by
the ransomware. The entropy of the file increases
due to the randomness of data after encryption.
The magic bytes of this file are different from
original bytes because they are encrypted. Some

files are even deleted since the ransomware
created new files to store encrypted versions. All
of these features provide useful information for
ransomware detection.

(4) Metadata Information
Metadata information refers to some indirect
information we can collect during ransomware
attacks instead of information from file contents.
Ransomware is an automatic program that
encrypts a large number of files in a very short
time in most cases due to super-fast computation
speed of computers. So, when a ransomware is
working, it accesses many files and directories,
and then performs read and write operations on
these files in short time periods, which leads to
high file/directory access rate and high read/write
frequency on a computer. This phenomenon also
indicates a potential ransomware attack.

(5) Network Traffic
Some ransomware generate and store their keys
on a remote server so that victims cannot figure
out decryption keys without paying ransom. As
for this kind of ransomware, it must contact the
remote server to get encryption key during the
attack. Thus, an unknown network traffic that is
not produced by the user of the local host can be
inspected, which helps ransomware detection.

All these features listed above can be used to judge if
the computer is in abnormal conditions and thus help
determine whether there is ransomware working on this
computer. However, one feature alone in consideration
is insufficient for accurate detection results. So, most
detection approaches pick several features and combine
their checking results together to decide whether to
alert user ransomware attack or not.

Wisdom of the Crowd. The wisdom of the crowd [31]
is a collective opinion produced by a group of people
instead of an individual. Some experiments showed
that the collective knowledge of ordinary people is
more precise than that of an expert. The reason for
this phenomenon is that there is idiosyncratic noise
associated with each individual judgment, and taking
the average over a large number of responses will go
some way toward canceling the effect of this noise.
Thus, this notion has been applied to many social
information sites such as Quora, Wikipedia and Yahoo!
Answers.

For high accuracy of ransomware detection results,
we also use wisdom of the crowd in network-level
detection of NAA to generate a comprehensive report
for users to reference and to determine whether they
need to do further actions to deal with potential
ransomware attacks.
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3.2. Our Motivation

As we can observe in ransomware attack cases, majority
of ransomware have this property: Their appearance
and diffusion are related to network. If one machine
is infected by some ransomware, the others in the
same local area network (LAN) are potential victims.
That is because LAN is deployed by entities such as
enterprises, laboratories and schools to interconnect
computers within a small area. Computers in one LAN
are often equipped with the same operating system
and the same version. So, if a computer is attacked by
ransomware via some exploit, the others are possibly
attacked or going to be attacked because they share
the same vulnerability. Worse, if the ransomware is a
cryptoworm that actively scans the local network to
compromise other machines, those computers in the
same LAN are hence under high risk. Even if in a
wild area network (WAN), cryptoworm can spread in
high speed because it is self-propagating, which means
one infected computer can infect almost all computers
communicated with it and result in fast increase of
infected computers.

So, network related information that is correspond-
ing to the conditions of other computers in network
is very useful in ransomware detection especially in
cryptoworm detection. However, existing approaches
for ransomware detection only consider the character-
istics of ransomware behaviors on local hosts as the
parameters of their detection tools. One exception is the
work[21] that analyzes file sharing traffic in a volume
sharing scenario to detect possible ransomware. How-
ever, this work still did not have an eye on the security
information of other computers in network.

Motivated by the above observations, we propose a
network-assisted approach which contains both local
detection and network-level detection. Local detection
is responsible for checking local features of a machine
to make a preliminary diagnosis whereas network-level
detection collects security conditions of other machines
in a specific area to help determine whether the local
host is infected or not. Since one machine can be
in both LAN and WAN, our network-level detection
has two separate schemes for these two scenarios. To
achieve security conditions of other machines from
WAN, we design an ACO-based Mechanism (ACOM),
which uses ant colony optimization algorithm to
efficiently collect maximum amount of information
with minimum network resource consumption and
report its detection result to the user. To obtain
desired information from LAN, we design Broadcasting
Mechanism (BM). It directly collects information of
all machines in LAN and uses wisdom of the crowd
to report a comprehensive detection result. With the
information provided by ACOM and BM, NAA can
accurately detect ransomware especially cryptoworm

and help user judge whether the local host is infected
or not.

3.3. Outline of NAA
NAA is a ransomware detection application that does
both local detection and network-level detection. The
local detection checks local features while the network-
level detection collects security conditions of other
machines from network to provide information for user
to judgement whether the local host is attacked or not.
Figure 1 shows the workflow of NAA.

Figure 1. Workflow of NAA.

First of all, we run the local detection mechanism
on each local host. If the local detection mechanism
finds anomalous tasks, it suspends them using “kill -
STOP pid” command and accordingly raises an alert
to the end user. Then, based on his knowledge, the
user should respond to NAA whether the anomalous
behaviors are caused by a legitimate user operation or
not (e.g., when the user is encrypting files with a special
tool). If they are, NAA will resume the suspended
processes using "kill -CONT pid" command and
continue to do local detection. If the user indicates these
behaviors are anomalous (either because they are truly
anomalous or because the user has no idea on what is
going on), network-level detection should be launched.
During the process of network-level detection, ACOM
is responsible for collecting information from WAN
and BM is responsible for collecting information from
LAN. Once both mechanisms finish their work, a
comprehensive report will be sent to the user describing
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the current network-wide situation. Then, the user can
get an idea on the fraction of computers in the LAN
that are also in the anomalous state and how ACOM
views about the current state of this local host. Based on
such given information, the user can make a judgement
about whether this local host is in danger. If the answer
is yes, NAA finishes its work; otherwise, the computer
is considered safe and NAA will resume the suspended
tasks and continue with local detection.

In the following sections, we will explain how
local detection and network-level detection work and
generate reports in detail.

4. Local Detection
4.1. Design of Local Detection Algorithm
Review that local detection checks some common
features on local hosts which always display different
characteristics under safe condition and infected
condition. Section 3.1 introduced characteristics of
ransomware behaviors and listed the features that could
be considered in local detection.

In our local detection algorithm, we pick entropy,
read/write frequency and read/write pattern as input
parameters to diagnose the local host because the
combination of these three parameters provides both
high accuracy and efficiency. Among them, entropy
and read/write frequency are classic features used by
previous methods while read/write pattern is a brand
new feature firstly proposed by this paper.

Entropy is the measurement of the randomness
originally used in thermodynamics. In 1984, Claude E.
Shannon applied entropy to digital communications in
his paper “A Mathematical Theory of Communication”
[27]. After that, people started to use entropy to
describe the extent of the randomness of a digital
file. Encrypted files and compressed files tend to have
higher entropy than normal files because the bytes in
encrypted files and compressed files are more random.
So, we can use entropy to help us determine if a
file is in normal condition or not. However, even if
we can find files with high entropy in a system, we
cannot deem that this system is infected by ransomware
because there are two exceptions: 1) The files with high
entropy are compressed files instead of encrypted files.
2) The files are encrypted files, but they are encrypted
by authorized users. Thus, this feature alone is not
sufficient to produce an accurate ransomware detection
result. We use further features to help us make more
accurate judgements.

Read/write frequency describes the frequency of read
and write operations on a machine. Ransomware always
encrypts many files in a short time because they do not
want to be detected before they finish work. Moreover,
they want to encrypt as many files as possible so that
the attackers are more likely to get ransom from the

victim. We all know that file encryption task is related
to read and write operations. So, if a ransomware is
working, we can probably observe high read and write
frequencies on a system. However, we still cannot make
accurate diagnosis about whether a system is a potential
victim or not with these two features because there are
still some exceptions such as batch file compression. It
has the same behaviors as ransomware attack when only
considering entropy and read/write frequency.

To distinguish the behaviors of ransomware attack
and other normal behaviors that also result in high file
entropy and high read/write frequency such as batch
file compression, we take read/write patterns as the
third feature since different tasks usually have different
read/write patterns. To our best knowledge, this feature
has not been used in prior work. We use it to distinguish
user’s normal behaviors from ransomware activities.
Here read/write patterns refer to the relationship
between read and write operations occurred on a
system. For example, if there is a read operation right
after a write operation, we can use {write, read} to
describe their relation during this period. If there is
a read operation before write operation, but between
them exists a close operation, we can use {read, ...,
write} to describe the read/write pattern in this scenario
which means there exist(s) other operation(s) between
read and write. When ransomware is encrypting a file,
it always reads the original file first and writes the
ciphertext into a new created file. Then, the original file
is deleted so that only encrypted file left. Ransomware
encrypts files one after another, which makes read
and write operations pairs appear at intervals. So, the
pattern of ransomware activity can be concluded as
{read, write}. In contrast, batch file compression task
continuously reads each file in a specified directory and
finally writes compressed texts into the compressed file
after closing these original files. There is no adjacent
read and write operations in its pattern. Other tasks
also have their own read/write patterns that are usually
different from those of ransomware activities. Thus,
read/write patterns can help us filter out some benign
behaviors when detecting ransomware attacks.

Our local detection algorithm comprehensively
considers these three features to make a conclusion
about whether the local host is anomalous or not.
This algorithm is applicable to all operating systems
because no matter what kind of operating system the
ransomware is working on, it has common behaviors
which will cause common characteristics. In our
implementation, we used this algorithm to build a local
detection mechanism prototype for Linux system as an
example.
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4.2. Implementation of Local Detection Mechanism
This subsection describes the outline and details of
the local detection mechanism which is implemented
to support network-level detection methods. Since the
local detection algorithm described in Section 4.1 is
applicable to any operating system, we selected Linux
system as an example to implement a prototype.

Overview. As we already known, all ransomware
encrypt files to extort victims. Thus, all ransomware
activities are related to operations on file system.
To monitor the related operations on Linux file
system, we use a tool called inotify [5] which is a
Linux kernel subsystem that can monitor file system
events and report changes. Inotify events include
IN_OPEN, IN_ACCESS, IN_MODIFY, IN_DELETE and
etc., among which IN_ACCESS indicates read operation
and IN_MODIFY indicates write operation. We can use
several system calls provided by the inotify API to
monitor a specified directory. To monitor the entire
file system, we can use "/." as the directory name to
be monitored which represents the root directory of
Linux file system. Once inotify starts to work, all events
occurred in the directory tree can be captured and an
event handler defined by us will deal with these events
following detection requirements.

Our local detection mechanism prototype utilizes
inotify to monitor Linux file system and combines
altogether three features mentioned in Section 4.1
(entropy, read/write frequencies, read/write patterns)
to measure whether the local host is anomalous or not.
Figure 2 shows the workflow of the local detection
mechanism.

Figure 2. Workflow of local detection mechanism.

At the very beginning, we add a watch to the root
directory so that we can monitor the entire file system.
Then, start inotify. We first check read/write patterns
because it can be done instantly when a new event
is monitored. If there is a pattern matching with
anomalous pattern, that is, the checking result of the
first module is "anomalous", start a new thread to do

further detection. This pattern checking module keeps
working no matter what the result is because inotify
keeps monitoring the file system and we don’t want to
miss any possibly upcoming anomalous patterns. When
we start the new thread, we also pass the path of the file
where the anomalous write operation happened.

The new thread works on checking the other features.
It first checks file entropy of the potentially encrypted
file whose path was passed by the pattern checking
module when the new thread was created. If the file
entropy is too high to be normal, that is, the checking
result of the second module is "anomalous", go to the
next module to check read/write frequency. Otherwise,
the new thread stops because the local host is currently
in safe state. Our reason for this judgement is that,
the modified file, where the anomalous pattern is
discovered, has normal entropy value which means it is
not encrypted. This phenomenon is impossible to occur
if the local host is undergoing a ransomware attack.
In the third module, we check read/write frequency. If
current read/write frequency on this system is too high
to be normal, that is, the checking result of the third
module is "anomalous", the local detection mechanism
can make a diagnosis that this machine is anomalous
because it shows anomalous characteristics in all three
aspects. Otherwise, stop the new thread because the
local host is safe. Note that, the local host has an initial
state: safe. If the local detection mechanism cannot find
the proof to confirm this machine is in anomalous state,
we consider it is safe by default.

The rest of this subsection elaborates on how each
module is implemented.

Check Read/Write Patterns. According to the work
procedure of common ransomware, we know that
ransomware always automatically encrypt files one
after another. As for each file, the encryption task
consists of several file operations: (1) Open the original
file; (2) Create a new file; (3) Open the new file; (4) Read
plaintext from the original file; (5) Write ciphertext in
the new file; (6) Close the original file; (7) Close the
new file; (8) Delete the original file. During this process,
we can observe adjacent read and write operations with
read before write. To distinguish read/write patterns of
file encryption task with that of other tasks, we also
observed the read/write patterns of some common user
behaviors. By adding a watch to a particular directory,
we can observe the events in this directory.

Table 1 lists file operations during file encryption
and other normal tasks. According to this table, we can
find that the read/write pattern of file encryption task
is {read, write} which indicates a single pair of read
and write operations with read before write. This {read,
write} pair can appear many times, but other operations
exist between two adjacent pairs. File modification
and compression tasks have the following read/write
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Table 1. Read/write patterns of different tasks

Tasks File operations Read/write patterns
Encrypt a file open, create, open, read, write, close, close, delete. {read, write}
Modify a file open, read, close, open, create, open, close, write, close. {read, ..., write}

Compress a file open, create, open, read, close, write, close. {read, ..., write}
Decompress a file open, read, close. {read}

Browse a webpage 1 create, open, write, close, read, ..., read, write. {read*, write}
Browse a webpage 2 ..., read, write, read, write, ..., read, write. {read, write}*

pattern, {read, ..., write}, which means some other
operations between read and write operations. When
we decompress a file, only read operation occurs. The
most confusing task is browsing a webpage, because
it has similar read/write patterns as file encryption.
When we browse a webpage, we can observe adjacent
read and write operations as well. However, there exists
continuous read operations before a write operation or
iterative read/write pairs. So, we mark the read/write
patterns of browsing a webpage as {read*, write} and
{read, write}*, which are different from the read/write
pattern of file encryption task.

Thus, we consider {read, write} as an anomalous
read/write pattern indicating file encryption activities.
Only when there is a read operation right before a write
operation and before them are other file operations,
we can say we find an anomalous pattern. We set a
judgement condition that if there exists {read, write} on
a monitored system, the local host is potentially in risk,
further diagnosis is in need. Otherwise, the local host is
safe. Since inotify monitors the entire file system in the
implementation of our local detection mechanism, we
admit that sometimes some operations from different
tasks may mix together. That is, inotify may capture
an operation from task A after an operation from task
B but before another operation from task B, which
may generate anomalous pattern while there is no
anomalous behaviors. In this case, this pattern checking
module causes false positives, that is why we need
further diagnosis to check other features.

To be aware of the anomalous read/write patterns
in time, we customize the inotify event handler in the
following way: record all monitored events in order
in an event_list; once coming across a write operation,
check the last two operations in event_list. If the last
one is read as well as the last-second one is neither read
nor write, the anomalous read/write pattern is found;
otherwise, empty the event_list and continue to add
monitored events into the list. Figure 3 shows the code
of our event handler.

Once an anomalous read/write pattern {read, write}
is discovered on a system, the checking result of the
first module is "anomalous". So, we should start a new
thread to do further diagnosis and pass the path of the
file where this anomalous write operation happened to

# Handle inotify events

event_list = []

time_list = []

class MyHandler(pyinotify.ProcessEvent):

def process_IN_CREATE(self, event):

event_list.append("create")

def process_IN_DELETE(self, event):

event_list.append("delete")

def process_IN_MODIFY(self, event):

time_list.append(time.time())

if event_list[-1] == "read" and \

event_list[-2] != "read" and \

event_list[-2] != "write":

thread.start_new_thread(FurtherDiag,\

(event.pathname,))

event_list = []

time_list = []

def process_IN_OPEN(self, event):

event_list.append("open")

def process_IN_ACCESS(self, event):

time_list.append(time.time())

event_list.append("read")

def process_IN_CLOSE_WRITE(self, event):

event_list.append("close")

def process_IN_CLOSE_NOWRITE(self, event):

event_list.append("close")

Figure 3. Event handler for local detection.

the new thread so that the second module can directly
locate the file it needs to check.

Check File Entropy. There is an existing algorithm for
file entropy calculation [6]. Given a file, this algorithm
traverses the target file to get the frequency count of
each byte value and then uses the following formula to
cumulatively calculate the entropy of the entire file.

entropy = entropy + f req ∗ log2 f req (1)

Here, the variable "entropy" is initialized to 0 and
gradually increases until all "freq" related values are
included, the variable "freq" represents the frequency
of each byte value. With this algorithm, we can easily
calculate final entropy value for a target file.

To distinguish normal files and encrypted files
through file entropy, we launched an experiment to
calculate the entropy values of various kinds of normal
files and encrypted files. Table 2 lists the entropy values
of many different types of files in normal state and
encrypted state.
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Table 2. File entropy of different files in normal state and encrypted state

File types Normal state Encrypted state
.txt 4.62 7.98
.log 4.76 7.83

.conf 4.47 7.92
.pgn 7.91 8.00
.jpeg 7.94 8.00
.pptx 7.94 8.00
.mp3 7.95 8.00

We can observe from Table 2 that text files which
consist of English words have relatively low entropy in
normal state. The entropy of this kind of normal files
ranges from 4.0 to 5.0 while that of their corresponding
encrypted files ranges from 7.0 to 8.0 in Linux file
system. As for other types of files such like pictures
and audios, they have relatively high entropy even
in normal state. After being encrypted, their entropy
values are tend to be 8. So, we deal with different kinds
of files in different ways. As for a text file, we set the
threshold 6.00. As for an non-text file, the threshold is
set to be 7.99. Then, we can determine whether a file is
anomalous or not by checking its entropy.

First, we check file extension of the target file. If the
file extension is out of our knowledge, this file must be
encrypted by ransomware because ransomware always
modify file extension after encrypting a file. If we
can recognize the file extension, calculate file entropy
and compare entropy value with appropriate threshold
value. If the entropy of the inspected file is greater than
or equal to the threshold value, this file is considered to
have an anomalous entropy value. That is, the checking
result of the second module is "anomalous". Then, the
third feature "read/write frequency" should be checked
for final detection result. Otherwise, this is not an
encrypted file, hence not a ransomware attack.

Check Read/Write Frequency. The final checkpoint
concerns read/write frequency on the local host. Once
a read or write operation is monitored by inotify,
the event handler will record the time it occurred,
as shown in Figure 3. What is more, the redundant
contents in time_list will be removed at the beginning
of the new thread so that only the read and write
operations that occurred after {read, write} pattern will
be recorded in time_list. Since we ran a new thread
for further diagnosis, event handler can continue to
record the time of upcoming read and write operations.
With the recorded information in time_list, we can
calculate read/write frequency in the system after the
anomalous pattern is found, which is defined as the
average number of read/write operations occurred per
second:

read/write f requency =
operation counts

duration
, (2)

where "operation counts" represents the total number of
recorded read and write operations after an anomalous
read/write pattern, "duration" represents the time
interval between the first recorded operation time and
the last one in time_list. We can achieve the value of
"operation counts" by counting the number of elements
in time_list and calculate "duration" by computing the
difference between the first and the last element in
time_list.

To distinguish normal read/write frequency with
anomalous read/write frequency caused by ran-
somware activities, we did two experiments that respec-
tively tests the read/write frequency during simulative
ransomware activities and user normal behaviors.

In the first experiment, we use AES ciphers and RSA
cipher from openssl library to encrypt files whose sizes
range from 1KB to 1MB. As for each test, given cipher
type and file size, encrypt 100 files automatically. Table
3 shows the experiment results. When the file size
is specified, the read/write frequency hardly changes
with different ciphers applied. When the cipher type
is decided, larger files tend to cause larger read/write
frequency. When we use RSA cipher, it can only encrypt
small files due to the limitation of its encryption
key length in openssl library, so, we did not get test
results for relatively large files when RSA is applied.
However, it does not matter because in real-world
ransomware, RSA is always used to encrypt keys whose
length is relatively small. In the tests, we also observed
the number of read and write operations occurred
during file encryption tasks. By analyzing the data
in Table 3, we found the read/write frequency on a
system undergoing ransomware attack should be over
600 operations per second. Even if the ransomware
is encrypting files smaller than 1 KB, the read/write
frequency could not be smaller than 600 op/sec. The
reason is that, when the file size is 1 KB, there are totally
200 read and write operations happened on 100 files.
That is to say, there is only one read and one write
operation during the encryption of one file. So, when
ransomware works on files that are smaller than 1 KB,
the number of read/write operations will not change
whereas the time consumption can be smaller than
that of encrypting 1 KB files, which makes read/write
frequency larger than 600 op/sec. Therefore, we can
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Table 3. Read/write frequency during batch file encryption.

1 KB 10 KB 100 KB 500 KB 1 MB
AES_128_CBC 742 op/sec 1379 op/sec 8318 op/sec 33876 op/sec 43363 op/sec
AES_256_CBC 724 op/sec 1437 op/sec 8642 op/sec 33920 op/sec 43780 op/sec
AES_128_ECB 749 op/sec 1440 op/sec 8758 op/sec 34162 op/sec 43027 op/sec
AES_256_ECB 788 op/sec 1380 op/sec 8546 op/sec 33697 op/sec 43998 op/sec

RSA 651 op/sec - - - -
Op counts 200 400 2600 12400 24600

Table 4. Read/write frequency during normal behaviors.

Applications Max Frequency Average Frequency
Firefox 322 op/sec 95 op/sec

Text editor 210 op/sec 88 op/sec
LibreOffice writer 310 op/sec 35 op/sec

YouTube 342 op/sec 105 op/sec
Amazon 281 op/sec 121 op/sec
Gmail 253 op/sec 74 op/sec

set the lower bound of the read/write frequency during
ransomware activity to be larger than 600 op/sec.

Then, we use another experiment to test the
read/write frequency during normal user behaviors.
Table 4 shows the experiment results. For example,
when we use Firefox, the maximum read/write
frequency on this machine is 322 op/sec and the average
read/write frequency is 95 op/sec. When we watch
a video on YouTube, the maximum frequency is 342
op/sec while the average frequency is only 105 op/sec.
We can observe that the upper bound of read/write
frequency during normal user activities are smaller
than 400 op/sec.

Since the upper bound of normal read/write
frequency is lower than 400 op/sec meanwhile the
lower bound of anomalous read/write frequency is
higher than 600 op/sec. We picked the mid number
500 as the threshold. If the current observed read/write
frequency is greater than or equal to 500 op/sec,
the checking result of the third module will be
"anomalous". Then, the local detection mechanism can
finish its work with an "anomalous" detection result.
Otherwise, since the read/write frequency is normal,
this machine is considered safe.

In summary, the local detection mechanism uses
inotify to keep monitoring the local host and check-
ing read/write patterns. An anomalous read/write pat-
tern will trigger further diagnosis. If all features show
anomalous checking results, the local detection mech-
anism will send an alert to user reporting anomalous
state on this machine and suspicious tasks that are
performing anomalous behaviors. After that, all run-
ning tasks on this machine will be suspended and then
the network-level detection will be triggered to collect
information from other machines.

4.3. Validation of Local Detection Mechanism
As we mentioned in Section 3.1, using one feature alone
to detect ransomware is not sufficient because single
feature methods will cause many false positives and
false negatives. For example, if we use file entropy
as the only feature to determine whether a machine
is infected, the compressed files will be mistaken
for encrypted files and result in false positives. To
validate the service of our local detection mechanism,
we applied it on two machines under two different
scenarios.

In the first scenario, both of these two test machines
are safe. We ran our local detection mechanism on them
for two days and used them as usual such as doing
course projects, reading papers, writing assignments,
watching movies, playing computer games and etc. In
the second scenario, we also ran our local detection
mechanism on these two test machines for two days, but
during this period, we applied the Linux ransomware
GonnaCry [7] on them at random time for 48 times and
recorded the detection results.

Table 5 shows the test results, we can know that there
were 3 false positives on Machine1 but no false negative
case during the experiment. That is to say, when the
test machines are in safe state, our local detection
mechanism reported "anomalous" detection results for
three times on Machine1. When the test machines are
under the risk of ransomware attacks, all attacks were
correctly detected and reported by our local detection
mechanism. We also found the reason for these 3 false
positives. They are caused by file encryption behaviors
performed by authorized users.

Sometime, although there is no ransomware attack,
users’ ransomware-like behaviors will cause false
positives. That’s why we need network-level detection
to help us correct some false positives of local detection
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Table 5. False positives and false negatives caused by local detection mechanism

Machine Number of false positives Number of false negatives
Machine1 3 0
Machine2 0 0

and to provide users with more accurate information to
judge whether there is a ransomware attack indeed.

5. Network-Level Detection
The network-level detection works on collecting
security conditions of other machines from network
and generating a comprehensive report to help user
determine whether there exists a ransomware attack.
It can help correct some false positives made by
local detection and it enjoys excellent functionality
especially when there is a cryptoworm attack.

The general idea of network-level detection is
that, if multiple machines manifested the similar
anomalous behavior at about the same time, it is
likely a cryptoworm attack. If only a few machines
are anomalous, these machines may be misdiagnosed
by local detection because cryptoworm spreads swiftly,
causing a mass of infected machines. It is easy to
know the number of anomalous machines in LAN by
collecting information from all the peers. However,
this idea is hard to be put into practice in WAN
because it is difficult to efficiently collect useful
information. If we query all machines in WAN for
their security conditions, it will be time and network-
resource consuming. If we only pick several machines
as representatives, their information may not be reliable
because a few machines’ information cannot reveal the
condition of the entire WAN. To solve this dilemma,
we use ACO-based Mechanism (ACOM) to collect
information from selected machines in WAN and use
Broadcasting Mechanism (BM) to collect information
from all machines in the same LAN. Then, we can use
wisdom of the crowd to provide user with collected data
for reference and help user determine whether to treat
this machine as an infected one or not.

5.1. ACO-based Mechanism
Ant Colony Optimization. Ant colony optimization (ACO)
is an optimization technique inspired by the path
finding behaviors of ants searching for food [8]. In
nature, ants use pheromone to communicate with
each other. They leave pheromone along with the
path they find food so that other ants can also find
food following the pheromone trails. When there are
multiple pheromone paths ahead, ants make decision
depending on the strength of pheromone trails. Most
ants choose the strongest pheromone trial and only a
small number of ants choose other ways. Over time,

pheromone trails will gradually evaporate. This means
that pheromone trails which no longer lead to a food
source will eventually stop being used, promoting ants
to find new paths and new food sources. Figure 4 gives
an example of how ants searching for food.

Figure 4. Path finding behavior of ants searching for food.

Suppose the food resource is on the left side and
the ant colony is on the right side. There are two
paths between food resource and ant colony. Path A
has shorter distance while path B has longer distance.
At the very beginning, both paths may be chosen by
ants from the ant colony and pheromone trails are left
on both paths. Since path A has shorter distance, the
ants on path A spend less time to go and back which
makes the pheromone trails on this path stronger than
that on path B. The stronger pheromone trail on path A
will attract more ants to this path. Overtime, almost all
ants choose path A instead of path B. That is a process
how ants find the shortest path between two places.
So, ACO algorithm is always applied to optimization
problems such as travelling salesman problem and
various scheduling and routing problems. It has also
been applied to detect network intrusions and Botnet
servers [14].

Our problem is similar to travelling salesman
problem. Instead of finding the shortest way to go
through all cities, we want to find the shortest way to
collect most information from other machines in WAN.
So, we used ACO algorithm to help us do network-
level detection in WAN scenario so that we can provide
user with a helpful report without consuming too much
network resources.

Design of ACOM. There are two key elements in ACO:
ants and pheromone. To apply ACO to the network-
level detection, we should first decide what roles these
two elements should play in our approach. Since we
want to collect most information from other machines
in WAN, we use ants to collect and transmit information
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among machines just as what they do when searching
for food. Each anomalous machine creates an ant and
sends it to the network. Each time an ant passes an
anomalous machine, it records the security condition
of this machine in it and share the information it has
collected with the next machine it reaches. We consider
pheromone as the number of anomalous machines each
ant has collected, and it can be left on the machines that
the ant passed. In this manner, as ants travel in WAN,
machines can have increasing knowledge of the number
of anomalous machines in WAN.

Then, according to the records in an ant when it
finishes its work and the level of pheromone left on
the machine, ACOM will generate a report telling user
current situation in WAN. Figure 5 shows the pseudo
code of ACOM, which describes the work procedure of
this network-level detection mechanism.

# start ACOM

CreateAnt() # Key function 1

Send ant to a randomly chosen machine

while True:

Notify local host to do local detection

ExchangeInformation() # Key function 2

if num of anomalous machines known by ant >= goal:

Ant goes back home

Report: Alert.

break

else if num of anomalous machines known by ant < goal\

and number of passed machines reaches limit:

Ant goes back home

Report: Low risk.

break

else:

DecideDirection() # Key function 3

Send ant to the selected machine

Figure 5. Pseudo code describing the work procedure of ACOM.

Once ACOM is launched, the anomalous local host
creates an ant and then sends this ant to network.
The next destination of the ant should be randomly
selected from all machines this local host can contact
with. Then, ACOM goes into a while loop. In this loop,
the ant firstly notifies the current local host to do local
detection again if this local host is not doing local
detection. Then they exchange information with each
other. The local host here indicates the machine that
an ant is currently on. For example, we say machine
A created an ant and sent it to machine B, the event
“exchange information” happens between the ant and
machine B. After information exchange, ACOM checks
if the ant has achieved its goal which is the number of
anomalous machines it needs to collect during its travel.
If the ant has collected sufficient anomalous machines
indicating a cryptoworm attack, it will go back to the
original machine that created this ant and report to
the user saying that "At least T users in WAN think
you are in high risk". Here, T should be replaced by
the value of threshold determined in different network

environments. If the ant has not achieved goal but has
reached the upper bound of its capability, it will go back
as well but report that "We inquired 20 users in WAN,
only A user(s) think(s) your are in risk." A should be
replaced by the number of anomalous machines known
by the ant. Both of the above two cases lead to the
end of ACOM since it finished to provide user with
wisdom of the crowd for reference. Otherwise, the ant
should continue to work. The current local host it is
on should decide the next stop of the ant according to
pheromone information and send the ant to the next
stop. The work procedure in the while loop iterates
until the ant goes back to its original local host and
reports our judgement. This is the entire workflow of
ACOM. The detailed implementation of ACOM will be
illustrated in the following subsection.

Implementation of ACOM. In the workflow of ACOM,
there are three important functions: CreateAnt(),
ExchangeInformation(), and DecideDirection(). The
details of these three functions are explained below.
Key Function 1: CreateAnt()
Ants are used to help the anomalous machines collect
security condition information of other machines from
network. In ACOM, anomalous machines create their
own ants and send them to network to collect
information of other machines. When a local host
creates an ant, it needs to tell the ant three main things:
goal, home, and (upper) limit.

From a global perspective, we need to set a threshold
T to determine the upper bound of number of
anomalous machines in a safe scenario. That is to
say, if ACOM on one anomalous machine can obtain
information of more than T anomalous machines from
WAN, it will alert user to potential high risk. If ACOM
finds less than T anomalous machines from WAN, it
concludes there is no cryptoworm attack and reports
its judgement to user. An ant’s goal is related to the
threshold T. It is defined as the number of anomalous
machines that the ant needs to collect during its travel.
Let the value of goal be G,

G = T − P ′ . (3)

In equation (3), P’ indicates the number of anomalous
machines known to the local host that created the
ant, and it is treated as the pheromone level. We
will explain more details about pheromone in the
next function ExchangeInformation(). The value of
goal equals to the difference between threshold and
pheromone because before a specific ant is created,
some other ants may have travelled through this local
host and deposit information about other anomalous
machines observed during their traversals. As such,
leveraging such information, this new ant will not need
to start from scratch to reach the threshold. If the
ant can find G anomalous machines from WAN, we
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think this machine is probably infected by cryptoworm.
Otherwise, we report this machine is probably not
infected. That is, ACOM will report our judgement
according to ant’s detection results.

The second thing the local host needs to tell the
created ant is the home address. Home address is
the IP address of this local host. With this address
information, the ant could return and report detection
results when it finishes its work.

The system parameter limit stipulates that each ant
can only travel through at most N machines. We set this
limitation because we do not want the ant to go through
so many machines that consumes a great amount of
time and network resources.
Key Function 2: ExchangeInformation()

As an ant arrives at a new machine, it exchanges
information with the current local host so that both
the ant and the current local host can enrich their
knowledge about security condition in WAN. On one
hand, ant tells local host a list contains all anomalous
machines it has collected up to now as well as the
count of anomalous machines which is considered as
pheromone. This process is to mimic the behavior of
ants in nature that leave pheromone trails on their way
to food resources. On the other hand, local host tells ant
its local detection result: whether it is anomalous or not.
So, after exchanging information, ant may collect one
more record while local host receives pheromone.

We also mimicked the property of pheromone that,
it evaporates over time. We use this property because
the machines do not need to keep very old information
on them since the conditions of other machines in
WAN may change over time. In our model, pheromone
value remains unchanged in the first 10 seconds after
it reaches the local host. Then, it decreases at a rate
of 10% per second. Suppose the original amount of
pheromone is p, we can calculate pheromone p’ left on
some machine after t seconds using this formula:

p′(t) =
⌊
0.9t−10 ∗ p

⌋
, t ≥ 10. (4)

Review the goal of each ant in function CreateAnt(), the
value of p’ we can achieve in equation (4) should be used
as the variable p’ in the equation (3) to calculate the goal
of each ant when being created.

After exchanging information, the ant can decide
whether it should go back home and report its detection
result. If it has not finished its work, the local host
should help ant decide direction, that is, which machine
to go as the next stop.
Key Function 3: DecideDirection()

In nature, ants decide their directions depending on
the strength of pheromone trails ahead; In ACOM, the
next destination of an ant is also decided depending on
pheromone information left on the current local host.
Since we want the ant to achieve its goal in shorter time

if there exist some anomalous machines in WAN, the
optimal direction of the ant should be an anomalous
machine so that it can finish its work earlier.

To help an ant choose the next stop according
to pheromone information on the current local host,
our strategy is to assign weights to other machines
that the current local host can contact with. Since
the local host has pheromone information left by all
passed ants, it has already known some anomalous
machines in WAN. So, it should assign larger weights
to these already known anomalous machines just like
the already known shorter paths in nature having
stronger pheromone trails. It assigns smaller weights
to unknown machines just like uncertain paths to food
sources in nature having weaker pheromone trails.
In our implementation, the larger weights are set to
2 while the smaller weights are set to 1 to simply
distinguish known anomalous machines and unknown
machines. The stops which an ant has previously
passed are assigned with weight 0 because the ant does
not need to go back to the previous stops to gather
information.

With weights set, current local host can calculate
the possibility of each machine to be chosen as the
next stop. The anomalous machines which have larger
weights are more likely to be selected as destination of
the ant. Suppose there are totally n machines in reach,
the probability for some machine to be chosen is equal
to the weight of this machine over the total weights of
all machines in reach:

probability(k) =
weight(k)∑n
i=1 weight(i)

, 1 ≤ k ≤ n. (5)

By this way, the next stop of the ant is decided in
random but is not completely in random. The ant is
more likely to be sent to an anomalous machine so
that it can collect sufficient anomalous machines to
prove a risky condition as soon as possible if there exist
cryptoworm attack. Meanwhile, it is also possible that
the ant can go to an undiscovered machine just like
an ant in nature opening up a new path. Thus, we
can guarantee that the information collected by ants
are typical enough to conclude the current situation in
network while very limited network resources and time
will be consumed by ACOM.

5.2. Broadcasting Mechanism
While ACOM is designed for collecting security
condition information from WAN, another network-
level detection method called Broadcasting Mechanism
(BM) is especially designed for detection in LAN.
It exhaustively inquiries all machines in LAN and
uses wisdom of the crowd to help user determine
whether the local host is infected. This process does not
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consume too much network resource since the number
of machines in LAN is limited, but it provides overall
view of security condition in LAN.

Once BM is launched on a local host, it broadcasts
the anomalous condition of the local host to all other
machines in LAN meanwhile it receives this kind of
information from other anomalous machines so that it
can have a general idea about the number of anomalous
machines in LAN at this point. Then, it generates
a comprehensive report to tell user current security
condition in LAN. For example, if there are totally
100 machines and 80 of them are anomalous, BM
will generate a report saying that "80% machines in
LAN also experience anomalies, so your computer
is in high risk of cryptoworm attack." Based on the
reports from ACOM and BM, the user can make a
judgement by himself(herself) about whether to treat
his(her) computer as an infected machine. To make the
system automatic, an alternative is for the user to set
a threshold value, above which it will report a positive
attack case.

6. Evaluation of Network-Assisted Approaches
In this section, we describe how we established a
test environment in which 100 Docker containers are
used to simulate a real-world network scenario and
a Linux ransomware sample called GonnaCry [7] is
applied on simulative infected machines to evaluate the
performances of NAA.

Although NAA is an integrated approach, we
compared the accuracy, message overheads and latency
of local detection mechanism, ACOM and BM to verify
whether network-level detection can improve local
detection and to verify applicability of ACOM and
BM in different scenarios. To distinguish the local
detection mechanism used by ACOM and BM with
the mechanism itself when treated as an independent
mechanism, we name the independent local detection
mechanism Direct Report (DR). In the rest of this
section, we will compare DR, ACOM and BM to have
an comprehensive evaluation about the performance
of each part of NAA. Note that, DR directly uses the
detection result of local detection mechanism as the
final result; ACOM is supported by the local detection
mechanism and further uses the ACO algorithm to
perform network-level detection to achieve a final
report; BM also uses the local detection mechanism as
a baseline and then collects information of all machines
in simulative network to make a final report according
to the number of anomalous machines.

6.1. Experiment Environment
Docker is a platform that provides resources and
services for application development and test. It uses
OS-level virtualization to deliver software in packages

called containers. Containers can be considered as
simplified virtual machines because each container has
its own configuration files and libraries but is run
by a single operating system kernel which results in
fewer resources demands. Containers can communicate
with each other through well-defined channels as well
as maintaining isolated from one another. So, we use
Docker containers to simulate the real-world network
scenario instead of using virtual machines due to the
functionality and simplification of containers. In our
experiment, we established 100 containers, each of
which is equipped with DR, ACOM and BM, to simulate
a network environment containing 100 machines which
can communicate with each other when it is needed.
When testing a specific mechanism, we run this
mechanism on all 100 containers for 10 times and
observe its average performances.

To simulate the scenarios that some specified
machines are attacked by ransomware, we run a Linux
ransomware sample called GonnaCry on these specified
containers and then execute a detection mechanism on
each container to test its performances in this situation.
GonnaCry employs a hybrid scheme which is utilized
by most real-world ransomware nowadays combining
asymmetric encryption and symmetric encryption
together. To make the ransomware more secure from
the attacker’s perspective, GonnaCry contacts a remote
server which keeps a pair of RSA keys for it, although
the ransomware itself also has its own RSA key pair so
that the victims cannot get the decryption key directly
from their local hosts. The working procedure of
GonnaCry is as following: The remote server generates
a pair of RSA keys. The public key S_pub is hardcoded
in GonnaCry while the private key S_priv is preserved
on the remote server. When GonnaCry starts to work,
it generates its own RSA key pair on the local host.
The public key is called C_pub and the private key is
called C_priv. Then, it uses AES cipher to encrypt the
local private key C_priv with the server’s public key
S_pub and also uses AES cipher to encrypt target files
with local public key C_pub. In this case, if someone
wants to recover these encrypted files, he/she needs to
get the server’s private key S_priv first to recover the
local private key C_priv so that he/she can use C_priv
to decrypt files. Since the server’s private key S_priv
is stored on the remote server, the victim has to pay
the ransom to obtain this key. We apply GonnaCry on
simulative infected machines due to its realism.

We respectively simulated 11 different scenarios
with increasing numbers of infected machines and
decreasing numbers of safe machines while the total
number is always 100. In each scenario, we respectively
apply three different mechanisms on containers and
test 10 times to achieve reasonable average results of
accuracy, message overhead and latency.
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To determine the value of limit N and threshold
T, we tried many different values under this 100-
machine scenario. Finally, we decided that N = 20 and
T = 3 because this setting contributes a best balance
between accuracy and efficiency which considers both
time consumption and network resource consumption.

6.2. Accuracy
Accuracy is defined as the correctly reported cases out
of overall cases, that is, accuracy = (true positives +
true negatives) / (true positives + false positives + true
negatives + false negatives). For BM, here we choose
a threshold 3, above which the local host reports a
positive attack case. The result is shown in Figure 6, the
x-axis represents the number of infected machines, the
y-axis indicates accuracy of DR, BM and ACOM.

Figure 6. Accuracy Comparison of ACOM, BM, and DR

We can observe that ACOM has greater advantage
over DR and BM when there are only a few
infected machines. As the number of infected machines
increases, although ACOM does not have evident
superiority, it is still more accurate than DR in most
cases. The reason for this phenomenon is that, when
the number of infected machines is quite small, ants
cannot find enough anomalous machines during their
trip, which amend some false positives caused by local
detection mechanism. Since DR and BM heavily rely
on the result of local detection mechanism, they have
lower accuracy than ACOM do. As the number of
infected machines increase, it becomes easier for ants to
collect enough anomalous machines within their limit,
that’s why the advantage of ACOM is not so obvious
in these scenarios. We can also observe that, BM is
slightly more accurate than DR due to two properties
on BM: rely heavily on local detection mechanism and
comprehensively consider information from network.
In this manner, it can get rid of a few false positives and
false negatives caused by local detection mechanism.

The test result proves that the network-level
detection can help improve accuracy of local detection.
Plus the comprehensive report from BM, user can make

an even more precise decision about whether the local
host is attacked by ransomware. If the ransomware is
a cryptoworm, it can be detected at very beginning if
NAA is deployed due to high accuracy of ACOM at the
time that only a few machines are infected.

6.3. Message Overheads
Message overhead is another important factor in
consideration since we do not want to cause too much
network resource consumption during the process
of ransomware detection. If a ransomware detection
approach produces huge resource consumption which
is heavier than the damage of ransomware itself, it
should not be put into practice. It is obvious that
these three mechanisms we put forward will not
cause huge resource consumption compared with the
expensive extortion fee of ransomware, but we still
want to figure out their message overhead to see which
mechanism is optimal from this aspect. We define
message overhead as the extra messages produced by
ransomware detection approaches. In ACOM, machines
need to send and receive ants during the detection
process. In BM, machines need to send and receive
news about whether a specific machine is anomalous or
not. So, both ACOM and BM produce extra messages
when they are running. Figure 7 shows the message
overhead of Dr, BM and ACOM. The x-axis indicates the
number of infected machines and the y-axis indicates
the number of messages being produced during each
detection process.

Figure 7. Message overhead of three mechanisms.

We can observe that DR performs best when coming
across message overhead measurement because it
directly uses the detection results of local detection
mechanism which does not produce any additional
messages. BM produces more message overheads than
ACOM does in most cases. As the number of infected
machines increases, the message overhead of BM
drastically grows while that of ACOM slightly grows.
The reason is that, BM requires each anomalous
machine to send messages to all peers while ACOM only
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allows each ant to go through at most 20 machines.
Thus, apply BM to LAN scenario is a reasonable
arrangement from message overhead’s perspective since
there are limited machines in LAN making the message
overhead of BM countable.

6.4. Latency

Latency is the time duration that each mechanism
needs to complete its task. We calculated the average
latency on all machines in each test. Figure 8 shows the
latency of DR, BM and ACOM. The x-axis indicates the
number of infected machines and the y-axis indicates
the average seconds that each mechanism consumes
during its work.

Figure 8. Latency of three mechanisms.

As for DR, its latency is approximately 0 because
it only does local detection which can be completed
in very short time. As for BM, no matter how many
victims exist, the anomalous machines always broadcast
a message and receive messages from other anomalous
peers and then a report is sent to user depending on the
number of anomalous machines in LAN. All machines
work in parallel following the above procedure, which
makes the runtime of all machines be similar to the
runtime of one randomly picked machine. So, the
average latency of BM only has a little fluctuation
as the number of infected machines increases. As for
ACOM, each anomalous machine creates an ant that
goes through at least 3 machines one after one. As the
number of infected machines increases, more ants will
be created which makes average runtime increase. So,
ACOM has the worst latency among three integrated
approaches while Direct Report almost has no latency.
However, the high latency of ACOM does not do extra
damage to infected machines because all suspicious
tasks are suspended before ACOM is launched so that
ransomware cannot encrypt files when network-level
detection is working.

6.5. Loss Assessment
In this section, we estimated the damages that a
ransomware can cause on a machine before it is detected
by our ransomware detection approach NAA. That is,
how many files can be encrypted before the ransomware
is detected and terminated.

We can learn from the test results shown above
that ACOM has relatively long delay before reporting
our diagnosis to user. However, it does not result in
additional damage because before ACOM is launched,
all suspicious tasks are suspended until user takes
further actions. So, the number of files being encrypted
during the process of local detection is exactly the losses
of this machine. Figure 9 shows the average number of
encrypted files on a victim machine if NAA is applied
on. The x-axis is the number of infected machines in
LAN, the y-axis is the average number of encrypted
files.

Figure 9. Average number of encrypted files.

We can observe that no matter how many machines
are infected, the number of encrypted files on each
machine ranges from 15 to 30, which is acceptable loss
owe to the quick job of our local detection mechanism.

Based on our evaluation results concerning accuracy,
message overheads, latency and loss assessment, we
find that network-level detection can indeed help
improve the accuracy of local detection. From message
overhead’s point of view, ACOM is applicable to WAN
scenario while BM is applicable to LAN scenario
for network-level detection. Moreover, NAA provides
good performance especially for detecting cryptoworm
attack since our network-level detection can provide
user with very accurate alert in the early stage of
cryptoworm attack.

6.6. Limitations
Recall that to avoid high false positives, our local
detection mechanism uses all the three features to
detect ransomware caused anomalies, and each of them
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involves a threshold determined experimentally. Now
if the attacker knows our thresholds, he may design
the ransomware to behavior differently to bypass the
detection; for example, it may intentionally reduce
the read/write frequency by adding a small delay
between the encryption of two files, or change the
read/write pattern by introducing empty operations
between read and write operations. To thwart our NAA
method, it may choose to infect fewer than the threshold
number (T) of machines. While such countermeasures
may increase the stealthiness of the attacks, they also
increase the complexity and reduce the efficiency of the
attacks. Clearly, this is an ongoing arms-race between
attacker and defenders.

To achieve higher detection accuracy, we may explore
more features. For example, as a ransomware typically
traverses multiple directories to identify a greater
number of files to encrypt, we may use the directory
navigation patterns as another feature. In addition,
instead of using thresholds and the simple first-order
logic to make decisions, we may make better use of the
features by training machine learning/deep learning
models to classify the results.

7. Conclusion and Future Work

In this paper, we propose a network-assisted approach
called NAA for ransomware detection which combines
local detection and network-level detection together.
We first describe a local detection mechanism which
uses three local features to judgement whether the
local host is anomalous. In network-level detection, we
implement ACOM to efficiently collect information in
WAN scenario and put forward BM which exhaustively
inquires all machines in LAN. Then, the network-level
detection uses wisdom of the crowd to provide user
with a comprehensive report so that user can easily
make his(her) judgement based on the information
we offered. To evaluate our approach, we use docker
to establish the experiment environment and use
GonnaCry to simulate ransomware attack. The test
results show that NAA is more accurate than local only
detection and is especially applicable for cryptoworm
detection meanwhile the loss of files during the working
procedure of NAA is acceptable.

However, due to the limited resource of Linux ran-
somware sample, we only used GonnaCry to simulate
ransomware attack in our evaluation experiments. In
the future, we will test the performance of NAA using
some other Linux ransomware samples especially Linux
cryptoworm samples when they are accessible.
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