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Abstract. Ensemble learning consistently improves the performance of multi-class 
classification through aggregating a series of base classifiers. To this end, data-
independent ensemble methods like Error Correcting Output Codes (ECOC) attract  
increasing attention due to its easiness of implementation and parallelization. 
Specifically, traditional ECOCs and its general extension N-ary ECOC decompose the 
original multi-class classification problem into a series of independent simpler 
classification subproblems. Unfortunately, integrating ECOCs, especially N-ary ECOC 
with deep neural networks, termed as Deep N-ary ECOC, is not straightforward and yet 
fully exploited in the literature, due to the high expense of training base learners. To 
facilitate the training of N-ary ECOC with deep learning base learners, we further 
propose three different variants of parameter sharing architectures for deep N-ary ECOC. 
To verify the generalization ability of deep N-ary ECOC, we conduct experiments by 
varying the backbone with different deep neural network architectures for both image 
and text classification tasks. Furthermore, extensive ablation studies on deep N-ary 
ECOC show its superior performance over other deep data-independent ensemble 
methods. 
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1   Introduction 

Multi-class classification is one of the fundamental problems in machine learning and 
data mining communities, where one trains a model with labeled data of different classes for 
classification purposes. The multi-class classification exists diverse real-world applications 
from computer vision tasks such as object recognition [1], [2], [3], face verification [4], to 
natural language processing tasks like sentiment classification [5], [6]. 

To handle multi-class classification problems, existing approaches could be mainly 
divided into two groups. One group focuses on solving the multi-class problems directly by 
extending its corresponding binary classification algorithm. These approaches include 
decision tree-based methods [7], multi-class linear discriminant analysis [8], multi-layer 
perceptron [9], multi-class support vector machines (SVM) [10] and etc. Another research 
direction focuses on the decomposition of a multi-class problem into multiple binary 
subproblems so that one can reuse the well-studied binary classification algorithms for their 
simplicity and efficiency. Most of these methods can be reinterpreted in the framework of 
error correcting output codes (ECOC) [11], [12]. For example, Allwein et al. [13] show one-
versus-one (OVO), one-versus-all (OVA) could be incorporated into the framework of ECOC 
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where all the classes are reassigned with either binary codes {−1,1} or ternary codes {−1,0,1} 
for each base learners (1/−1 represents positive/negative class, 0 represents non-considered 
class). Zhou et al. [14] further extend traditional ECOCs into N-ary ECOC by introducing N 
meta-classes rather than binary classification for each base learner. The final results are 
determined by the ensemble of a series of base learners. The biggest advantage of ECOCs 
methods is their easiness of implementation and parallelization. 

Most traditional ECOCs methods are based on the pre-defined hand-craft features and 
focus on how to ensemble the results of base learners on these features. Recently, deep 
learning methods significantly advance the multi-class classification performance through 
learning features in an end-to-end fashion. For example, a single AlexNet [15] outperforms the 
second place at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) by more 
than 10%. To further improve performance, Goodfellow et al. [16] demonstrate that a simple 
ensemble of seven AlexNet models with different random initiations could significantly 
reduce an error rate from 18.2% to 15.3%. In most high profile competitions, e.g. ImageNet1 
[17] or Kaggle 2 , ensembles techniques often appear in the winner solution. Traditional 
ensemble methods usually assume that the base learners for binary classification are 
inexpensive to train, such as SVMs and decision trees. Unfortunately, this assumption appears 
to be invalid with deep learning algorithms. For example, AlexNet consisting of more than 60 
millions of parameters [15] takes between five and six days to train on two GTX 580 3GB 
GPUs. Therefore, the expensive learning procedure hinders the use of the ensemble of deep 
neural networks on a large scale. 

In this paper, we focus on addressing the ensemble of deep neural networks in the 
framework of ECOC. The biggest reason to choose ECOC rather than other ensemble 
techniques such as Boosting [18] is that ECOC is easy to parallel due to the independence of 
base learners. In contrast, boosting trains a number of models sequentially and continuously 
compensates the mistakes made by the earlier models, which results in that each base models 
in boosting are highly dependent on each other. At this point, ECOC exhibits a large 
advantage in large-scale real-world applications since all the base learners could be trained 
independently and simultaneously. 

Specifically, we choose N-ary ECOC, an extension of ECOC, which shows significant 
improvement over OVA, OVO, and traditional ECOCs [14]. As known, most existing works 
did not investigate the influence of deep learning on ECOCs or N-ary ECOC. In this paper, we 
make a marriage between N-ary ECOC to investigate such an influence. In the sequence, we 
term this problem as Deep N-ary ECOC. The main contributions of this paper are as follows: 

• We investigate a new problem named Deep N-ary ECOC where we mainly discuss 
how to effectively and efficiently leverage advantages of deep learning models in the 
framework of ECOC. 

• To facilitate the training procedure, we further propose three different parameter 
sharing strategies for Deep N-ary ECOC framework, i.e., full parameters share, 
partial parameters share, and no parameter share. Specifically, the full share model 
shares all the feature learning parameters except for top classifier; the partial share 
model shares part of feature learning parameters; the no parameter share means all 
the base learners are learned from scratch. 

 
1 ImageNet: http://www.image-net.org/ 
2 Kaggle: https://www.kaggle.com/ 



 

 
 
 
 

• We explore the influence of two crucial hyper-parameters of N-ary ECOC, i.e., 𝑁! 
and 𝑁, with deep neural networks for improving the accuracy. We also give specific 
suggestions for choosing those two hyper-parameters. 

• We conduct extensive experiments and compare with several ensemble strategies, 
i.e., an ensemble of random initialization (ERI), ECOC and N-ary ECOC, on both 
image and text classification tasks to analyze the advantages and disadvantages of 
each ensemble strategy. 

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 
presents Deep N-ary ECOC. Finally, Section 4 discusses our empirical studies and Section 5 
concludes this work. 

2   Related Work 

Our proposed deep N-ary ECOC is highly related to the following topics, including 
ECOCs, ensemble learning, and deep neural networks. 
 
2.1   ECOCs 
 

Many ECOC approaches [13], [19], [20], [21] have been proposed to design a good 
coding matrix in recent years. Most of them are fallen into the following two categories. The 
first one is data-independent coding, such as OVO, OVA, and ECOCs [20]. Their coding 
matrix design is not optimized for the training dataset nor the instance labels such that all the 
base learners could be independently learned. For example, the sparse ECOC coding approach 
aims to construct the ECOC matrix 𝑀 ∈ {−1, 0, 1}"!×"", where 𝑁$ is the number of classes, 
𝑁!  is the code length, and its elements are randomly chosen as either −1, 1, or 0 [20]. In 
ECOCs, the classes corresponding to 1, −1 are considered as positive and negative classes, 
respectively, and 0 are not considered in the learning process. More recently, Zhou et al. [14] 
extend the existing ECOCs into N-ary ECOC to enable the construction of N metaclasses. 
Both theoretical and empirical findings validate the superiority of N-ary ECOC over 
traditional ECOCs. 

Another direction is data-dependent ECOCs where the data are considered in the learning 
coding matrix, such as discriminant ECOC (D-ECOC) [19], ECOC-ONE [22], subspace 
ECOC [21], Adaptive ECOC [23], etc. In this way, different base learners interact with each 
other during training phrases, which is also similar to Boosting [18] methods, such as 
AdaBoost [24]. In Boosting methods, a series of models are sequentially trained with latter 
models correcting mistakes committed in previous models. Compared to data-independent 
ECOCs, these methods require sophisticated algorithm design and are difficult to be 
paralleled. 

To our best knowledge, there is little research to investigate the combination of ECOCs 
and deep learning. In this paper, we take a step further to analyze the performance of 
combining our previous work N-ary ECOC with deep learning. 
 
2.2   Deep Ensemble Learning 
 

A lot of studies show that deep neural network models are nonlinear and have a high 
variance, which can be frustrating when preparing a final model for making predictions [16]. 



 

 
 
 
 

Deep ensemble learning appears to one of the solutions that combine the predictions from 
multiple neural network models to reduce the variance of predictions and reduce 
generalization error. Recently, there are some studies to integrate base learners of deep neural 
networks with ensemble learning in three major ways. The first one is ensemble training data 
including re-sampling [25], bootstrap aggregation [26], where the choice of data is varied for 
training different base models in the ensemble. The second one is to ensemble models where 
different base models are used in the ensemble, including different random initialization, a 
random selection of mini-batches, differences in hyper-parameters, etc [16]. The third way is 
varying combinations where one vary the choice of combining outcomes from ensemble 
members. The most famous method is a model averaging ensemble and weighted average 
ensemble. Different from the aforementioned deep ensemble learning methods, deep N-ary 
ECOC serves a complementary piece for existing methods. 
 
2.3   Deep Neural Networks 
 

In recent years, a lot of different deep neural networks are proposed for different 
applications. For computer vision tasks, the most dominating model comes from 
Convolutional Neural Networks (CNNs), and its follow-up works such as AlexNet [15], 
VGGs [27], ResNet [28] and DenseNet [29]. For natural language processing tasks, most 
popular networks belong to Recurrent Neural Network (RNNs), or its many variants such as 
Long Short-Term Memory (LSTM) [30], Gated Recurrent Unit (GRU) [31] and etc. In the 
experiment, we validate deep N-ary ECOC in both CNNs and LSTMs architecture for vision 
and text datasets respectively. 

3   Deep N-ary ECOC 

In this section, we first introduce the concept of N-ary ECOCs. To facilitate the training 
procedure, we further propose three different parameter sharing architectures, namely full, 
partial and no sharing. 
 
3.1   N-ary Ensemble for Multi-class Classification 
 

Error correcting output codes (ECOC) constructs an ensemble of binary base classifiers 
by randomly and independently assigning positive/negative pseudo labels (i.e., 1/−1 in the 
coding matrix) for each base task. The results of all the base learners are combined to make a 
prediction. ECOC consists of two main steps: 1) encoding 2) decoding. In encoding, we create 
an encoding matrix to encode each class into a unique code that is as different as possible from 
the codes of the remaining classes. One example of the encoding matrix is illustrated in Table 
1(a). A row of the coding matrix represents the code of each class, while a column of the 
coding matrix represents the binary classes to be considered when learning a base classifier. In 
decoding, ECOC first computes the prediction vector that is the concatenation of results of all 
the base tasks. The final label is determined by assigning the label with the “closest” label 
vector in encoding matrix 𝑀 ∈ {1, 2, … ,𝑁}"!×"", where 𝑁$ denotes the number of classes and 
𝑁! denotes the number of base learners. As proved in many research works [12], [14], the 
capability of error correction relies on the minimum distance, Δ%&'(𝑀), between any distinct 



 

 
 
 
 

pair of rows in the coding matrix 𝑀 . In this way, the trained base classifiers could be 
sufficiently differentiated from each other. 

To achieve this goal, ECOC is extended to a new framework of N-ary ECOC [14] where 
the original classes are decomposed into N meta-class (3 ≤ 𝑁 ≤ 𝑁$). Table 1(b) shows an 
example of N-ary ECOC encoding matrix. Zhou et al. [14] both empirically and theoretically 
showed that N-ary ECOC is able to achieve larger row separation and lower column 
correlation. It is interesting to note that N-ary ECOC is a more general framework for ECOC 
since traditional coding schemes could be treated as special cases of N-ary ECOC. For 
example, when 𝑁 = 2, N-ary ECOC corresponds to the binary coding scheme; when 𝑁 = 3, 
N-ary ECOC corresponds to the ternary coding scheme. Furthermore, recent works [16] 
showed that an Ensemble of models with different Random Initialization (ERI) is able to 
improve multi-class classification performance. This deep ensemble learning strategy could be 
also viewed as a special case in the framework of N-ary ECOC if we keep the original label 
assignment, namely 𝑁 = 𝑁$. 

Table 1. Example of ECOC and N-ary coding matrix. 

                                    (a) ECOC                                                (b) N-ary ECOC with 𝑁 = 4 

                  

 
On the other side, most existing work on ECOCs including our previous work on N-ary 

ECOC is constrained to classifier training with pre-defined features. With a significant 
advance of deep learning, the performance of various machine learning tasks has been 
improved. There is few works to discuss how to extend ECOC in the scenario of deep 
learning.  In this work, we specifically study this open problem in the framework of N-ary 
ECOC, termed Deep N-ary ECOC, and propose several approaches to address it. In this paper, 
we mainly investigate the following three questions: 

1. Do we necessarily independently train all the deep base learners from scratch for all 
the situation? 

2. Whether the N-ary ECOC framework still retains the advantages over other data-
independent ensemble approaches with deep neural network? 

3. Any new suggestion on the choice of the meta-class number 𝑁 and base learners 
number 𝑁!? 



 

 
 
 
 

For the first question, we are going to propose three different parameter sharing 
architectures, which is described in more details next section. For the remaining two 
questions, we delay the investigation in the experiment section. 
 
3.2   Efficient Implementation for Deep N-ary ECOCs 
 

Different from traditional ECOC problems with pre-defined features, Deep ECOCs 
should consider deep feature learning as well as the classifier construction during training. 
This increases the difficulty of deploying ECOCs in real-world scenarios, since even training a 
single deep neural network is also expensive. Fortunately, thanks to the nature of ECOCs, all 
the base deep neural networks could be trained simultaneously. Furthermore, in this paper, we 
investigate a more efficient realization and propose three different parameter sharing 
strategies, namely, no share, partial share, and full share, which is depicted in Figure 1. 

Typically, we take the model of the CIFAR dataset, termed CIFAR-CNNs (explain in 
detail later), as an example to illustrate the three strategies. For the no parameter sharing 
strategy, as shown in Figure 1(a), we trained 𝑁! base learners independently, which means 
that the feature encode layers of each base learner are trained by the inputs directly and do not 
interact with other learners. The partial parameter sharing strategy contains shared and task-
specific layers, as in Figure 1(b), the first three feature encoder layers are shared by all the 
base learners while the top encoder layer is task-specific, which is only optimized by the 
corresponding meta-class objectives. The full parameter sharing strategy is simply set all the 
feature encode layers to be shared by all the base learners except the top classifiers (see Figure 
1(c)). The top layer classifiers of all the sharing strategies are trained independently with its 
meta-class objectives. Note that, all the base learners of no parameters sharing strategy are 
trained from scratch while the shared layers of partial and full parameters sharing strategies 
are initialized by a pre-trained single model and fine-tuned through training to accelerate the 
model convergence rate. Obviously, the no parameter sharing strategy contains most 
parameters (𝑁'), then the partial sharing strategy (𝑁() and the full sharing strategy (𝑁)) is 
least, say, 𝑁' > 𝑁( > 𝑁). 
 

 
Figure 1. An example of three different parameters sharing strategies. 

4   Experiments 

4.1   Datasets 
We conduct the experiments on 4 image datasets and 2 text datasets. The image datasets 

contain MNIST [32], CIFAR-10 [33], CIFAR-100 [33], and FLOWER-102 [34], which are 



 

 
 
 
 

widely used image classification datasets in the computer vision community. While the text 
datasets are Text REtrieval Conference (TREC) [35] dataset and Stanford Sentiment Treebank 
(SST) [36] dataset. The TREC is the question and answering dataset which involves 
classifying question sentences into 6 question types, say, whether the question is about person, 
location, numeric information and etc. The SST is the sentiment analysis sentence data with 5 
classes that range from 0 (most negative) to 5 (most positive). The statistics of these datasets 
are described in Table 2. Note that we do not utilize the K-fold cross-validation method, but 
simply use the split of train/validation/test sets. If the datasets do not contain development 
part, we randomly split 10% training samples as the development dataset. 

Table 2. Statistics of Image and Text Datasets. 

Image Dataset 
Dataset Image Size # Train Sample # Dev Sample # Test Sample # Classes (𝑁!) 
MNIST 28 × 28 60,000 N/A 10,000 10 
CIFAR-10 32 × 32 50,000 N/A 10,000 10 
CIFAR-100 32 × 32 50,000 N/A 10,000 100 
FLOWER-102 256 × 256 6,552 818 819 102 

Text Dataset 
Dataset Avg. Sent. Len. # Train Sample # Dev Sample # Test Sample # Classes (𝑁!) 
TREC 10 5,500 N/A 500 6 
SST 18 11,855 N/A 2,210 5 
 
4.2   Experimental Setup 
 
Deep Neural Networks. We employ different neural network-based models for different 
datasets. Specifically, we use LeNet [32] for the MNIST dataset and the FLOWER-102 
dataset is trained by AlexNet [15]. Note that, due to the difficulty for the AlexNet model to 
learn consequential and representative features from the small training dataset of FLOWER-
102 directly, the AlexNet is not trained from scratch but obtained by fine-tuning the pre-
trained AlexNet model3, which is trained on ILSVRC dataset. For CIFAR-10/100 datasets, we 
build a model with eight convolutional layers and two full-connected layers, named as CIFAR-
CNNs, as shown in Figure 2(a), where the eight convolutional layers are divided into four 
groups, they share the same structure with the different numbers of filters and kernel widths. 
The architecture of each group is structured as follows: one convolutional layer following the 
batch normalization [37] and dropout [38] layer, another convolutional layer with batch 
normalization and max-pooling is applied. And the ELU [39] activation function is used for 
each convolutional layer. 

To train the TREC and SST text datasets, we construct a three-layer bidirectional LSTM 
model with character-level CNN [40] and self-attention [41] mechanism, termed Bi-LSTMs, as 
shown in Figure 2(b), where the character-level CNN learned the character features to 
represent a word from the character sequences of such word, which can help to enrich the 
meaning of word features, especially for rare and out-of-vocabulary words, and boost the 
performance by capturing morphological and semantic information, and the self-attention 
mechanism encodes the learned contextual affluent word-level feature sequence of 

 
3 Pre-trained AlexNet: http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/ 



 

 
 
 
 

bidirectional LSTM into a single vector by considering the importance of each word-level 
feature. 
Parameters Setup. For LeNet of MNIST dataset, we follow the same settings as LeCun et al. 
[32] and RMSProp [42] is chosen as the parameters optimization method with a learning rate 
of 0.001 and decay rate of 0.9, we also introduce Dropout [38] strategy with a drop rate of 0.5 
at each convolutional layer and the first full-connected layer to prevent over-fitting. While the 
AlexNet for FLOWER-102 dataset, we utilize exactly the same structure, parameter setting, 
and optimization method as Alex et al. [15]. For CIFAR-CNNs model of CIFAR-10/100 
datasets, we set the number of filters for each convolutional block as 32, 64, 128, and 256, 
respectively, the kernel sizes of (3, 3) and pool size of (2, 2) for all the blocks. The hidden 
size of the first fully-connected layer is 512, while the second depends on the class size. To 
avoid over-fitting, we apply ℓ*  regularization with weight decay rate of 0.0005 for all the 
weight parameters and Dropout strategy, the drop rate is 0.3 , 0.4 , 0.4 , 0.4  for each 
convolutional block respectively, and 0.5  for the first fully-connected layer. Parameters 
optimization is performed by Adam optimizer [43] with gradient clipping of 5.0 and learning 
rate decay strategy. We set the initial learning rate of 𝛽+ = 0.002 and fixed it for the first 
5000 training iterations, then the learning rate 𝛽&  is updated by 𝛽& = 𝛽+/(1 + 𝜌 ×

,-.+++
/

), 
where 𝑇 is the decay step of 500 and 𝜌 is the decay rate of 0.05. Meanwhile, in order to 
improve the performance, the data augmentation is also utilized. 
 

 
Figure 2. The general architecture of CIFAR-CNNs and Bi-LSTMs models. 

For the Bi-LSTMs model of TREC and SST text datasets, we use the 300-dimensional 
publicly available pre-trained word embeddings as the word-level feature representation, 
which is trained by fastText4 package on Common Crawl and Wikipedia [44], [45], and the 50-
dimensional randomly initialized task-specific character embeddings. The word embeddings 
are fixed and character embeddings are learned during training. We use three different 

 
4 fastText: https://github.com/facebookresearch/fastText 



 

 
 
 
 

convolutional layers with widths 2, 3, 4, respectively, for character-level CNN encoder and 
set the filter number of each layer as 20, the learned character features of each layer are 
concatenated and then optimized by a two-layer highway network [46] before concatenating 
with the corresponding word embeddings. The dimension of hidden states of LSTM layers are 
set as 200 . Parameters optimization is performed by Adam optimizer [43] with gradient 
clipping of 5.0 and learning rate decay strategy. We set the initial learning rate of 𝛽+ = 0.001, 
at each epoch 𝑡, learning rate 𝛽, is updated by 𝛽, = 𝛽+/(1 + 𝜌 × 𝑡), where 𝜌 is the decay rate 
with 0.05. To reduce overfitting, we also apply Dropout [38] at the embedding layer and the 
output of each LSTM layer with the drop rate of 0.2 and 0.3, respectively. 
 
N-ary ECOC Coding Matrix Setup. For N-ary ECOCs, including ECOCs (which is a special 
issue of N-ary ECOC when 𝑁 = 2), we train the 𝑁! base learners based on the coding matrix 
and use the predicted code sequence of each class and generated coding matrix to make a 
prediction based on distance measurement. Zhou et al. [14] introduced several coding matrix 
construction methods and distance measurements designed for general or task-specific 
applications. For simplicity, we utilize the random dense encoding method to randomly split 
the original classes 𝑁0 into 𝑁 subsets and make sure that the number of classes in each subset 
should be approximately balanced, simultaneously. For the decoding method, we adopt the 
minimum Hamming distance due to its simplicity and effectiveness. In our experiments, we 
experiment on the different numbers of meta-class 𝑁  and number of base learners 𝑁!  for 
different datasets, as described in Table 3. Note that we do not experiment on all the possible 
meta-classes for each dataset, because of the limitations of computing resources and we only 
trained 60 base learners for MNIST, FLOWER-102, TREC, and SST datasets and 100 base 
learners for CIFAR-10/100 datasets, respectively. Specifically, in order to evaluate the effects 
of number of base learners on the ensemble learning performance, we trained another 300 
classifiers for FLOWER-102 and TREC datasets, respectively. 

Table 3. Summarization of tested 𝑁 and 𝑁" for experiments. 

Dataset # Classes (𝑁!) Tested # Meta-Class (𝑁) Tested # Base Learners*	(𝑁") 
MNIST 10 2, 4, 5, 8, 10 60 
CIFAR-10 10 2, 4, 5, 8, 10 100 
CIFAR-100 100 2, 5, 10, 30, 50, 75, 95, 100 100 
FLOWER-102 102 2, 3, 5, 10, 20, 40, 60, 80, 90, 95, 102 60 
TREC 6 2, 3, 4, 5, 6 60 
SST 5 2, 3, 4, 5 60 
* It indicates the maximal number of classifiers is used for training. 
 
4.3   Experimental Results 
 
4.3.1  Comparison with Different Ensemble Methods 
 
In this section, we compare the performance of different ensemble methods on the 
aforementioned image and text datasets. In the experiment, we trained a single model and 
ensemble models of three coding schemes for each dataset, i.e., Ensemble with Random 
Initializations (ERI), ECOC, N-ary ECOC, then report their (ensemble) accuracy with 
standard deviations. Note that we only report the highest score under a specific meta-class 𝑁 
for N-ary ECOC. For the MNIST, FLOWER-102, TREC, and SST datasets, we use 60 base 



 

 
 
 
 

learners for each scheme, while 100 base learners for CIFAR-10/100 datasets. The results are 
summarized in Table 4. Generally, we observe that most ensemble models show relatively 
significant improvements, compared with the single model, on the given datasets with 
different deep neural networks. 

We observe two interesting results in Table 4. First, comparing the single model with N-
ary ECOC, we find that the improvement ratio of N-ary ECOC is inverse relation with single 
model performance, i.e., the improvement of N-ary ECOC scheme is more prominent if the 
performance of the single model is lower. For example, it is obvious that the baseline 
accuracies are higher on MNIST, CIFAR-10, TREC and FLOWER-102 (> 80%) than on 
CIFAR-100 and SST (almost < 60% ), then the improvement ratios are 0.59% , 5.54% , 
5.64% and 5.80% from the single model to N-ary ECOC on MNIST, CIFAR-10, TREC, and 
FLOWER-102 datasets, respectively, while the improvement ratios of CIFAR-100 dataset are 
13.72% and 15.15% on SST dataset. 

Table 4. Ensemble accuracies with their standard deviations. 

Dataset Method Single Model Ensemble Model* 
ERI ECOC N-ary ECOC 

MNIST LeNet [32] 98.98	 ± 	0.07% 99.11	 ± 	0.11% 99.23	 ± 	0.08% 𝟗𝟗. 𝟓𝟕	 ± 	0.09% 
CIFAR-10 CIFAR-CNNs 87.12	 ± 	0.43% 90.54	 ± 	0.31% 89.37	 ± 	0.54% 𝟗𝟏. 𝟗𝟓	 ± 	0.24% 
CIFAR-100 CIFAR-CNNs 61.50	 ± 	0.57% 69.57	 ± 	0.29% 34.26	 ± 	2.42% 𝟔𝟗. 𝟗𝟒	 ± 	0.32% 
FLOWER-102 AlexNet [15] 83.12	 ± 	0.29% 86.32	 ± 	0.60% 77.05	 ± 	0.73% 𝟖𝟕. 𝟗𝟒	 ± 	0.28% 
TREC Bi-LSTMs 90.50	 ± 	0.12% 94.80	 ± 	0.09% 95.80	 ± 	0.08% 𝟗𝟓. 𝟔𝟎	 ± 	0.10% 
SST Bi-LSTMs 44.17	 ± 	0.92% 48.69	 ± 	0.18% 48.91	 ± 	0.26% 𝟓𝟎. 𝟖𝟔	 ± 	0.13% 
* Here 𝑁! are 60, 100, 100, 60, 60 and 60, respectively, for the ensemble models from top to bottom row. While 𝑁 
are 3, 4, 95, 95, 3, 4, respectively, for the N-ary ECOC. 
 

Second, the N-ary ECOC scheme outperforms ECOC and ERI ensemble methods on most 
image and text datasets, except for the TREC text dataset. Specifically, N-ary ECOC always 
performs better than ERI. This is due to that N-ary ECOC varies the predicted classes for each 
base learner and makes them more diverse than ERI, where the diverse forecast errors made 
by base learners of N-ary ECOC are more beneficial to the ensemble learning in comparison to 
the similar base learner errors of ERI. Meanwhile, compared with ECOC, N-ary ECOC also 
shows its superiority in most cases, especially when the number of classes is large (i.e., 𝑁0 ≥
100 in our experiments). It is primarily due to, as mentioned by Zhou et al. [14], the better 
quality of the coding matrix and the higher discriminative ability (in terms of how many meta-
classes a base learner tries to discriminative) of N-ary ECOC than ECOC. 

In fact, we find the contribution of class merge degree to the ensemble accuracy of N-ary 
ECOC replies on the dataset, say, the datasets with a different number of classes require 
different class merge degree strategy, as discuss in Section 4.3.2. Note the class merge degree, 
which is measured by "#-"

"#
, is the ratio of class numbers reduced when the classes are merged 

into meta-classes. 
 
4.3.2  Evaluation on the Effect of Meta-class Number 𝑵 
 

In this section, we investigate the influence of meta-class number 𝑁, which is one of the 
crucial hyper-parameters of N-ary ECOC. For the datasets with a small value of 𝑁0 , we 
experiment on all the possible meta-class numbers, i.e., from 2 to 𝑁0 (𝑁 = 2 denotes ECOC 



 

 
 
 
 

and 𝑁 = 𝑁0 denotes ERI), while for the datasets with a large value of 𝑁0, we select several 
representative meta-class numbers for the experiment. The ensemble accuracies with respect 
to 𝑁 are depicted in Figure 3. 

From Figure 3(a), we observe that the performances of ensemble models with different 𝑁 
are relatively stable, the highest ensemble accuracies of MNIST, CIFAR-10, and SST achieve 
when 𝑁 = 3, 𝑁 = 4, and 𝑁 = 4 respectively, and the best performance of TREC is obtained 
at 𝑁 = 3 if we do not consider the ECOC. After that, the performance of each dataset is 
gradually decreased with small fluctuations with an increasing number of meta-class 𝑁. It is 
interesting to see that N-ary ECOC for datasets with a small value of 𝑁0 always tends to arrive 
the best performance with small value of 𝑁, i.e., large class merge degree. Specifically, the 
class merge degree for MNIST, CIFAR-10, TREC and SST are 0.7 , 0.6 , 0.5  and 0.2 
respectively. 
 

 
Figure 3. Ensemble accuracies with respect to 𝑁, where the first point of each line represents ECOC 

(𝑁 = 2), the last represents ERI (𝑁 = 𝑁0) and the rest is N-ary ECOC with various 𝑁. 

However, as shown in Figure 3(b), the performance of ensemble models with different 𝑁 
fluctuates significantly on the datasets with a large value of 𝑁0. For the ECOC scheme, it only 
achieves 34.26%  ensemble accuracy on the CIFAR-100 dataset and 77.05%  on the 
FLOWER-102 dataset. For the N-ary ECOC with 𝑁 = 3, it obtains 83.52% and 59.75% on 
FLOWER-102 and CIFAR-100 datasets, respectively. Then the ensemble accuracy improves 
gradually with the increase of meta-class 𝑁  and reaches the summit with accuracies of 
87.94% and 69.94%, when 𝑁 = 95, for FLOWER-102 and CIFAR-100 datasets, and mildly 
decreases after the optimal performances. The ensemble accuracies of the ERI scheme (𝑁 =
𝑁0) on these two datasets are slightly lower than that of N-ary ECOC. Obviously, the ECOC 
fails to address the datasets with a large value of 𝑁0, while the higher ensemble performance 
of N-ary ECOC needs a large value of 𝑁 , namely, a small class merge degree. For the 
FLOWER-102 and CIFAR-100 datasets, the N-ary obtains good results after 𝑁 ≥ 75 and 
achieve best at 𝑁 = 95. In particular, the class merge degree for FLOWER-102 is 0.069 and 
CIFAR-100 is 0.05. 

In general, we conclude from the experiment that the ensemble performance is relatively 
stable for the datasets with a small value of 𝑁0, which slightly improves until the peak and 
then decreases a bit, or just slightly decreases with the increase of 𝑁 after the peak. While the 
performance, for the datasets with a large value of 𝑁0 , boosts significantly at the very 
beginning, then it saturates as 𝑁 continues increasing and reaching the optimum when 𝑁 is 



 

 
 
 
 

close to 𝑁0 . This could be explained by that the base learners with large 𝑁  has stronger 
discriminability [14]. 

Thus, our suggestions for the choice of 𝑁 are: 1) For the dataset with small 𝑁0, the large 
class merge degree strategy, i.e. small 𝑁, is better for achieving good performance, such as 
𝑁 = 3 or 4 for the dataset with 𝑁0 ≤ 10. 2) Reversely, for the dataset with large 𝑁0, the small 
class merge degree strategy should be applied, e.g. 75 ≤ 𝑁 ≤ 95 for 𝑁0 is around 100. 
 
4.3.3  Evaluation on the Effect of Base Learner Number 𝑵𝑳 
 

In this experiment, we further explore another crucial hyper-parameter of N-ary ECOC, 
namely the number of base learner 𝑁!  (also equivalent to the code length), and study its 
influence on the ensemble accuracy. We first report the ensemble accuracies of different 𝑁! 
for each dataset with the optimal meta-class number 𝑁, as described in Table 5. Then, we 
study the ensemble accuracies of different meta-class 𝑁 with respect to 𝑁! (see Figure 4 and 
5). 

From Table 5, we observe that one requires a smaller number of base learners 𝑁!  for 
datasets with small 𝑁0  than that for datasets with large 𝑁0  to reach the optimal ensemble 
accuracies generally. For example, MNIST and TREC only need 50 base learners to get the 
optimum, while SST obtains best accuracies with 60 base learners and CIFAR-10 requires 80. 
In comparison, it reaches the optimal ensemble accuracies with the help of 100 base learners 
on CIFAR-100 (note that it first reaches optimum when 𝑁! = 90). There is a special issue that 
FLOWER-102 holds a large 𝑁0 (102 classes), but only requires 60 base learners to derive the 
optimal ensemble accuracies. It is because the pre-trained model on the large-scale dataset 
(ILSVRC dataset in our experiment) is utilized and the pre-trained model already encodes a 
variety of abstractly and typically well-learned features. Moreover, we also find that the 
requirement of 𝑁! is related to the single model performance to some degree, say, the single 
model achieves better performance, then its ensemble model requires fewer base learners to 
achieve the optimal result. 

Table 5. Ensemble accuracies of N-ary ECOC with respect to number of base learners 𝑁!. 

Dataset 𝑁 # of Base Learners (𝑁") 
10 20 30 45 50 60 80 100 

MNIST 3 99.14% 99.20% 99.35% 99.48% 99.57% 99.57% - - 
CIFAR-10 4 87.45%   89.76%   91.78%   91.83%   91.82%   91.92% 𝟗𝟏. 𝟗𝟓%	  91.93% 
CIFAR-100 95 67.94%   69.12%   69.11%   69.33%   69.34%   69.46%   69.67% 𝟔𝟗. 𝟗𝟒% 
FLOWER-102 95 86.06%	  86.45%   86.45%   87.06%   87.16% 𝟖𝟕. 𝟗𝟒%   87.46%   87.59% 
TREC 3 93.80%   94.00%   95.20%   95.20% 95.60% 𝟗𝟓. 𝟔𝟎%   95.50% 𝟗𝟓. 𝟔𝟎% 
SST 4 46.74%   48.19%   49.41%   50.18%   50.45% 𝟓𝟎. 𝟖𝟔% - - 
 

In addition to the observations from Table 5, we also study the impact of 𝑁! on ensemble 
performance under different meta-class 𝑁. Obviously, the optimal number of base learners 𝑁! 
for achieving the best accuracy is related to the meta-class 𝑁, as shown in Figure 4 and 5. 
Normally, an ensemble model with small meta-class 𝑁 needs more base learners 𝑁! to achieve 
the same result compared to an ensemble model with large meta-class. It is because the 
discriminative ability of the codes for small 𝑁 is worse than that for large 𝑁. 



 

 
 
 
 

Considering the definition of ECOC, N-ary ECOC and ERI schemes, the discriminative ability 
of ECOC is worst due to its small meta-class (𝑁 = 2), which means ECOC needs relatively 
most base learners to reach the optimal performance compared with N-ary ECOC and ERI, 
where ERI holds the best discriminative ability. Thus, we conclude that 𝑁!  for ECOC is 
greater than or equal to 𝑁! for N-ary ECOC, while 𝑁! for N-ary ECOC is greater than or equal 
to 𝑁! for ERI. Note that we use “greater than or equal to” since there is no guarantee that the 
optimal 𝑁! for a small 𝑁 must be larger than that for a large 𝑁, especially for some extreme 
situations such as 𝑁 = 2  (ECOC) versus 𝑁 = 3  (N-ary ECOC) or 𝑁 = 99  (N-ary ECOC) 
versus 𝑁 = 100 (ERI) for the dataset with 100 classes (𝑁0). 

 
Figure 4. Ensemble accuracies of different values for 𝑁 with respect to 𝑁" on the image and text 

datasets, where 𝑁 = 2 is ECOC scheme, 𝑁 = 𝑁# (biggest 𝑁 in each sub-figure) is ERI scheme, and the 
rest is N-ary ECOC schemes. 

In Figure 4, the experiment results on all the datasets show similar trends that ensemble 
accuracies of larger 𝑁 converge faster than that of smaller 𝑁 as the increasing of 𝑁!, which 
means larger 𝑁 requires less 𝑁! and vice versa. For example, as shown in Figure 4(a), ECOC 
reaches optimal ensemble accuracies at 𝑁! = 100 , while N-ary ECOC with 𝑁 = 4  and 5 
optima at 𝑁! = 80 , then 𝑁! = 60  for 𝑁 = 8  and ERI peaks at 𝑁! = 55 . The patterns on 
TREC and SST datasets are consistent as CIFAR-10. Typically, such patterns are more 
distinct for datasets with large 𝑁0 (ref. Figure 4(d) and 4(e)). For instance, in Figure 4(d), the 
ensemble accuracies of 𝑁 = 10 are highest at 𝑁! = 100, 𝑁! = 95 for N-ary ECOC with 𝑁 =
30,50,75, while 90 base learners are required for 𝑁 = 95 and ERI needs 𝑁! = 85. Here we 
do not take ECOC into consideration, since it fails to improve the ensemble accuracy with 
only 34.26% . For the Figure 4(e), we see that ensemble accuracies of 𝑁 = 2, 3, 5, 10 



 

 
 
 
 

converge at 𝑁! = 60 , 𝑁 = 20, 40 , converges at around 𝑁! = 50 , 𝑁 = 60, 80, 90  at 
approximately 𝑁! = 45 and 40 base learners are needed for N-ary ECOC with 𝑁 = 95 and 
ERI to reach the optimal ensemble accuracy. 

Apart from the optimal 𝑁! for each meta-class 𝑁 to reach optimal ensemble accuracy, we 
also observe that using 15~25 base learners for ERI is good enough for datasets with small 
𝑁0 while 20~40 base learners for large 𝑁0. For ECOC, it fails with the large 𝑁0, and on the 
dataset with small 𝑁0. Although ECOC performs comparably to N-ary ECOC and ERI, it still 
needs more base learners to converge, which is different from the conclusion in [13] that 
ECOC requires 𝑁! = 10 log*(𝑁0)  on traditional classifiers. For N-ary ECOC, the optimal 
performance is highly related to the choice of 𝑁. If the choice of 𝑁 follows suggestions in 
Section 4.3.2, 40~60 base learners for small 𝑁0  are enough to achieve good performance, 
while large 𝑁0 needs around 60~100 base learners. 
 

 
Figure 5. Ensemble accuracies with respect to large 𝑁"(= 300) for three coding schemes on FLOWER-

102 and TREC datasets. 

We further extend number of base learners to 300 and experiment on the FLOWER-102 
and TREC datasets to investigate ensemble performances with the increasing 𝑁!, as in Figure 
5. From Figure 5(a), we find that the performance of ECOC improves significantly when 𝑁! 
increases, then keep relatively stable with a slight increase after 𝑁! = 100 and reach the 
optimal accuracy of 82.17% at around 𝑁! = 270. However, the best performance of ECOC 
derived by using a large number of base learners is still lower than N-ary ECOC with 𝑁 = 95 
and ERI with only 5 base learners used, which indicates that ECOC is not suitable for the 
large 𝑁0 case. For the N-ary ECOC and ERI, they obtain good scores with only small numbers 
of base learners and slightly improve to the optimal accuracy at around 𝑁! = 40. After that, 
the performance remains stable with the increase of 𝑁!  and it drops when 𝑁!  continues to 
increase, which indicates that increasing 𝑁!  monotonously has no impact on performance. 
Similar observations could be found in Figure 5(b). 

Generally, there is no concrete conclusion for the choice of the number of base learners 
𝑁!, but some helpful guidelines can be summarized for experiments: 1) The choice of meta-
class 𝑁 is more important than the number of base learners 𝑁! for the performance of N-ary 
ECOC, especially for the dataset with large 𝑁0. Since the increase of 𝑁! cannot compensate 
for the negative effects caused by a badly selected 𝑁 (e.g., 𝑁 = 10 for CIFAR-100). 2) Albeit 
the optimal number of base learners 𝑁! varies along 𝑁0, the suggested 𝑁! is in the range of 
[⌊10 log*.*(𝑁0)⌋, ⌈10 log3..(𝑁0)⌉]. For example, the optimal 𝑁! ranges in [30, 58] for 𝑁0 = 10 
and [59, 110] for 𝑁0 = 100, which aligns with the observations in our experiments. 
 



 

 
 
 
 

4.3.4  Comparison with Three Parameter Sharing Strategies 
 

In this Section, we study the effect of three different parameter sharing strategies in the 
framework of ECOC, N-ary ECOC, and ERI. Note that, for the N-ary ECOC framework, we 
only select the optimal meta-class 𝑁 of each dataset for display except for the CIFAR-100 
dataset which four different 𝑁 are chosen for display. We first study the performance of three 
different parameter sharing strategies on each tested dataset. 
 

 
Figure 6. Parameter sharing strategies in ECOC, N-ary ECOC and ERI for TREC dataset. 

From the experimental results on the TREC dataset (see Figure 6), we observe that no 
parameter sharing strategy performs better than partial and full parameter sharing strategy for 
ECOC, N-ary ECOC, and ERI. When the number of base learner 𝑁! is small, the performance 
of no share is not satisfactory. Then it improves significantly with the increase of 𝑁!, while the 
performances of partial and full share are relatively stable with respect to 𝑁!. Moreover, when 
the number of meta-class 𝑁  is small, partial share outperforms the full share and the 
performance of no share is much better than partial and full share. However, when 𝑁 is large, 
full share is better than partial share and the performance of no share is just slightly higher 
than partial and full share. 

 

 
Figure 7. Parameter sharing strategies in ECOC, N-ary ECOC and ERI for SST dataset. 

From Figure 7, we have the following observations. First, when the number of meta-class 
N is small, both partial and no share models improve significantly with the increase of 𝑁!. The 
partial share generally outperforms the no and full share except when 𝑁! is less. Second, when 
the number of meta-class 𝑁 is large, as shown in Figure 7(b) and 7(c), the performance of the 



 

 
 
 
 

three strategies are stable, and the improvement of no share is most significant with the 
increase of 𝑁!. No share strategy governs the best performance with 𝑁 = 4 while partial share 
strategy always performs best for ERI situation. 
 

 
Figure 8. Parameter sharing strategies in ECOC, N-ary ECOC and ERI for CIFAR-10 dataset. 

 
Figure 9. Parameter sharing strategies in ECOC, N-ary ECOC and ERI for CIFAR-100 dataset. 

In Figure 8, the performances of no, partial, and full share strategies are more stable. 
When the number of base learners 𝑁! is small, we see that the performance of no share is 
worst with ECOC and N-ary ECOC, and partial share performs better with N-ary ECOC and 
ERI situations. With the increase of 𝑁!, for ECOC, all the strategies improve significantly, 
partial share outperforms another two strategies at the beginning, and then no share comes 
closer to partial share and reaches slightly higher performance than partial share. For N-ary 
ECOC, partial and full share strategies do not show significant improvement, while no share 



 

 
 
 
 

improves obviously and outperforms the partially and full share despite its lower ensemble 
accuracy at the very beginning. For the ERI, all these three strategies perform stable while no 
share always performs best and the performance of full share stays the bottom. 

In the last experiment, we study the parameter sharing strategies in ECOC, N-ary ECOC, 
and ERI for the dataset with a large number of classes, as shown in Figure 9. For N-ary ECOC 
situation, we experiment on four different meta-class with 𝑁 = 10, 30, 50, 95. 

First, we observe that ECOC model with no share strategy fails to achieve satisfactory 
performance, while partial and full share strategies with the ECOC improve significantly with 
the increase of 𝑁!. Moreover, partial share always outperforms full share. 

Secondly, for the N-ary ECOC with small number of meta-class, we observe that partial 
share strategy outperforms no and full share always. No share improves most significantly and 
its performance is comparable to that of partial share with the increase of 𝑁!. The performance 
of full share always maintains the worst. With an increasing number of meta-class N, partial 
share strategy outperforms no share strategy at the beginning, but its performance is gradually 
surpassed by no share when number of base learners 𝑁! increases. For 𝑁 = 50 and 95, the 
performance of no share is comparable to that of partial share when the number of base 
learners 𝑁! is small. No share outperforms partial share with the increases of 𝑁!. Moreover, 
for the 𝑁-ary ECOC, full share strategy consistently performs worst. 

Thirdly, for the ERI model, the observations are similar to the N-ary ECOC with large 
meta-class N and the no share strategy is comparable to partial share when 𝑁!  is small. It 
always performs best when 𝑁! increases, meanwhile, the performance of full share is worst. 

Finally, we conclude that: 1) In general, for the dataset with the small number of classes, 
the performance of no share model is better than or equal to that of the partial share model, 
thus no share strategy is suggested to be chosen. 2) For the dataset with the small number of 
classes, when the number of meta-class 𝑁 is large, these three strategies perform stable. 3) For 
the dataset with a large amount of classes, when the number of meta-class is small, the 
performance of partial share model is the best. 4) For the dataset with large amount of classes, 
when the number of meta-class is large, no share strategy model outperforms partial and full 
share models in most cases. Thus no share strategy should be preferred in such a case. 5) If the 
number of meta-class is large, the performance difference between three sharing strategies is 
marginal. Then full share could be suggested due to its parameter efficiency. 

5   Conclusion 

In this paper, we mainly investigate how to effectively integrate deep learning with the N-
ary ECOC framework, also termed Deep N-ary ECOC. To achieve this goal, we give three 
different realizations. We further carry out extensive experiments to show the superiority of 
deep N-ary ECOC over existing data-independent deep ensemble strategies. 
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