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Abstract: In the latest generation of video coding standard – H.265/HEVC, the partition
of Coding Tree Unit (CTU) into CU (Coding Unit) is a very critical yet time-consuming
component. Traditional methods find the optimum partition mode for each CTU through
iterative and exhaustive search, which is a very time-consuming process and hinders its
application to  real-time video streaming scenarios.  In  this  research,  we explored and
implemented a machine learning based method to avoid the exhaustive search and to
improve  the  performance of  encode/decode  by  optimizing  the  partition  of  prediction
block  in  the  coding  unit.  Our  results  in  coding  unit  split  pattern  prediction  show a
significant performance improvement in terms of processing time. 
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1 Introduction

Following  the  previous  video  coding  standard  H.264/AVC,  High  Efficiency  Video
Coding (H.265/HEVC) has been deemed as the newest video coding standard of the ITU-T
Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group [1]. HEVC has
the  potential  to  deliver  better  performance  than  earlier  standards  such  as  H.264/AVC.
H.265/HEVC  has  introduced  a  refined  content-adaptive  approach  for  Coding  Block
Partitioning  (corresponding  to  fix-sized  macroblock  in  previous  standards),  which  has
significantly  improved  the  compression  efficiency.  However,  the  implementation  in
H.265/HEVC reference software HM explore all the possibilities in a traversal and exhaustive
manner to find the best partition and merge pattern for a specific prediction unit. It is a time-
consuming process and will be difficult, if not impossible, to stream ultra HD video contents
in real time using the new HEVC standard.

Over the past decade, machine learning has become one of the top trending information
technologies  deeply  integrated  into our  life.  With  the  ever-increasing  amounts  of  data
becoming available, it’s reasonable to believe that smart data analysis will become even more
pervasive as a necessary ingredient for technological progress.  [2]. In this paper, we utilized
the machine learning technique in Keras framework to speed up the process of encoding by
improving the partition speed of prediction block in coding block. This approach avoids the
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exhaustive  searching  process  and  effectively  speeds  up  the  coding  process  to  enable  its
application in real-time video streaming scenarios. 

2 Background

2.1 High Efficiency Video Coding (H.265)

The new standard of HEVC, or H.265, promises a 50% storage reduction as its algorithm uses
efficient coding by encoding video at the lowest possible bit rate while maintaining a high
image  quality  level.  H.265 still  uses  the  widely  accepted  hybrid  coding  framework  since
H.264,  including  intra-frame  prediction,  inter-frame  prediction  based  on  motion
compensation,  transformation,  entropy  coding,  and  quantization.  Table  1  summarizes  the
improvements of H.265/HEVC has made over H.264/AVC [3]. 

Table 1. Main Differences between H.264 and H.265

Category H.264 H.265

Partition Size Macroblock 16 × 16 Coding Unit 8 × 8 to 64 × 64

Partitioning Sub-block down to 4 × 4 Prediction  Unit  Quadtree  down  to  4  ×  4

square, 

Intra Prediction Up to 9 predictions 35 predictions

Transform Integer DCT 8×, 4×4 Transform Unit square IDCT from 32×32 to

4×4 + DST Luma intra 4×4

Filters Deblocking filter Deblocking filter, Sample Adaptive Offset

Motion Prediction Spatial Median (3 blocks) Advanced  Motion  Neighbor  Vector

Prediction  (AMVP)  for  both  spatial  and

temporal

Entropy Coding CABAC, CAVLC CABAC

2.2 CU Partitioning in HM

Coding Tree Units (CTU) and Coding Unit  (CU) are the most important  concepts  in  our
research.  The CTU is  the  basic  processing  unit  similar  to  MacroBlock  (MB) in  previous
generation of coding standards such as H.264/AVC. The size N of the CTUs is chosen by the
encoder, ranging from 16 × 16, 32 × 32, to 64 × 64, with 64x64 usually being the default.
CTU may be too big to decide whether we should perform inter-picture prediction or intra-
picture prediction. Thus, each CTU can be differently split into multiple CUs and each CU
becomes the decision-making point of prediction type. The size of the CU can range from the
same size as the CTU to a minimum size of (8 × 8). CTU corresponds to MB in previous
standards, which has a fixed size of 16x16. In the past decade, we have much higher frame
sizes to deal with since 4K production became practical. Therefore, larger macroblocks are



needed to efficiently implement motion estimation and motion compensation for these frame
sizes.  On  the  other  hand,  blocks  at  the  granularity  of  4×4  are  also  essential  to  process
prediction and transformation of small details.

As mentioned above, the CTU is further partitioned into multiple CUs to adapt to various
local characteristics. Rate-Distortion analysis is utilized to determine the optimum partition.
Such recursive procedure will be repeated for all the CUs in a CTU, as well as for all CTUs in
one fame, and finally the optimal split mode for each CU within one video sequence will be
obtained. This processing order of CUs can be interpreted as a depth-first traversing in a Zig-
Zag order in the coding tree structure as shown in Figure 1 below. Figure 2 also illustrates a
broader view of how CTU partitioning works within a frame. 

Fig. 1. Example of CTU partitioning and processing order when size of CTU is equal to 64×64
and minimum CU size is equal to 8×8. (a) CTU partitioning. (b) Corresponding coding tree

structure [4]



Fig. 2.  Illustration of CTU splits into CUs [5]

The split  pattern  of  a  specific  CTU in  the  reference  software  HM is  exhaustive  and
recursive. It means HM will calculate the rate distortion cost of every possible split pattern
(i.e., 17 combinations in total), and further compare these cost values recursively to obtain the
best split pattern based on the minimum rate distortion cost. Understandably, it is a very time-
consuming process, and it will be unrealistic to compress and transfer videos of ultra-high
definition integrating H.265 standard in a real-time streaming manner. There will be a lot of
overhead upfront that is unbearable and unfortunate to apply HEVC new standard in a broader
spectrum.

3 Literature Review

Different approaches have been proposed to speed up the coding process of H.265/HEVC.
The common goal is to avoid the exhaustive search process in coding decision making and
speed up the encoding process.  Momcilovic et  al  proposed a novel fast  Coding Tree Unit
partitioning for H.265 encoder [6]. The proposed approach decouples the requirement of any
pre-training  and  yields  a  high  adaptivity  to  the  dynamic  changes  in  video  contents.  The
proposed methodology has reduced the encoding time for  up to 65% with negligible rate-
distortion penalties. In another study the authors proposed a machine learning based method
using features that describe CU statistics and sub-CU homogeneity  [7]. Comparatively, the
experiment results can achieve 36.8% complexity reduction on average with only 3.0% bit-
rate  increase.  In  Alam’s  work  [8],  a  fast  Convolutional-Neural-Network  (CNN)  based
quantization strategy for HEVC was proposed. They utilized the contrast gain control model
to  develop  a  structural  facilitation  model  to  capture  effects  of  recognizable  structures  on
distortion visibility. Liu et al. proposed a fast algorithm based on convolution neural network
to  decrease  no  less  than  two  CU  partition  modes  in  each  CTU  for  full  rate-distortion
optimization (RDO) processing,  therefore  reducing the encoder’s  hardware  complexity  [9]
[10]. The proposed algorithm can save 63% Intra encoding time at the cost of average 2.66%
BDBR increase. A fast coding unit (CU) depth decision algorithm for intra coding of HEVC
using an artificial neural network (ANN) and a support vector machine (SVM) was proposed
by Chen et al [11]. In their methodology, machine learning provided a systematic approach for
developing  a  fast  algorithm for  early  CU splitting  or  termination  to  reduce  intra  coding
computational complexity. 

4 Proposed Approach and Experimental Settings

The procedures for splitting CTUs into CUs in the reference software HM for HEVC is
very ineffective and insufficient, thus making it unsuited for real-world streaming service. In
this study, we implemented CNN in place of the split  procedure of CTUs in the reference
software. 

4.1 Training Data Set Generation



The training and testing data consist of 13 video clips. For each video, 80% of frames are
used as training dataset and the rest 20% as testing dataset. Each frame is divided into 32 × 32
sized CTUs. For a typical frame in our experiment, it is divided into 99 CTUs. 

The luma samples for each CTU will be used as the input of the CNN, and the output of
CNN will be the split pattern/intra prediction mode. For a 32 × 32 CTU with minimum 4 × 4
CU,  there  are  altogether  17  possible  split  patterns.  The  CNN network  will  be  trained  to
generate  a  compiled  model  that  will  be  used  to  predict  the  labels  for  new  inputs,  and
exhaustive search for the optimum split patterns will be avoided. As long as comparable levels
of accuracy can be achieved, the CNN will be deemed as fully trained.

One of the most powerful and easy-to-use Python libraries for developing and evaluating
deep learning models is Keras. It wraps the efficient numerical computation libraries Theano
and TensorFlow. The advantage of this is mainly that you can get started with neural networks
in an easy and fun way. In our experiment, we use Python as the language and Theano as the
backend. 

4.2 Convolutional Neural Network Design

In deep learning, selection of optimal number of layers and neurons is also one of the
hyperparameters that can be fine-tuned. A method is to add layers until it starts to overfit the
training set. Then it is time to add dropout or another regularization method. The idea is that
once your network overfits you're sure that it is powerful enough for your task. The dropout
helps to prevent feature co-adaptation and therefore avoid over-fitting. The number of neurons
in each layer is not really sensible. Usually a bit more or as much neurons should be put on the
first layer than inputs, and the number should decrease slowly as we approach the output layer.

In our research, we tried different combinations of parameters and keep the one with the
lowest loss value or better accuracy on the validation set. We tried two possibilities of 2 and 3
fully connected layers. For 2 layers, it has 512 and 17 hidden units for the fully connected
layers. Whereas for 3 layers, it has 512, 128, and 17 hidden units for each layer. 

For the dataset that we trained, the accuracy is slightly higher for all video clips except
one when we use 2 fully connected layers versus 3 layers. Another benefit of using less fully
connected layers is less amount of execution time. In our case, average execution time for 3-
layer is 7 seconds per epoch, versus 5 seconds per epoch for 2-layer network, which results in
28% decrease of time when we choose 2-layer. Therefore, we will use 2 fully connected layers
across our experiments.

After  fine  tuning the  parameters,  we have  decided  on  the  CNN’s  structure  shown in
Figure 4 below. There are 2 main layers in the network with 1 convolution layer and 1 max
pooling layer in each main layer. Each convolution layer consists of 32 filters in the size of 3 ×
3 to extract the feature map. The activation function is ReLU across the boarder. The border
mode is set as “valid”, which means there is no padding around input or feature map. For max
pooling layer, the pool size is 2 × 2 with strides of 2 × 2. After two main layers, it comes with
the fully connected layers where the hidden units will be “flattened” and directed to the output
of 17 labels.



Fig. 1. CNN Structure

5 Results and Discussion

5.1 Max Pooling

The purpose of  max pooling is  to  down-sample  an  input  representation  to  reduce  its
dimensionality and allow for assumptions to be made about features contained in the sub-
regions binned. Max pooling is employed in our experiments for split pattern prediction after
each layer by using a 2 × 2 filter. Although the network can achieve similar accuracy either
with or without employing max pooling layer, with max pooling layer in place, it only needs
about half of execution time. Similar trends are observed in other clips, and we take one of the
clips as an example and summarize the observations in Table 2.

Table 2. Comparison of execution time for max pooling

with  max
pooling

w/o  max
pooling

time  of  each
epoch (s)

10 23

accuracy  of  30
epochs (%)

70.8 71.4

5.2 Dropout

In our experiment, dropout is applied to reduce the complexity of the model and prevent
overfitting. Also,  training will  be faster  with dropout  set.  We tuned dropout  ratios  in  our
experiments. Three different dropout ratios were  tested: 0.5, 0.25, and 0.1. Dropout ratio of
0.5 generates  the lowest  accuracy,  while dropout ratio  0.1 generates  the highest  accuracy.
Small dropout ratio obviously has higher level of computational overhead, compared to the
cases of greater dropout ratio. However,  in our experiments, such kind of cost is marginal
compared to the extra accuracy achieved. Thus, we set dropout ratio as 0.1 by taking all the
factors into account.



It should also be noted that dropout is only applied during training, and we need to rescale
the remaining neuron activations. Specifically, if 50% of the activations in a given layer is set
to zero, we need to scale up the remaining ones by a factor of 2. 

5.3 Training and Testing Results

For a typical sample video clip with 300 frames and each frame with size of 352 × 288
pixel, there will be 11 × 9 × 300 = 29700 CTUs generated by reference software HM and
available to use. Specifically, the input will be the matrix of pixel value of 32 × 32 CTU as
demonstrated in figure below. During the process of building the model, such big data set will
be split into 80/20 portion of training/test data set. Therefore, the test data set can be used to
validate the training results.

During the training process, the input data is fed into the Keras model with the parameters
configured as mentioned in the previous section. For some sample video clips, 50 iterations,
which takes roughly 25 minutes with the test machine can yield ~ 90% training accuracy. In
the experiment, the video clips of bus, mobile, tempete, and flower can quickly achieve high
training accuracy as summarized below (Figure 6). The reason is because these video clips
have relatively smooth scenes, without many variations in terms of pixel changes and ranges.
So, the model can quickly learn the relationship between the input pattern and split pattern
with relatively high accuracy.

0 10 20 30 40 50 60
0

0,2

0,4

0,6

0,8

1

1,2

flower mobile tempete bus

Fig. 2. Training accuracy of ~ 90% in 50 cycles

For the other video clips, it generally requires about 100, sometimes even 200 iterations to
achieve ~ 90% training accuracy (Figure 7). These video clips generally have more variations
and more complex scenes. Thus, it takes longer time for the CNN to adapt to these changes
and train itself to achieve a high level of prediction accuracy. 
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Fig. 3. Training accuracy of above 90% in 200 cycles

After the network is trained,  we start  to use the CNN to predict  split  patterns for the
testing data set. Most of the video sample clips achieved reasonably high accuracy of around
90% (Figure 8). Another observation is that more training data set in each video sequence will
in general lead to higher accuracy. The reason is because more frames will help the network to
adapt to the variation in the video sequence.
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Fig. 4. Comparison of testing accuracies for different sample video



In addition to the good training accuracy for split pattern prediction, the trained network
also significantly improved the speed of splitting the CTUs. The results from our experiment
indicated that, the trained model is able to predict the split pattern for a specific CTU with
over 90% accuracy within 400 microseconds, which is a significant improvement from 4000
microseconds per CTU in HM.

6 Conclusion

As discussed earlier in this paper, the CU split pattern prediction method in the HEVC
reference software is ineffective and not well-suited for real-world use cases. In this study, we
took advantage of the convolutional neural network to improve the prediction speed of the CU
split pattern. Our results demonstrated a prediction accuracy over 90% and a significant 90%
improvement  in  prediction  speed.  In  the  future,  we  are  planning  to  apply  CNN  based
methodology to replace other computationally intensive modules in H.265/HEVC encoder and
speed up the coding process of Ultra-HD video. 
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