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Abstract. Traditional air data system of airplane utilizes pitot probe for airspeed 

measurement. However, problems such as icing and bird strike will lead to failure of 

pitot probe. Airspeed display loss is rated as disastrous loss status. Airspeed calculation 

algorithm based on inertial data and movable surface positions (status of flaps and slats) 

has been studied by the Boeing Company and the Airbus Company and applied in 

airplane models of Boeing 787 and Airbus A350. Commercial Airplane of China has 

been dedicated in studying algorithm of airspeed calculation. Study indicates the 

importance of accurate lift coefficient identification for different flight configurations 

under certain attack angles. Theoretical analysis indicates the relationship of piecewise 

linearity between lift coefficient and attack angle. Based on the above relationship, 

machine learning algorithm of support vector regression (SVR) is applied to process air 

data. Furthermore, synthetic airspeed algorithm is proposed and verified.   
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1   Introduction 

Airspeed is an important air data provided in air data system (ADS) [1]. ADS, a multiple 

input multiple output (MIMO) system, measures air data of total pressure, static pressure, 

attack angle, sideslip angle, total temperature through sensors of pitot probe, static port, attack 

angle sensor, total temperature sensor, and provides data for subsystems, such as flight control 

system, flight management system, fuel system [2,3]. Accurate airspeed data is the basis for 

operation of flight control system [4,5]. However, accidents such as icing and bird strike will 

cause failure of pitot probe.  

To avoid disastrous loss status of airspeed display loss, airspeed calculation algorithm 

without total pressure data is studied, which can provide a non similar data source, as 

a supervision for pitot probe state and a substitute in case of pitot probe system (two or three 

pitot probes with voting algorithm) failure. Chen proposes an airspeed calculation method 

based on inertial navigation data and wind field data [6]. While, wind field changes rapidly 

and accuracy of data from weather forecast is not high enough. A method for Mach number 

and true airspeed calculation using data of altitude from global positioning system (GPS) and 

EAI MOBIMEDIA 2020, August 27-28, Harbin, People's Republic of China
Copyright © 2020 EAI
DOI 10.4108/eai.27-8-2020.2297157



 

 

 

 

inertial reference system (IRS) is put forward in patent [7]. However, it is known that neither 

of these two systems can give accurate altitude data with enough precision, for problems of 

positioning algorithm and accumulative error, respectively. Airspeed calculation through data 

from inertial navigation system (INS) and flight control system (FCS) exhibits acceptable 

results, reported in [8] and [9]. Up till now, mature airspeed calculation is only applied at 

advanced airplane models of Boeing 787 and Airbus A350. 

In the paper, a synthetic airspeed algorithm based on INS and FCS data is to be proposed. 

To deal with nonlinear characteristic of attack angle-lift coefficient curve, machine learning 

algorithm of SVR is to be applied. Air data from two flight tests will be used to verify the 

accuracy of the proposed synthetic airspeed algorithm. 

2   Synthetic Airspeed Modeling 

Synthetic airspeed calculation relies on Expression (1) between impact pressure qc and 

calibrated airspeed VCAS,  
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in which CS0 is the conversion ratio from Mach to Knot, PS0 is the normal atmosphere pressure, 

qc is the impact pressure, denoting actual pressure sensed by a moving creature. According to 

Expression (1), synthetic calibrated airspeed VCAS is the function of parameter impact pressure 

qc. When airspeed is smaller than 0.3 M, impact pressure qc is approximately equal to dynamic 

pressure qbar, which is defined under the condition of impressible fluid, calculated by: 
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where qt and qs are total pressure and static pressure, respectively. Total pressure qt and static 

pressure qs can be sensed by pitot probes and static port sensors. While, when airspeed is 

larger than 0.3 M, air is compressible, and impact pressure is unequal to dynamic pressure. 

Mach number will reflect the compressibility of air. The difference between qc and qbar 

increase with the rise in Mach number. However, a more accurate qc could be obtained 

through correction on qbar by Mach. 

Except for operation between qt and qs, dynamic pressure qbar can be derived through the 

following equation: 
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in which m, Nz, S, CL respect gross weight, load factor (Z-axis acceleration), reference wing 

area, lift coefficient, respectively. The above four parameters on the right of Equation (3) are 

real-time values. Gross weight change of an airplane mainly comes from fuel consumption 

and is monitored by flight management computer. Z-axis acceleration is sensed by inertial 

navigation module. Movable surface positions (status of flaps and slats) influence reference 

wing area (parameter S) and lift coefficient CL simultaneously. In the following study, given 

the multiplication relationship between S, CL, and relatively small area change of S caused by 

different movable surface positions, S is approximately regarded as a constant value. Influence 

by movable surface area is reflected in the value of CL. Patent [10] reveals that CL is modeled 

as: 
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in which CL0 is the lift coefficient with movable surfaces at 0 position when angle of attack α 

equals to 0, ΔCL is the lift coefficient increase caused by movable surfaces, CLα is the 

derivative of lift coefficient CL to angle of attack α.  

For the designed airplane (Model XXX), finite element analysis is conducted to study the 

relationship between lift coefficient CL and attack angle α. Simulation result (Figure 1) reveals 

characteristics of nonlinearity and piecewise linearity. Based on the characteristics, machine 

learning method of Support Vector Machine (SVM) is to be studied to fit the curve. 

 

Fig. 1. Lift coefficient CL when attack angle α changes from -2º to 5º. 



 

 

 

 

3   Piecewise Fitting Based on Support Vector Regression  

Common nonlinear fitting methods include cubic polynomial fit, least square fit, 

nonlinear approximation based-on neural network. SVM, a machine learning method 

developed from statistical learning theory, is widely applied in model fitting of sensor outputs 

[11,12]. SVM improves generalization capacity through structural risk minimization principle, 

solving problems such as curse of dimensionality, small-sample learning [13,14]. Advantage 

of SVM compared with other fitting methods is that SVM outputs globally optimal solution 

with good generalization capacity [15]. 

For the lift coefficient fitting problem as Figure 1, piecewise linearity function fitting is a 

simple solution, with fast computation speed. However, high fitting precision cannot be 

achieved. For methods such as polynomial fit and neural network fit, piecewise linearity may 

lead to the problem of overfitting. Therefore, machine learning method of multiple support 

vector regression machine (MSVRM) is selected as a promising method.  

Fitting principle is shown as Figure 2, in which Xi is the input vector of the ith support 

vector regression machine (SVRM), and Yi is the output of the ith SVRM [16]. According to 

the lift coefficient curve of Figure 1, attack angle input space is segmented into subspaces of 

X1, X2, Xn. Input space cover the whole input range of attack angles and subspaces do not 

intersect between each other. A SVRM is constructed for each subspace according to the 

relationship between attack angle and lift coefficient. All SVRMs have the same structure but 

with different parameters. For each SVRM, training samples are collected at corresponding 

subspace, and SVRM is trained independently to approach actual output characteristic of the 

subspace. After constructing SVRMs, the final OUTPUT Y (CL) at the entire input range (α) is 

obtained. 

   

Fig. 2. Principle of fitting based-on MSVRM. 

 



 

 

 

 

According to the theory of statistical learning, SVM is to look for the optimum separating 

hyperplane satisfying classification requirements, which results in the maximum distance 

between samples nearest to the separating hyperplane. In most cases, sample set is linearly 

indivisible, and a kernel function is selected to map the original function for nonlinear 

transformation. Nonlinear transformation : ( )x x   transforms the given samples to 

certain high-dimensional feature space. Thus, separating hyperplane is constructed in high-

dimensional feature space. A separating hyperplane can be expressed in original space as: 
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in which ω, φ(x) are n-dimension vectors, b is the threshold, ( ) respects inner product.  

The problem of looking for optimum separating hyperplane can be transferred to a 

problem of convex quadratic optimization: 
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which satisfies constraint condition: 
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in which c is the penalty coefficient and ξ is the relaxation factor.  

Penalty coefficient c reflects the degree of compromise between classification precision 

and model complexity. The larger c is, the higher fitting degree is, however, leading to higher 

complexity of SVM and the problem of overfitting. On the contrary, if c is too small, 

punishment to empirical error is not enough, leading to SVM of low complexity but the 

problem of underfitting. For the problem of lift coefficient curve fitting, penalty coefficient c 

is selected from an index series [2-12, 211]. Experiments reveal that, if c is larger than 29, 

increase of c has little effect on the performance of SVM, while complexity of SVM model 

puts too much load on computer. Cross validation tests are conducted for c value selection. 

According to test results (Table 1), when penalty coefficient c is confirmed as 25, accuracy of 

cross validation (83%) is the highest.   



 

 

 

 

Table 1.  Penalty coefficient c and corresponding accuracy of cross validation. 

Penalty coefficient c Accuracy of cross validation 

  2-12 62.3% 

  2-11 68.5% 

21 71.2% 

22 73.6% 

23 78.1% 

24 81.1% 

25 83.0% 

  25.5 81.2% 

26 79.3% 

29 79.5% 

 210 79.6% 

 211 79.6% 

 

 

To improve SVM calculating speed and the algorithm stability, an improved SVM based-

on least square method is proposed. Based on structural risk minimization principle, solving of  

 ω and b comes down to minimizing: 
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in which εe represents loss function.  

Loss function is defined as: 
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in which k, ei, λi are sample size, error, independent weighing coefficient, respectively.  

       Independent weighing coefficient λi is applied for different sample point, which means a 

major weighing coefficient is adopted for the sample point with minor nonlinear error. Then, 

the optimization problem is transferred to: 
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satisfying the condition: 
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Lagrange function is applied to resolve the above constrained extreme value problem: 
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in which αi (i=1,2, k) represents Lagrange multiplier, e is the vector expressed as 

1 2( , , , )ke e e . 

The fitting model finally obtained to conduct curve fitting is: 
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in which kernel function ( , )ik x x  is to replace mapping of inner product.  



 

 

 

 

Proper choice of kernel function is the precondition of correct recognition, which is 

conducted as: a number of common kernel functions such as polynormal kernel, Gaussian 

kernel, RBF kernel, Fourier kernel, are selected and SVM of different types are constructed; 

fitting effects in terms of calculating speed, fitting precision are compared; finally, Fourier 

kernel is selected to be the kernel function of MSVRM for the fitting of the attack angle-lift 

coefficient curve.   

Based on the study of MSVRM above, piecewise fitting is conducted as the following 

procedures:  

(1) Match values of attack angle with corresponding lift coefficient as sample couples; 

(2) Divide the attack angle-lift coefficient curve into linear regions; 

(3) According to the region division result, divide sample space into corresponding 

subspaces and train 100 sample couples in each subspace respectively; 

(4) For each subspace, based-on different kernel functions, model identification is 

conducted, and parameters of αi, b are confirmed; 

(5) To compare SVRM fitting performance with different kernel functions, another 100 

sample couples are tested to compare fitting results. Results reveal that Fourier kernel outputs 

the best fitting result. 

4   Synthetic Airspeed Calculation Based on Impact Pressure   

Airspeed synthetization based on air data (without using air pressure data) is conducted as 

the following procedures: 

(1) Transform air data of real time fuel quality, Z axis acceleration, from binary number 

to decimal number according to encoding rules of corresponding storages; 

(2) On the basis of the study in Section 3, fit attack angle-lift coefficient curve based on 

SVRM. SVRM produces expressions of lift coefficient with attack angles as input parameter; 

(3) The attack angle-lift coefficient curve is based-on the configuration with flaps and 

slats at 0 position (clean configuration). For different configurations during two flight tests 

(flight test A and flight test B), gains of lift coefficient compared with clean configuration are 

identified through data processing. The gain is also related to the difference between impact 

pressure and dynamic pressure as analyzed in Equation (2). 

Obtaining of gains of lift coefficient for different configurations makes it possible for 

airspeed estimation based on Equations (1) ~ (3), as a secondary airspeed source. Air data 

during flight test A with a high altitude of around 24000 feet (configuration 1), a low altitude 

of around 4000 feet (configuration 2) and flight test B with a mid-altitude of 150000 feet 

(configuration 3) are extracted and airspeed calculation is conducted based on the data. 



 

 

 

 

Concrete flap and slat positions for different configurations are not given here for sake of 

confidentiality.  

Figure 3(a) and Figure 3(d) illustrate measured dynamic pressure and calculated dynamic 

pressure with gains of k1 (corresponding to configuration 1) and k2 (corresponding to 

configuration 2) in flight test A, respectively. Figure 3(b), 3(c), 3(e), 3(f) indicate that 

calculated airspeeds approximate measured airspeeds respectively at steady flight stages with 

errors within 10 knots. For it is a primary study of airspeed calculation, emphasis is put on 

steady flight stage (with small acceleration). Figure 3(g) reveals ascent and descending 

processes are sharp with large acceleration, which is to be researched further.    

Figure 4(a) ~ Figure 4(g) illustrate results of airspeed calculation for flight test B. In the 

test, airplane is steady at a mid altitude and with a relatively slow ascent process. Airspeed 

calculation is conducted in both processes. Gains for slow ascent process and steady process at 

the mid altitude are k3 and k4, respectively. An obvious error exists between time from 4000 s 

to 5200 s. From flight management computer, it is known that attack angle adjustment and 

configuration variation are conducted during the period, which result in a dynamic lift 

coefficient CL. Except for this period, airspeed calculation error is within 10 knots (impulse 

noises are not considered).  

In conclusion, airspeed calculation to flight test A and flight test B as procedures 1~3 

outputs synthetic airspeeds, based on inputs from flight management computer (real-time fuel 

quality, configuration information), inertial navigation system (acceleration), with errors 

within 10 knots for steady flight stage and slow ascent stage. 

  

 

(a) Measured and calculated dynamic pressure with gain k1. 



 

 

 

 

 

(b) Measured and calculated airspeed with gain k1. 

 

(c) Airspeed calculation error with gain k1. 



 

 

 

 

 

(d) Measured and calculated dynamic pressure with gain k2. 

 

(e) Measured and calculated airspeed with gain k2. 



 

 

 

 

 

(f) Airspeed calculation error with gain k2. 

 

(g) Pressure altitude from traditional air data system. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Fig. 3. Airspeed calculation during flight test A. 

 

 

(a) Measured and calculated dynamic pressure with gain k3. 

 

(b) Measured and calculated airspeed with gain k3. 



 

 

 

 

 

(c) Airspeed calculation error with gain k3. 

 

(d) Measured and calculated dynamic pressure with gain k4. 



 

 

 

 

 

(e) Measured and calculated airspeed with gain k4. 

 

(f) Airspeed calculation error with gain k4. 



 

 

 

 

 

(g) Pressure altitude from traditional air data system. 

Fig. 4. Airspeed calculation during flight test B. 

5   Conclusion   

An airspeed calculation algorithm is proposed in the paper. To deal with the problem of 

attack angle-lift coefficient curve nonlinearity, machine learning algorithm of SVR is studied 

and applied. To verify the accuracy of the proposed algorithm, air data from two flight tests is 

utilized for airspeed calculation. Results reveal that for steady flight stage and slow ascent 

stage, errors are within 10 knots. Further study will focus on airspeed calculation of steady 

flight stages in other configurations and motion stages with large accelerations. Moreover, 

other machine learning algorithms will be studied to deal with the problem of attack angle-lift 

coefficient curve nonlinearity.  
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