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Abstract. As the core step of clustering analysis, the results of distance measurements 

will influence the clustering accuracy. The existing measurements are mostly based on 

the information about cluster features. However, the cluster features may be not 

sufficient enough and would result in losing data information about clusters containing a 

number of objects. To improve the measurement accuracy, we make full use of the 

distribution characteristics of objects in clusters, so we use the descriptive statistics and 

the Wilcoxon-Mann-Whitney rank sum test in nonparametric statistics to measure 

distances during clustering. Furthermore, a two-stage clustering is proposed to improve 

the performance of clustering analysis, from the aspects ofavoiding assuming the number 

of clusterspreliminarily, discovering clusters of arbitrary shapes andimproving clustering 

accuracy. The experiments on multiple datasets compared with other clustering 

algorithms illustrate the accuracy and efficiency of the proposed clustering algorithm. 

Keywords: Clustering analysis, distance measurement, nonparametric statistics, 

Wilcoxon-Mann-Whitney rank sum test. 

1   Introduction 

As abasic technology of data mining, clustering analysis is significant in discovering the 

characteristics of data aggregation [1]. Clustering analysis is an unsupervised method, whether 

the partitioning methods, hierarchical methods, density-based methods, or grid-based methods, 

their implicit clustering ideas are similar, that is based on the distances between objects, 

through the iterations to ensure the clustering quality. K-Means [2] adjusts the clusters the 
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objects belonging to in each iteration; DBSCAN [3] aggregates the objects that could directly 

density reachable from the core object in each iteration to generate new clusters; so their 

difference is the way to divide the objects into clusters during the clustering process. In this 

unsupervised analysis process, the main basis of assigning an object to a cluster is the distance 

measurement, including distance between objects, distance between the object and the cluster, 

and distance between clusters. K-Means divides objects into clusters based on the distances 

between objects and clusters; the judgment of directly density-reachable in DBSCAN is also 

based on the distances between objects; the clusters mergence is decided by the distances 

between clusters in agglomerative hierarchical clustering. It is obvious that the accuracy of 

distance measurement is the important basis for effective clustering. 

The existing distance measurement between objects could be divided into multiple 

methods according to the attribute types and the application scenes, such as Euclidean distance, 

Manhattan distance, Minkowski distance, Jaccard coefficient, cosine measure and so on [4-6]. 

And the distance involving clusters are mostly measured based on the information reflecting 

cluster features. For instance, K-Means and K-medoids [7] choose the mean value or a 

representative object as the feature of a cluster; they assign an object into the cluster whose 

feature is closest to it; DBSCAN and OPTIS [8] consider the core object as the cluster feature, 

and decide whether to assign an object into a cluster according to whether it is density-

reachable to the core object [9]. 

Actually, the objects in each cluster are the main factors truly reflecting cluster features, 

therefore the distance between clusters could be calculated through the distance between 

objects in the clusters, such as the minimum distance, the maximum distance, and the average 

distance. However the larger number of objects may affect the efficiency of distance 

measurement. Therefore, to improve the computation speed and scalability, Birch [10] uses 

zero moment, first moment and second moment to generate a three-dimensional vector, which 

is represented as the cluster feature to summarize cluster information and to compute the 

distance between clusters for hierarchical clustering. But it is not sufficient to describe the 

clustering information by using the representative objects or the statistics. The clusters contain 

a number of objects, and the existing cluster features represent the aggregation features of 

clusters. They would loss information reflecting the data characteristics of clusters to a certain 

extent. And distance measurement would be with a certain deviation, and thus affect the 

accuracy of clustering results. 

Obviously, the distance measurement is a core step in clustering. The effective 

information extraction to representing the data features of clusters is the key to ensure the 

metric accuracy. And it is also the key to ensure the accuracy of clustering. Therefore, 



 
 
 
 

researchers are trying to extract effective information about cluster features. [11] extracted 

some adjacent objects of centroids to summarize the cluster information. It used a group of 

representative objects, but the adjacent objects are not enough to reflect the general data 

features. [12] defined a coreset to measure distances with the idea of Birch. Although they 

choose a number of objects as the representative information of clusters, it is also insufficient 

so as to result in the information loss. The distribution of data in the clusters could reflect the 

general cluster data features. [13] has obtained the distribution features of clusters based on 

probability density function. However, this method needs to presuppose the data distribution. 

It is difficult to make a clearer assumption about the data distribution, due to the little 

knowledge about the overall information. And the incorrect assumption would result in the 

inaccuracy of distance measure and even the clustering results. 

Nonparametric statistical methods [14,15] can be used to estimate the distribution 

structures based on the data information directly, rather than based on a hypothesis about the 

specific form of the overall distribution. The Wilcoxon-Mann-Whitney (W-M-W) rank sum 

test method [16,17] is one of nonparametric statistical methods. It is always used to judge 

whether any two sets come from a same population. In the clustering process, if two sets 

represented by two clusters are considered from the same population, they could be grouped 

into one cluster. Therefore, through this method we could reserve the original cluster 

information features, analyze the dissimilarity between clusters directly based on the 

distribution features of their data, and then determine whether to merge them into one cluster, 

without the hypothesis about the overall distribution form. 

This paper will propose a new distance measurement method based on W-M-W rank sum 

test to resolve the above problems, and then propose an improved hierarchical clustering 

method to increase the clustering effectiveness. This method will need minimal requirements 

for domain knowledge to determine input parameters, discover clusters with arbitrary shape 

and improve clustering accuracy. Experiments on multiple datasets are used to verify the 

validity of the proposed algorithm. Finally, this paper is concluded. 

2   Distance measurement based on Nonparametric Statistics 

In data mining, especially in cluster analysis, distance measurement is the core of data 

analysis, its accuracy will directly affect the validity of data analysis results. There are 

multiple metric methods according to different data types, such as Euclidean distance, 

Manhattan distance, Minkowski distance, Jaccard coefficient, cosine measure and so on. 

While in clustering analysis, we will divide objects into some cluster, or group two similar sets 



 
 
 
 

into one cluster during clustering processes. These operations are based on the distance 

measurements, which include distances between objects and clusters and distances between 

clusters. Obviously, these distances are about clusters. To ensure the objectivity and accuracy 

of measurements, it is necessary to consider the distribution features of the objects in the 

clusters with little loss of data information. With this purpose, this paper will measure 

distances based on the distribution characteristics of data in the clusters. 

 

2.1   Distance between objects and clusters based on distribution characteristics 

 

In the traditional clustering methods, the distances between objects and clusters are often 

transformed into the distances between objects and cluster features. The features include the 

cluster mean values, representative objects of clusters, coresets of clusters and so on. As 

mentioned above, these single descriptive features would lose the data information of clusters 

to some extent. And the distribution characteristics of objects in one cluster could be seen as 

its general cluster features. The difference between clusters is about the difference between 

their distribution characteristics of objects. While if we want to divide an object into some 

cluster, the distance between it and a cluster is the basis of assignment. Then the distribution 

characteristics of objects in this cluster would have an impact on distance measurement and 

should be considered. 

The distribution characteristics of objects in a cluster are necessary to be considered when 

measuring distances. Obviously, the mean value as one statistical feature of a set could not 

completely reflect its distribution, while the representative also could not reflect the 

distribution characteristics of all objects in the cluster. Therefore these measure methods could 

not calculate differences between objects and clusters objectively. Sometimes the use of one 

statistic is insufficient to represent the general characteristics of data in a set after all. 

Therefore, for a more accurate and objective result, we need to divide an object into some 

cluster with the consideration of distribution characteristics of data in this cluster. The 

methods that can describe the distribution features of a set include probability distribution 

functions and descriptive statistics. It is more time consuming to compute the probability 

distribution function of objects for each cluster. While multiple descriptive statistics could 

describe the statistical characteristics of a set from different perspectives; so it could be used 

to represent its distribution characteristics. Therefore, this paper will measure the distance 

between objects and clusters based on some statistical features of a set. 

If an object belongs to a cluster, it has similar characteristics to other objects in this 

cluster. That is, the distribution characteristics of this cluster will not change significantly after 



 
 
 
 

the object is assigned into it. This paper will consider different descriptive statistics of a 

cluster when measuring distances between an objects and the cluster; and analyze that whether 

these statistics have changed significantly after the object is divided into it. We will determine 

the right cluster with the smallest change of the statistics and also below a threshold. 

In descriptive statistical analysis, the statistics such as mean, variance, and quantile can be 

used to measure the average values, central tendency and location information of data in a set 

respectively. These statistics describe the data information about position and dispersion of a 

set and actually represent the distribution characteristics of a data set. 

We begin with one-dimensional data to discuss the method of determining the 

relationship between an object and a cluster with the above descriptive statistics. Then we 

extend this method to multi-dimensional data. We will match the object and descriptive 

statistical features of the cluster in each dimension and analyze the differences between the 

object and the cluster in an effective way. 

Let 1o  is the one-dimensional object to be assigned, the existing clusters are 

1 2{ , , , }nC C C C  . The distribution feature of cluster (1 )iC i n   can be described by a 

triple , ,i i i iDF m   , where , ,i i im   are the mean value, variance and median, which 

represent the average value, dispersion and the center position of cluster iC . If the object is 

divided into iC , its distribution feature would be ' ', ', 'i i i iDF m   . And the variation of 

distribution feature could be calculated as equation (1). 

      
' ' 'i i i i i i im m          (1 )i n        (1) 

If 1o  belongs to the cluster C , its impact on the distribution feature of C  should be 

relatively small, i.e. the value of   should be the smallest and within a certain threshold. 

For instance, there are three clusters, C1={4.7, 5.1, 4.8, 5.4, 5.5, 4.4, 5}, C2={5.9, 5.2, 6, 

5.5, 5.8, 6.1, 5.7}, and C3={5.8, 6.3, 6.1, 7.1, 5.6, 6.7, 6.5}. The triples representing their 

distribution features are DF1=<4.99, 0.39, 5>, DF2=<5.74, 0.31, 5.8> and DF3=<6.3, 0.52, 6.3> 
respectively. The object to be divided is 1 5.7o  . The threshold of variation about distribution 

feature is δ=0.1.  
We could obtain the triples 1 'DF =<5.07, 0.44, 5.05>, 2 'DF =<5.74, 0.29, 5.75>, 3 'DF

=<6.22, 0.53, 6.2>, if 1o  is divided into C1, C2, and C3 respectively. Their variations on the 

distribution feature are 1 0.18  , 2 0.07  , and 3 0.19   respectively, where 2  has the 

smallest value and 2   . It can be concluded that 1o  is more likely to come from the same 

distribution with data in C2. Then 1o  can be divided into C2. 

If we extend the above method to multi-dimensional data, we need to determine the 

relation between the object and the cluster distribution feature in each dimension as described 

above. Then integrate the analysis results on each dimension to determine the cluster having 



 
 
 
 

the smallest variation about distribution feature after the object is added into it. This cluster is 

more similar to the object than others. 

Let 2o  be the d-dimensional object to be assigned, and 1 2{ , , , }nC C C C  be the 

existing clusters. The distribution feature of cluster (1 )iC i n   can be described by a d-

dimensional triple as equation (2). 

1 1 1 1{ , , } { , , , , , , }i i id i i i id id idDF DF DF m m             (2) 

During the analysis, we could calculate the distribution feature in the k-th (1 )k d 

dimension of every cluster: ' ', ', 'ik ik ik ikDF m   (1 )i n  , when 2o  is assumed to be 

divided into each cluster. In addition, the variation about distribution feature in the k-th 

dimension could be also calculated as equation (3). 
' ' 'ik ik ik ik ik ik ikm m         

 
(3) 

Then the variation in all dimensions is 1
d
ji ij   . Let C  be the cluster that 2o  is 

most likely to be assigned. Its variation value   should be the smallest and within a certain 

threshold. 
We can compute the variations about distribution feature for each cluster with the 

assumption of the object is grouped into every cluster. The cluster having the minimum 

variation value and less than the threshold is the one most matching the object in statistical 

characteristics. If all the variation values are greater than the threshold, the object is more 

likely to be an outlier. 

Then we take data shown in Figure 1 for instance to specify the method of assigning 
objects into clusters based on distribution features. The 4-dimensional object is 2o = (5.7, 4.4, 

1.5, 0.4). There are three clusters: C1, C2 and C3. Their distribution features represented by 4-

dimensional triples are as equation (4). 

 
 

1

2

3

4.99,  0.39,  5 , 3.29,  0.24,  3.3 , 1.46,  0.15,  1.4 , 0.27,  0.13,  0.2

5.74,  0.31,  5.8 , 2.83,  0.29,  2.9 , 4.3,  0.34,  4.2 , 1.37,  0.25,  1.4

6.3,  0.52,  6.3 , 3.04,  0.24,3 , 5.37,  0.48,  5.1

DF

DF

DF

        

        

       , 2.06,  0.22,  2 

(4) 

The threshold of variation about distribution features is δ = 0.8. Then we can obtain the 

new triples as shown in equation (5). 
 
 

1

2

3

' 5.07,  0.44,  5.05 , 3.425,  0.45,  3.35 , 1.46,  0.14,  1.45 , 0.29,  0.12,  0.2

' 5.74,  0.29,  5.75 , 3.025,  0.62,  2.95 , 3.95,1.04,  4.15 , 1.25,  0.41,1.35

' 6.22,  0.53,  6.2 , 3.21,  0.53,  3.1 ,

DF

DF

DF

        

        

     4.89,  1.44,  5.1 , 1.85,  0.62,  2   
   

(5) 

If we assume the object is divided into these clusters respectively. The variations with the 
former are 1 0.665  , 2 2.075  , 3 2.8  , respectively. Obviously, 1 is minimum and less 

than the threshold δ. Taking into account all the four dimensions, the object is more likely to 

be from the same distribution with data in cluster C1. So it could be divided into C1. This result 



 
 
 
 

is different from the above 1-dimension analysis, since object 2o  is described by the four 

dimensions, and its assignment is based on distribution features on all dimensions, rather than 

one dimension. 

 

Fig. 1. 4-dimensional clusters to be assigned 

 
2.2   Distance between clusters based on rank sum test 

 

The main purpose of measuring distance between clusters is to merge similar clusters into 

one cluster. The similarity in unsupervised data analysis is based on distance measurement, 

while from a statistical perspective, the objects in two clusters are similar could be considered 

that they are more likely from the same distribution. The W-M-W rank sum test method is one 

of nonparametric statistics method. It can test whether two samples are from the same 

population without too much samples and a pre-hypothesis about data distribution.  

That is, it could give a conclusion objectively. Therefore, based on the W-M-W rank sum 

test method, we will determine whether to merge two clusters through testing whether the 

objects in these two clusters are coming from the same population. If from the same 

population, they can be merged into one cluster; otherwise, the two clusters still exist as two 

separate clusters. 
For any two clusters 1C and 2C , their number of objects are 1Cn  and 2Cn  respectively. 

The number of upper limit of objects used in the rank sum test is n . When 1 2,C Cn n n , all 

objects in these clusters could involve in the rank sum test to determine whether they are from 
the same distribution; otherwise, we should take n  samples randomly from the two clusters 

respectively for the test. 

Then we will take one dimensional objects as example and describe the method of 

deciding whether two sets need to be merged through W-M-W rank sum test. If the objects are 

multi dimensional data, we need to analyze in each dimension as the method; its basic idea is 



 
 
 
 

that objects in two clustersare from the same population indicate these two groups of data are 

from the same distributionin each dimension. 
Let 1 1 2' { , , , }mC x x x   and 2 1 2' { , , , }nC y y y   be the sample sets from cluster 1C and 

2C  involved in the test, m  and n  be their object number respectively. On the basis of W-M-

W rank sum test method, we want to test whether two sets are from the same population by 

using sample information without the hypothesis of data distribution. Then we will conduct a 

hypothesis test with the sample data. If it is validated, the null hypothesis will be accepted; 

otherwise the null hypothesis will be rejected. Even though there is a hypothesis in this 

method, it is used to make a relatively objective conclusion based on data information, rather 

than to be a basis for subsequent analysis. 
We will make the null hypothesis that the sets  1 2 1, , , ~ ( )mx x x F x   and 

1 2 2, , , ~ ( )ny y y F x   have the similar distribution, without regarding to data symmetry. 

Then the problem about merging two sets could be transformed into the problem to be test: 

0 1 2 1 1 2: :H H      . This is a bilateral test problem. The null hypothesis is that the 

two sets have no significant difference, come from the same distribution, and can be merged. 

The alternative hypothesis is that the two sets having significant differences are from different 
distributions and could not be merged. During the analysis we need to mix 1 2, , , mx x x  and 

1 2, , , ny y y  together, and make these ( )m n numbers in ascending order. The rank of a 

sample is its position in this ordering sequence. In this mixed ordering sequence, let XW  be 

the sum of ranks (rank sum) of objects from 1 'C , while YW  be the rank sum of the objects 

from 2 'C . 

We use the statistics min{ , }XY YXW W for this validation problem, where XYW  and YXW  are 

shown as equation (6). XYW  is the number of samples from 2 'C  whose values are greater than 

the values from 1 'C , while YXW  is on the contrary. 

 

( 1)
2

( 1)
2

m m
XY X

n n
YX Y

W mn W

W mn W





  

  
      (6) 

If two sample sets have the same distribution, the ranks of the samples should be 

randomly mixed. While if they have different distributions, one of the rank sums should be 

greater than the other. Therefore, the rank is used to calculate the statistics, and this method 

can be used to analyze whether two sets are from the same population without the sample 

distribution. 

In addion, 2

( 1) 12
(0,1)XYW mn

mn m n
Z N

 
  . Then we can calculate the values of p with the 

corresponding m and n. This p-value is minimum significance level to reject null hypothesis 

according to the test statistics calculated by the samples[18,19]. Then for a given significance 

level α, we can obtain the analysis result of hypothesis testing through comparing p and α. If



 
 
 
 

p  , the null hypothesis is accepted, which indicates that there is no significant difference 

between data in these two clusters and they could be merged;  While if p  , the null 

hypothesis is rejected, that is, data in the two clusters are more likely to come from different 

distributions and they could not be merged. 

Figure 2 describes the specific steps of determining whether two one-dimensional sets 

have significant differences based on the above validation method. 

 

Fig.2. The process of measuring distances between clusters based on W-M-W rank sum test 

 
The time complexity of the process is 2( )O n , where n  is the threshold for the number 

of objects in one cluster involving the rank sum test method. Even if the cluster has a large 
number of objects, n  samples could be drawn randomly to constitute the data set to be tested 

for further analysis. The feasibility of this sampling method is based on the W-M-W rank sum 

test method, which is still feasible even with a small sample. Although not all of the objects 

are used to be analyzed, the random samples of objects will reflect the distribution 

characteristic to some extent. In addition, the test is based on nonparametric statistical method; 

it would take full advantage of sample data information, rather than analyze based on a 

hypothesis about data distribution. It tests whether two clusters are from the same distribution 

according to data itself. That is, it analyzes the similarity between clusters from the statistical 



 
 
 
 

test perspective. Its objectivity will ensure the accuracy of the measuring results. Although 

traditional distance metric are also based on data information and calculate distance between 

objects in the clusters. However their values of distances are not the final results of the 

measurement. They will be used to analyze whether two clusters are similar and are needed to 

be merged through the comparisons about the distance values. Therefore whether two clusters 

are similar is a relatively comparative result. Therefore, the distance measurement method 

proposed in this paper has certain advantages in the accuracy and efficiency. 

Multi-dimensional data need to be analyzed on each dimension as above. Once there is a 

significant difference to be tested in one dimension, it indicates that data are from different 

populations on this dimension. It is difficult to illustrate the objects in two clusters have 

similar features, because they are already different in one dimension. Then it can be 

determined that objects in two clusters have significant differences; and there is no need to 
merge these clusters. The time complexity of this process is 2( )O dn . 

Taking C1 and C2 in Figure 1 and another cluster C* as an example, we will illustrate the 

method determining whether two clusters need to be merged based on W-M-W rank sum test 

method. Figure 3 describes its analysis process. 

 

 

Fig. 3. Example of measuring distances between clusters based on W-M-W rank sum test  

 

Clusters C1 and C2 in Figure 3 are needed to be tested for each of four dimensions. Each 

value of p is less than the significance level α. It illustrates that these two clusters have a 



 
 
 
 

significant difference in all of four dimensions. Then it can be determined that C1 and C2 are 

from two different populations and they cannot be merged. While in the test cluster C1 and C* 

in four dimensions, the p-values are all greater than the significant level α. That is, there is no 

significant difference betweenC1 and C*, and they can be merged into one cluster. 

Obviously, our proposed method would obtain a more objective result than the traditional 

distance metrics, because it directly determines whether to merge two clusters based on the 

distribution characteristics of data, rather than based on the comparison of distance values. In 

fact, these data are from Iris dataset, and data in C1 and C* are from the same class, while data 

in C1 and C2 are from different categories. It illustrates the accuracy and validity of our method. 
 

3   A data distribution feature oriented hierarchical clustering analysis 
method 

Combined with the distance measurement method proposed above, this paper will 

propose a two-steps hierarchical clustering algorithm, so as to avoid assuming the number of 

clusters preliminarily, discover clusters of arbitrary shapes and improve clustering accuracy. 

The above distance measurement methods are the point of proposing such a clustering 

algorithm. In this hierarchical clustering algorithm, the distance metrics proposed in Section 2 

are used to divide objects to the proper clusters and determine whether to merge clusters. 

Firstly, in the first step, the idea of K-Means is used to generate a number of clusters as 

the initial clusters through dividing objects in the original data set. The generated number of 

clusters ‘k’ will be set to a larger value. Then the more similar objects would be divided into 

the same cluster. Then the idea of hierarchical clustering will be used to merge similar clusters 

in these initial clusters. The number of initial clusters is set to be a larger one, there will exist 

similar ones about distribution features among these initial clusters. Therefore in the second 

step we will merge the similar ones into one cluster so as to divide their objects into the same 

cluster. During this process, we will determine whether two clusters are similar and need to be 

merged. This operation will continue until all clusters are tested to have significant difference 

between each other, when data in different clusters are likely to come from different 

populations. Then the clustering process could stop. This two-steps hierarchical clustering 

algorithm is described as follows. 

NPSC(D, k, δ, n , α) 

Input: 1 2{ , , , }nD x x x  , dataset; 

k, the number of the generated initial clusters; 



 
 
 
 

δ, the threshold of variations about distribution features; 
n , the threshold of the number of objects in one cluster processed by rank sum; 

α, the significance level; 
Output: 1 '{ , , }KC C C  , the clustering result; 

Steps: 

(1) Generate initial clusters 

1) choose k objects from dataset D to be the initial cluster centers, then obtain 

1{ , , }t
kC C C  ; 

2) repeat 
3)  for : 1i   to n  do 
4) ( , , )iC ocd x C  ; 

5)  divide object ix  into cluster C ; 

6)  end for 
7) update the distribution features of k clusters as equation (7):  

 

1

1 1 1

{ , , }

{ , , , , , , }

j j jd

j j j jd jd jd

DF DF DF

m m   



    




1 j k                      (7) 

8) compute the objective function: 1
k
j jE DF  ; 

9) until the objective function E converges. 
(2) Merge similar ones in initial clusters 1 2{ , , , }kC C C  

1) Let 'K k ; 

2) repeat 

3) for : 1i   to 'K  do 

4) for : 1j i   to 'K  do 

5) ( , , , )i jmb ccd C C n  ; 

6)if ( 1mb  ) then 

7) iC , jC have significant difference, do not merge them; 

8) else if ( 0mb  ) then 

9) iC , jC do not have significant difference, merge them into one cluster; 

10)   end for 

11)   Let 'K  be the number of clusters after merging operations; 

12) until there exist significant differences between any two clusters. 

The time complexity of obtaining initial cluster is ( )O tkdn , where t is the iterations, k is 

the number of initial clusters, d is the dimensions of data, and n is number of objects. Based on 
the above analysis, the time complexity of the merging step is 2 2( )'O t k dn , where 't  is the 

iterations for the merge step. Therefore, this proposed two-steps hierarchical clustering 



 
 
 
 

algorithm based on nonparametric statistics has the time complexity of 2 2( )'O tkdn t k dn , 

where ,k n n  . Obviously, the proposed algorithm could be effective. The final number of 

clusters is generated based on the distribution features of data, rather than a pre-assumed value.  

In addition, the accuracy of distance metric proposed in Section 2 could ensure the accuracy of 

results generated by the proposed unsupervised clustering algorithm. 

4   Experiments 

We will choose three two-dimensional data sets and several UCI data sets, to verify the 

validity of the proposed clustering algorithm based on W-M-W rank sum test method. And we 

will compare with the following clustering algorithms: K-Means, DBSCAN, Birch, UPGMA 

[11], and Fast [12] about run time and accuracy of clustering results. The results will illustrate 

the effectiveness and practicality of our proposed algorithm. 

For the data set having marked categories, we will use external indices Purity and Entropy 
[20] to clustering to evaluate the accuracy of clustering results. Let 1 '{ , , }KC C C   be the 

clustering result, and 1{ , , }lP P P   represent the given categories of data, where 'K  is the 

number of generated clusters, and l is the number of original categories. Then Purity and 

Entropy can be calculated as: 
Purity: ' 1

1 max ( )jK
i j iNPurity n  , 

Entropy: ' 1
1 1log( log )

j j
i i i

i i

n nnK i
i jN l n nEntropy     , 

where N is the number of objects in the dataset, j
in  is the number of objects divided into the i-

th cluster which belong to the j-th category in the original dataset, ni is the number of objects 

divided into i-th cluster. The higher the purity is, the more accurate the clustering result is; and 

the lower the entropy is, the more accurate the clustering result is. Ideally, Entropy = 0.0 and 

Purity = 1.0. 
 

4.1   Two-dimensional datasets 

 

We will choose three two-dimensional graphic data sets: Aggregation, Spiral and Flame 

to verify the proposed method could discover clusters of arbitrary shapes. These datasets 

contain the similar spatial data within the same category (clusters), not only simple spherical 

clusters. They could also be visualized. Therefore these datasets could be used to validate the 

capacity of discovering clusters of arbitrary shapes. Figure 4 shows the visualized clustering 

results of three two-dimensional datasets obtained by our proposed algorithm NPSC. It can be 



 
 
 
 

seen that NPSC could identify the clusters of data, that is, it could discover clusters of 

arbitrary shape better. 

This is mainly due to the distance measurement method used in the proposed algorithm. 

It determines the similarities between clusters on the basis of distribution features of data, 

rather than simply based on the traditional distance metrics. This method could merge similar   

clusters according to the characteristics of data based on the nonparametric statistical 

hypothesis test method without the hypothesis of data distributions. And it is used in the 

second step of the proposed clustering algorithm. A number of closely similar clusters will be 

generated in the first step of the clustering process.Then clusters having similar distribution 

features discovered based on our proposed distance measurement method. And the similar 

clusters will be merged into on clusters. These characteristics make the proposed clustering 

method more suitable todiscover non-spherical clusters. 

 

Fig. 4. Clustering results of two-dimensional datasets obtained by NPSC 

 

4.2   UCI datasets 

 

Then we do clustering on the UCI datasets shown in Table 1 compared with other 

clustering algorithms, to verify the effectiveness and accuracy of our proposed algorithm. 

Table 1. UCI Datasets. 

Dataset Object 
number 

Attribute 
number 

Category 
number

Abalone 4177 8 16 

Ecoli 336 8 8 
Iirs 150 4 3 

Letter 20000 16 26 
Yeast 1484 8 10 

 



 
 
 
 

Figure 5 describes the comparison about the accuracy of clustering results based on 

evaluation indices Purity and Entropy. Obviously, NSPC obtains relatively greater Purity 

values and lower of Entropy values than other algorithms. It indicates that NSPC could obtain 

more accurate clustering results. 

 

 

Fig. 5. The comparison about accuracy of clustering results on UCI datasets. 

This is mainly due to the proposed distance measurement method, because the 

unsupervised clustering analysis determines the generation of clusters based on the results of 

distance measurement. The proposed method does not assign objects into clusters based on the 

relatively comparative distances as K-Means or Birch. It also does not dependent on the 

parameter about neighborhood radius to determine the density of clusters as DBSCAN. NSPC 

could not entirely depend on the numerical distance measurement results as traditional 

methods do. It is based on nonparametric statistical hypothesis testing method, and determines 

whether clusters are similar according to the distribution features of data. UPGMA and Fast 

have improved the problems in traditional clustering methods. However UPGMA still extracts 

cluster features based on neighboring objects, that is, it also depends on the distances to some 

extent. While NSPC draws samples in each cluster randomly during the analysis of similarity 

between clusters, these samples would reflect the distribution features of clusters to some 

extent. Fast uses the probability density function to obtain the distribution features of clusters. 

However this method needs to make assumptions about the distributions of data, and this 

assumption are more likely not to match the real data distributions. Therefore its results obtain 

lower Purity value and greater Entropy value compared with NSPC. It illustrates that our 

proposed distance metric helps to get more accurate clustering results. 



 
 
 
 

Figure 6 shows the run time comparative results between these clustering algorithms on 

the UCI datasets. K-Means has high efficiency due to its linear time complexity. NSPC has the 

run time close to Birch which is also a hierarchical clustering method. And it has a relatively 

high efficiency compared to the other algorithms. Because UPGMA needs to obtain 

neighboring objects and then calculate clustering features. Fast needs to calculate probability 

density distribution functions for clusters. These would take some time. 

 

Fig. 6. The comparison about run time of clustering on UCI datasets. 

 

Obviously, our proposed algorithm could not only obtain relatively accurate clustering 

results, but also have high efficiency. Firstly, it is due to the use of our proposed distance 

metric based on the distribution features of data during clustering. Secondly, it relies on our 

proposed two-steps clustering process. The former could help to ensure the accuracy and 

effectiveness of clustering. Because we use several descriptive statistics to represent 

distribution features of data in a cluster when measuring distances between an object and a 

cluster. It analyzes the distribution feature variations once the object is divided into a cluster. 

So it could get a more objective similarity result between the object and a cluster. We use W-

M-W rank sum test method to measure distances between clusters. It could avoid the 

inaccuracy problems when determining whether to merge clusters according to a less objective 

comparison value in the traditional metrics. It could also ensure the efficiency of clustering 

process through not using all objects in the clusters. The latter uses a two-steps process, so that 

the number of generated clusters would not depend on a pre-assumed value. It could determine 

when the clustering process is terminated through the analysis of data distribution based on the 

nonparametric statistical hypothesis test.The final number of clusters does not be relative with 

the initial number set by the parameter. 



 
 
 
 

Conclusion 

This study aims at the purpose of distance measurement in unsupervised clustering: to 

generate new and accurate clusters. So a distance metric is proposed based on descriptive 

statistics and nonparametric statistical methods. In addition, a two-steps hierarchical clustering 

algorithm is also proposed. The distance measurement method based on nonparametric 

statistics could take full advantage of the distribution features of data. It could obtain clusters 

in a more straightforward and more objective way compared with the traditional distance  

metrics. The hierarchical clustering algorithm could avoid the pre-assumed initial number of 

clusters with its two-steps characteristics; the final number of clusters does not be relative with 

the initial number set by the input parameter. It could also discover clusters of arbitrary shapes 

and obtain more accurate results due to the distance metrics: it determines the similarities 

between clusters on the basis of distribution features of data. Therefore the proposed distance 

measurement method could provide a stronger support for unsupervised clustering analysis.  
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