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Abstract. Graph learning is more and more widely used in discovering associations and mining 

relationships between data and data. Our paper proposed a discriminative graph learning for semi-

supervised learning method discriminative graph learning with low rank constraints. Traditional 

semi- supervised learning methods exist the problem of similarity between similar species is not high. 

How to improve the similarity between similar species has become a problem we need to solve in 

this field. In order to solve this problem, this paper proposed a new semi-supervised learning means, 

which mainly includes two parts: 1) Representing the local structure of the research sample by low-

rank representation, compressing similar content, and easily finding the focus of image classification; 

2) In order to improve the similarity between classes, a model that uses similarity constraints between 

the data to be classified. The proposed means is used for comparative experiments of classification 

on multiple data sets. Through experiments show that the means proposed in this paper performs 

better than traditional semi-supervised classification methods in terms of accuracy of classification. 
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1 Introduction 

With the increasing application of face recognition and image classification technology in our daily 

lives, how to extract features more conducive to classification from high-dimensional and complex data 

has become the focus of today's research [1]. Recently, because supervised learning and unsupervised 

learning have many problems in real life and cannot practical applications, researchers have combined 

supervised learning with semi-supervised learning and proposed semi-supervised learning [2]. Semi-

supervised learning is to learn the features of  known label images to extract the features that have a 

higher proportion of image classification, and classify the image data of unknown labels according to the 

learning results[3][4][5]. 

Inspired by the methods proposed by the above researchers, this paper proposes a discriminative 

graph learning with low rank constraints for semi-supervised learning. This method puts low rank 

constraints and semi-supervised learning into the same framework and expresses low rank Coefficients 

and discriminant graph learning errors refer to semi-supervised learning as two different constraints, 

which improves the similarity between classes, makes semi-supervised learning more accurate, and 

reduces the time to mark unknown label data. 

 The main contributions of this paper are: 

1) Put low-rank constraints and semi-supervised learning into the same method, and use low-rank 

representations to transform high-dimensional data into low-rank representations, so that semi-
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supervised learning becomes less computational and takes less time. 

2) In order to improve the accuracy of semi-supervised learning for the classification of unknown 

label data, a discriminative graph learning error is constructed, which improves the accuracy of semi-

supervised learning. 

2 Method description 

2.1 Low rank constraints for semi-supervised learning 

2.1.1 Low rank constraints 

Since the low rank model was proposed, the low rank model has been applied to various fields such 

as subspace learning[6], subspace clustering[7], and image processing[8][9]. The low-rank model can 

represent the sample data with a low-dimensional structure. This representation can play a role in 

eliminating the noise of the sample data to a certain extent. Compared with the method of directly 

processing the dry data by using the low-rank model to eliminate the noise of the sample data, the 

performance of this method is more prominent and increases the robustness of semi-supervised learning. 

The function of this model is: 

* 1
(1)Z E  

 The above formula 
*

represents the kernel norm of the matrix and 
1

 represents the 1l   

norm of the matrix, which is often used for data containing outliers. The model 
* 1

Z E  is a low-

rank representation model. By applying a low rank constraint to the coefficient representation matrix

Z , it is easier to find the local similarity of the training sample itself [10], and it is beneficial to 

eliminate noise interference in the sample data. 

2.1.2 Discriminative graph learning error 

In order to further enhance the accuracy of semi-supervised learning so that the method can 

maintain high performance even under noisy conditions, we propose a discriminant graph learning 

error constraint term. The constraint term is obtained by training the sample data and finding the matrix 
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nD d d R    according to the training result. The matrix D   is composed of 0 and 1. 

When only one value in a column is 1 and the other values are 0, the image belongs to this kind. For 

example, suppose  1 4Z z z  exists, where 1z belong to class 1, 2 3,z z  belong to class two, 

4z  belong to class three, then D should be defined as 
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According to D defined above, we construct the discriminant graph learning error as  

2
(2)

F
WZ D  

The purpose of constructing this constraint term is to reduce the error when classifying unknown label 

data. 



The idea of constructing this term is that we want to reduce the error in data classification of 

unknown labels as much as possible, so ideally it is
2

F
Z D , but because of the error, we construct 

the coefficient matrixW  , and the term construction is complete.  

Among them, 
2

F
 d is the Frobenius specification, which is commonly used to process data 

containing Gaussian noise. The matrix W is the coefficient matrix. 

According to the definition of the Frobenius-norm, equation (2) is equivalent to the following 

equation: 

     (3)
T
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According to the two constraints described above, the function model can be defined as 
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2.2 Optimization 

To solve the convergence of the objective function (4), we use the inexact ALM algorithm. In 

order to make our solution more convenient, the auxiliary variable J is introduced, so the objective 

function can be written as: 

    * 1, , , ,
min

. . , (5)
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According to the Lagrangian multiplier method, the Lagrangian function of equation (5) is: 
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In order to solve the above formula, the ALM algorithm that has been proposed is used to solve 

the unknown variable in iterations and find the minimum value. The approach we take is to solve only 

one unknown variable during each solution and treat the other unknown variables as constants. 

We first solve the low rank representation J. When solving J, we consider other unknown variables 

as fixed values. After K iterations, equation (6) can be written as: 

2
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The above formula can be rewritten as： 
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*
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We use the (SVT) method in the literature [11] to solve problem (8). 

To initialize W, we use a multiple ridge regression model [12]. The model consists of the quadratic 

loss and 2L norm regularization. So W can be updated as: 



2 2
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arg min (9)

W
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Ignore the variable (5) that has nothing to do with Z , the original formula can be rewritten as: 
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Find the partial derivative of the above formula about Z, and set the partial derivative equal to 0 to 

solve Z. 

Similarly, in order to solve E, we omit variables not related to E, then we can rewrite equation (5) 

as: 

21
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The solution of the above formula is proposed in [12]. When we let X AZ Y      , then 

then i-th first column in 
1kE 
  can be expressed as: 
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According to the previous analysis, we summarize the previous solution method as the following 

algorithm: 

Algorithm 1: 

Input: data set X , parameter 1  , 0Z J  , 0,E  0,W   
10

max0.1, 10     

     0, 0S R    

Output: , ,k k kZ W E   

1. While not convergence do 

 2. Updated 1kJ   using (8). 

3. Updated 1kW  using (9). 

4. Updated 1kZ  using (10). 

5. Updated 1kE   using (12). 

6. Updated 1kR  and 1kS    

  1 1 1( )k k k k kR R X XZ E        

1 1 1( )k k k k kS S Z J       



7. 1k k    

8. End while 

3. Experiments 

In the experiment, we compare the method proposed in this paper with several existing semi-

supervised learning methods such as FME, RLSR, RRPC, and SDA. So as to have a more accurate 

understanding of the performance of ours. 

First, we compared our method with several means in Extended YaleB[13]. When we set the 

training sample to 10, the comparison data is as follows: 

Table3.1 Comparison of accuracy in Extended YaleB 

Method Accuracy (%) 

FME 77.56 

RLSR 83.47 

RRPC 82.81 

SDA 74.67 

Ours 88.49 

We compared our method with several other methods in AR Face[14]. 

Table3.2 Comparison of accuracy in Extended AR Face 

Method Accuracy (%) 

FME 85.69 

RLSR 84.43 

RRPC 85.41 

SDA 74.67 

Ours 91.74 

We compared our method with several other methods in COIL20. 

Table3.3 Comparison of accuracy in Extended COIL20 

Method Accuracy (%) 

FME 69.74 

RLSR 75.26 

RRPC 65.84 

SDA 72.15 

Ours 76.12 

From the above experimental results, we can see that our proposed method has higher accuracy 

than other semi-supervised learning methods. 

4.  Conclusion 

This paper proposes a discriminant graph learning with low rank constraint for semi-supervised 

learning to classify data of unknown labels. This method designs two constraint terms based on low 

rank representation, discriminant graph learning error and iterative solution method. ALM effectively 

solves the convergence problem of the objective function, and compares it with the existing semi-

supervised learning methods on three different data sets. Through experiments we learned that the 

method proposed in this paper is better than some current semi-supervised learning methods. 
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