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Abstract. The cross-view data are very unforced to capture due to the face that different
viewpoints or data collected from different sensors are already very common in recent
years. However, cross-view data from different views present a significant difference,
that is, cross-view data from different categories but in the same view have a higher
similarity than the same category but within different views. To solve this problem, we
have developed a dual low-rank representation framework to unbind these interleaved
structures in a learning space. In addition, we consider that each cross-view sample of the
same category is from isomorphic and heterogeneous information of two interlaced
structures. Hence, we propose a powerful joint cross-view heterogeneous subspace
feature learning model. In addition, the subspace learned by our algorithm contains more
useful information and is more adaptable to cross-view data.

Keywords: Multi-view discriminative analysis, Cross-view subspace learning, Low-rank
representation.

1 Introduction

Cross-view data, which depicts the same object from multiple angles, and contains richer
classification and identification information than traditional single-view data, has been a hot
research topic in the past few years[1]-[4]. Because different views data often has some
special information, the samples of different views may be located in independent spaces. This
phenomenon makes retrieval and recognition of objects or people very difficult. Hence, the
requirements for the application of cross-view data methods are increasing.

In the past decade, many cross-view methods have emerged and achieved satisfactory
results. Most of these methods learn a view-specific projection, projecting all views into a
common or invariant subspace, where different views are represented as common or invariant
representations. The most classic method is Canonical Correlation Analysis (CCA)[5], which
establishes the relationship between two different views by maximizing the correlation
coefficient of the two views and projects it into a common shared subspace. However, CCA
can only be used in the case of two views. In order to overcome this difficulty, Multi-view
CCA (MCCA)[6] was proposed. MCCA obtains multiple view-specific transformations
between multiple views by maximizing the correlation coefficients between multiple views. In
[7], Multi-view Discriminant Analysis (MvDA) was proposed, which adds Fisher constraints
to the multi-view projection subspace to allow different views data to be projected into a
discriminative shared subspace.
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These methods usually project different views data into the same common subspace[8]-
[10], and we find that cross-view data presents two different but intertwined structures in the
original high-dimensional space, for example, a sample from cross-view data has both a class
structure representing its own semantic information and a view structure containing its view
information. The heterogeneous information brought by the view structure can affect the
performance of retrieval and recognition. Therefore, we need to reduce the variance of the
view to decompose the two structures to obtain the cross-view discriminant subspace. In
addition, the dual low-rank representation method has been widely used recently[11]-[13],
which has the ability to resist noise and makes the learned subspace robust. However, they
ignore the similarity information between different views, for example, different views of the
same sample contain part of the same feature information and unique information for each
view. Therefore, cross-view subspace learning should not only discriminate learning based on
the manifold structure of data, but also use complementary information between different
views.

In this paper, we propose a novel cross-view discriminative feature subspace learning
model called Joint Cross-view Heterogeneous Subspace Learning (JCHSL). Our algorithm
learns the low-dimensional feature subspace through the joint heterogeneous information of
different views, and adds discriminant graph variance constraints to unlock the potential
double structure of cross-view data. In summary, the main contributions of our algorithm are
composed of the following three aspects: (1) We use a dual low-rank representation to
describe the manifold structure of cross-view data in a high-dimensional subspace. By
discriminating view variance constraints, complex data is projected into a low-dimensional
subspace structure that is easy to identify and its class structure and view structure are
decomposed into each other. (2) We have designed a joint view heterogeneous feature
subspace constraint that can extract hidden view heterogeneous information from different
view data.

The other chapters of this article are designed as follows. Section II introduces the basic
theory of the algorithm. In section III, we illustrate our proposed model and its optimization
methods. The performance of the model is demonstrated through experiments in section IV,
and the conclusions can be found in section V.

2 Related works

In this section, we introduce the related works of our proposed method, which are two
different representation methods.

2.1 Ridge regression

We assume that a set of data consists of n samples  1 2, , , nX X X X  , and the

output corresponding to the sample set  1 2, , , nY Y Y Y  . We need find a regression
coefficient matrix matrix W to transform and reduce feature information for data X to touch
semantic dictionary. Then, we use label information to construct the loss function as follows:

2 2

2 2
min
W

Y WX W  (2.1)



Ridge regression is a biased regression method dedicated to collinear data analysis, which
is essentially an improved linear regression method. The linear regression model is widely
used as an empirical risk function in supervised learning. Because there is a collinear
relationship between cross-view data, we use ridge regression to obtain more stable regression
coefficients.

2.2 Low-rank representation
Giving a set of data  1 2, , , kX X X X  from k subspaces, which can be composed

of a linear combination of dictionary and sparse noise matrix as follows:

  1,
min rank

. .
Z E

Z E

s t X AZ E



 
(2.2)

in which A is a low-rank dictionary of the data. Z is the newly learned affine matrix with
low-rank constraint, and rank( ) represents the rank of the matrix. We assume the noisy data

E is sparse and handle it by 1l -norm constraint.  is the balanced parameter between linear
representation and noise. However, the traditional low-rank representation only has a certain
effect on ordinary data. For cross-view data, the data from the same view in the learned
subspace will be close to each other, greatly reducing the accuracy of recognition. Therefore,
our model uses a dual low-rank representation framework to solve this problem.

3 The proposes algorithm

In this section, we first introduce the proposed algorithm called Joint Cross-view
Heterogeneous Subspace Learning. Then, an feasible solution is obtained though iterative
method as well as complexity analysis.

3.1 Notations

We assume that there is a set of cross-view data  1 2,X X X from two views. The

samples of the i th view  1 2, , ,i i i icX X X X  is consisting of l classes, where ird m
irX R 

denotes that d is the original dimensionality of training data and irm is the number of

samples from the i th view and the r th class  ,i r ir i im m m m   . We construct

the class structure matrix m m
cZ R  and the view structure matrix m m

vZ R  to adapt

cross-view data subspace structure. Furthermore, we use the error matrix p mE R  to fit the
noisy data.

As a kind of feature subspace learning method, it is common to learn a projection matrix
d pP R  , where p is reduced dimensionality. In addition, we design three weight matrices

0 1 2, , p lW W W R  , where l is the number of classes for different categories of sample data,



to quantify cross-view feature in order to increase generalization for projection subspace.

3.2 Dual low-rank discriminative subspace learning

To the cross-view data, the samples from different views but within the same class has a
large divergence due to two interlaced structures, which are class structure and view structure.
As we discussed in section II, we adopt class structure matrix cZ and view structure matrix

vZ as two affine matrices via dual low-rank representation to describe the class structure and
view structure of cross-view data as follows:

    1, ,
min rank rank

. . ,
c v

c vZ Z E

c c v v

Z Z E

s t X A Z A Z E

 

  
(3.1)

in which d m
cA R  and d m

vA R  are the class structure dictionary and view structure

dictionary of the samples, respectively.  is the trade-off parameter.  rank  is the rank of

the matrix, and in order to solve the minimizing rank problem, we use 
 to replace

equivalently. With equation (3.1), the two interwoven structures, the class structure and view
structure, are constructed independently. However, due to the characteristics of cross-view
data, these two structures cannot be decomposed clear by unsupervised methods.

In order to our model to achieve the desired effect, we design a supervised discriminant
view variance constraint term to help class structure and view structure decomposition of the
cross-view data. Then, we promote our model as follows:
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(3.2)

where  , ,c vP Z Z is the supervised regularization term and  is the balancing parameter.

In addition, the orthogonal constraint TP P I is imposed to eliminate trivial solution and
reduce the redundancy. More specifically, we design regularization terms based on Fisher's
principle as follows:

    , , T T T T T
c v c c c c c v v v v vP Z Z tr P A Z L Z A A Z L Z A P   (3.3)

in which cL and vL are the Laplacian operator of cW and vW .  is the balance

coefficient inside the regularization term as 1. The forms of cW and vW are as follows:
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in which il and jl are the labels of sample ix , jx , respectively.  
1

c
i k jx x denotes ix

is 1k the nearest adjacency of data jx within the same class.  
2

v
i k jx x means is 2k

the nearest adjacency of the same view data jx . We design a supervised regularized view
variance term in order to make within-class samples close to each other and between-class
samples far away from each other, thereby unlocking two intertwined structures of cross-view
data.

3.3 Joint view heterogeneous feature subspace learning

In order to obtain heterogeneous information and isomorphic information between
different view data, we designed a joint view heterogeneous constraint so that the low-
dimensional subspace contains these useful information. Therefore, we propose the final
model by joint view heterogeneous constraints as follows:

     

   

 

0 1 2

2 2

0 1 1 1 0 2 2 2, , ,
, ,

2 2 2
1 2 0 * * 1

min 1 1

, ,

. . ,

c v

T TT T

P Z Z E F F
W W W

c v c vF F F

T T T
c c v v

W W P X Y W W P X Y

W W W Z Z E P Z Z

s t P X P A Z A Z E P P I

   

   

      

      

   

(3.5)

where 1 2= , ,..., im
iY Y Y Y   is a class labels matrix from i th view. The zero-mean vector

=[-1,-1,..., -1,...,-1]j T lY l R represents the j th column of iY . We use a weight matrix

0W to quantify the view-shared feature that is owned jointly by all different views. And the

weight matrices 1 2,W W are used to elicit the individual component. In addition, we use the
Frobenius norm constraint weight matrix to make our algorithm generalizable and eliminate
trivial solutions. Two parameters  and  can adjust the values of the isomorphic weight
matrix and the heterogeneous weight matrix, respectively. We also use the parameter  to
control the proportion of isomorphic and heterogeneous information in the low-dimensional
subspace.

3.4 Optimization



In order to simplify the matrix we introduce the auxiliary matrix M and use the original
data X as its own class structure dictionary cA and view structure dictionary vA . Our
objective function is rewritten as follow:
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(3.6)

We choose Augmented Lagrangian Methods (ALM) to solve the optimization problem.
However, our objective function is non-convex. We need use first order Taylor expansion to
simplify the objective function, and then use the Alternating Direction Multiplier Method
(ADMM) to solve it.

Firstly, we transform the equation (3.6) into a graceful Lagrangian form:
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(3.7)

where Q is the Lagrange multiplier and 0  and 1  are the regularization parameters.
Then, the equation is rewritten to a quadratic form via merging some terms as follows:
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(3.8)



where      
2

, , , , , = , ,
2

T T
c v c v c v

F

QP Z Z E Q P Z Z P X P X Z Z E  


     .

Similar to the conventional ALM, variable 0 1 2, , , , , ,c vP Z Z M W W W and E cannot be
addressed simultaneously, but they are solvable individually when fixing other variables. To
solve each sub-problem,  is approximated by the first order Taylor expansion. We define the
right-bottom of the variable plus t as the optimized solution at the t th time. Then, each sub-
problem at the 1t  th time is as follows:
Updating cZ :

2

, 1 ,*

1 1min
2 c

c
c t c c c t Z FZ
Z Z Z Z 

     (3.9)

where

  , , ,=2
c

T T T T T T T
Z t t c t c t t t t t c t v t tX PP XZ L Q P X X P P X P X Z Z E        and

2

2

T
tP X  . This can be addressed by singular value thresholding effectively[14].

Updating vZ :

2

, 1 ,
1 1min

2 v
v

v t v v v t Z FZ
Z Z Z Z 
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where

  , , 1 ,= 2
v

T T T T T T T
Z t t v t v t t t t t c t v t tX PP XZ L Q P X X P P X P X Z Z E          .

Equation(3.9) can be addressed in the same way to Equation(3.8).
Updating E :

  
2

1 , 1 , 11
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This can be addressed by shrinkage operator[15].
Updating P :

   1

1 2
T

T T
t n n n n

QP XZ X X X M X E   
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where we define , 1 , 1 , 1 , 1
T T

n c t c c t v t v v tZ Z L Z Z L Z     and  , 1 , 1n c t v tX X X Z Z   
for simplicity.



Updating M :
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It is difficult to solve the equation (3.13) with non-convex constraints directly on Eucildean
space. We use a gradient based approach to optimize the problem on the Stiefel manifold[15].

Algorithm 1

Input: data matrices 1 2 1 2, , ,X X Y Y , parameters , , , ,    

Initialize: 6 6 2
max max10 , 1.1, 0.1, 10 , 1, 0, 10t t          

while not converged or maxt t do

1. Optimize , 1c tZ  according to (3.9) by fixing other parameters;

2. Optimize , 1v tZ  according to (3.10) by fixing other parameters;

3. Optimize 1tE  according to (3.11) by fixing other parameters;

4. Optimize 1tP according to (3.12) by fixing other parameters;

5. Optimize 1tM  according to (3.13) by fixing other parameters;

6. Optimize 0, 1tW  according to (3.14) by fixing other parameters;

7. Optimize 1, 1tW  according to (3.15) by fixing other parameters;

8. Optimize 2, 1tW  according to (3.16) by fixing other parameters;

9. 1tP ←orthogonal( 1tP );

10. Optimize the multiplier 1tQ  ,

   1 1 , 1 , 1 1
T

t t t c t v t tQ Q P X X Z Z E         ;

11. Update the parameter  by  maxmin ,   ;

12. Check the convergence conditions   1 , 1 , 1 1
T
t c t v t tP X X Z Z E    


    ;

13. 1t t  .
end while
Output: 0 1 2, , , , , , ,c vP M Z Z E W W W

Updating 0W :
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Updating 1W :

      
12

1, 1 1 1 1 1 1 01 1 T T T T T
tW M X X M I M X Y X MW   



      (3.15)

Updating 2W :

      
12

2, 1 2 2 2 2 2 01 1 T T T T T
tW M X X M I M X Y X MW   



      (3.16)

Updating Q :

   1 1 , 1 , 1 1
T

t t t c t v t tQ Q P X X Z Z E         (3.17)

Finally, the detail process of optimization is listed in Algorithm 1. We set the parameters

max max, , , , t    and tune the trade-off patameters , , , ,     by the experiment. And

we initialize the matrices 1 2, , , , , ,c vP M Z Z E W W at random.

4 Experiments results

In this section, we evaluate the performance of our algorithm on four standard data sets.

4.1 Datasets introduction and experimental setting

The CMU-PIE Face database contains 68 different people, and each category of cross-
view face samples have 21 different illumination conditions and 9 different poses. We crop the
face images to 64 64 size. We adopt 5 poses P05, P09, P14, P27, P29 and randomly divide
the samples in each pose set into a test set and a training set. To 5 poses of the CMU-PIE faces,
we divided each 2 poses into same group, where Case1:{P05,P09}, Case2:{P05,P14},
Case3:{P05,P27}, Case4:{P05,P29}, Case5:{P09,P14}, Case6:{P09,P27}, Case7:{P09,P29},
Case8:{P14,P27}, Case9:{P14,P29}, Case10:{P27,P29}.

The COIL-100 object database includes 100 objects, a total of 7200 images, each object
obtained 72 images and these images are catched with 5 degree rotation. The object images are
cropped to 32 32 size and divided to two subsets as “C1” and “C2”.In addition, C1 contains



the images in two point of view V1  0 ,85  and V2  185 ,265  .Similarly, C2 obtains the

images in V3 90 ,175  and V4 270 ,355  .
The Extended YaleB face database consists of 16128 images, under 28 years old,

including 64 images in different illumination conditions and 9 postures.We crop the face
images to 32 32 size.We divide each person's images into four poses P1,P2,P3,P4 through
experiments, which are approximately positive, so that samples can be more relevant to our
experiments.We further partition each two poses into one group, where V1[P1,P2] and
V2[P3,P4].

4.2 Experimental results

In order to evaluate the performance of our algorithm, we have selected several classic
methods for comparison, such as PCA, LDA, LPP, LatLRR, LRCS, SRRS, MvDA, RMSL. In
addition, we use the k-Nearest Neighbor classifier for performance evaluation of the extracted
feature information by each method. To 5 poses of the CMU-PIE faces, the results of our
algorithm and comparative experiment are shown in Tables 1&2. To COIL-100 objects, we
select one from V1 and one from V2 as training set from each set of perspectives, and another

Table 1. Average recognition rates (%) of comparison methods on the CMU-PIE face dataset (Case1-5)

Methods Case1 Case2 Case3 Case4 Case5
PCA 48.81±0.73 50.89±1.00 50.50±1.14 49.07±1.04 48.36±1.33
LDA 62.48±0.78 66.31±1.33 66.76±1.67 62.16±1.44 61.27±1.35
LPP 62.40±1.08 59.25±0.02 60.17±0.03 61.97±0.14 65.72±0.11

LatLRR 65.07±1.00 65.36±1.75 66.61±1.23 62.47±1.8 63.65±3.11
LRCS 95.68±1.01 91.83±0.64 92.30±0.59 95.48±0.43 89.60±1.08
SRRS 85.31±1.02 82.04±2.12 82.33±1.03 85.22±1.08 83.37±1.12
MvDA 95.71±2.2 92.02±0.9 91.5±1.76 95.42±0.18 90.62±0.22
RMSL 97.14±0.02 92.97±0.01 93.70±0.07 97.26±0.17 91.85±0.04
Ours 98.39±0.03 93.82±0.04 94.50±0.05 98.19±0.11 92.47±0.12

Table 2. Average recognition rates (%) of comparison methods on the CMU-PIE face dataset (Case6-10)

Methods Case6 Case7 Case8 Case9 Case10
PCA 48.43±0.73 45.51±1.62 55.28±1.37 48.64±1.76 49.68±0.86
LDA 61.50±1.49 56.54±1.05 66.96±1.32 61.10±1.56 61.83±1.48
LPP 66.13±0.65 63.34±0.05 59.29±0.14 58.10±0.01 63.72±0.13

LatLRR 63.09±0.97 61.04±1.39 66.1±1.84 60.78±2.01 60.42±1.26
LRCS 89.23±0.62 95.57±1.02 87.42±0.54 90.88±0.92 90.64±0.71
SRRS 86.17±0.44 82.89±0.32 77.45±0.64 81.64±0.78 82.18±0.83
MvDA 91.03±0.19 95.32±0.18 87.32±0.17 90.86±0.23 92.38±0.21
RMSL 92.99±0.11 97.55±0.08 88.47±0.01 92.02±0.12 92.36±0.06
Ours 93.95±0.08 98.35±0.04 89.48±0.07 92.19±0.01 93.89±0.15

perspective as a test set. There are four experimental groups to evaluate the performance of all
algorithm, as shown in Figure 1. For extended YaleB faces, our experimental setup is similar
to COIL-100 objects. The recognition rates of the algorithm are shown in Figure 2.



Fig. 1. Average recognition rates (%) of comparison methods on the COIL-100 object dataset

Fig. 2. Average recognition rates (%) of comparison methods on the extended YaleB face dataset

By comparing Table 1&2 and Figure 1&2, we can observe that our algorithm is more
accurate than other traditional methods for cross-view data.

4.3 Sensitivity analysis of proposed algorithm

In this part, we will test the influences of the parameters and feature dimensionality
selected by the algorithm on the recognition results.

Our algorithm has four parameters , , , ,     . We adjust parameters  and  at the
same time. We evaluate them respectively on CMU-PIE faces Case8 and COIL-100 Case1,
and the Figure 3 shows the results. In addition, we individually adjust parameters ,  and
 . We evaluate them on CMU-PIE faces Case8, and the Figure 4 shows the results. Because
parameters  and  come from the same framework and parameters ,  and  come
from the joint cross-view heterogeneous subspace learning framework, they will affect each
other in their own framework. From the Figure 3&4, the recognition rates are hardly sensitive
to , , ,    . For the parameter  , the recognition rate has small fluctuations in a narrow



range. We can obtain almost consistent classification results in a wide range. The results
points out that our algorithm is stable to parameter selection.

(a) CMU-PIE Case8 (b) Coil100 Case1
Fig. 3. The performance of our algorithm is evaluated on the four parameters influence  , 

on CMU-PIE faces Case8(a) and COIL-100 Case1(b), where the value
from -4 to 4 denotes 4 3 2 1 2 3 410 10 10 10 110 10 10 10     ， ， ， ，，， ， ，

Afterwards, we proof the dimensionality influence of our method in CMU-PIE faces
Case8 and Coil100 Case1, and the Figure 5 shows the experiment results. From the results,
algorithm performance is not sensitive to the dimensions. For the CMU-PIE faces Case8,
classification performance increases slightly when the dimensionality goes up. Performance
reach the highest around 300. In the Extend YaleB faces Case1, classification performance
cuts down enough slightly with increasing of the dimensionality.

Fig. 4. The performance of our algorithm is evaluated on the four parameters influence  , ,   on

CMU-PIE faces Case8, where the value from -4 to 4 denotes 4 3 2 1 2 3 410 10 10 10 110 10 10 10     ， ， ， ，，， ， ，



Fig. 5. Classification rates of different dimensionality on CMU-PIE faces

Case8 and Coil100 Case1.

5 Conclusion

To solve the difficulties caused by cross-view data, we propose a joint cross-view
heterogeneous subspace learning method based low-rank constraint for image feature
extraction and recognition tasks. In detail, we have established a dual low-rank representation
framework to unlock the potential double structure of cross-view data through supervised
view variance constraints. Also, we have established a joint cross-view heterogeneous
subspace framework that combines the isomorphic and heterogeneous features of images from
different perspectives to preserve more useful information for image recognition. At the same
time, we propose a feasible solution to ensure convergence. Through experiments on three
different public cross-view datasets, compared with other methods, our method has obtained
obvious advantages.
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