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Abstract. Feature subspaces have been widely applied in image classification. However, majority 

conventional subspace learning models are supervised，the data containing only partial labeled 

samples will lead to unsatisfactory classification results in practical applications. To address this 

problem, in this paper, we design a graph semi-supervised feature subspace model named low rank 

sample reconstruction-based semi-supervised feature subspace learning, which combines graph-

based semi-supervised learning and low lank sample reconstruction into a unified framework. The 

proposed model implementing low rank constraint on representation coefficient, exploits the graph-

based label propagation algorithm to predict the unlabeled labels to obtain the labels of all samples. 

The experimental results demonstrate that the robustness and the classification efficiency of our 

model. 

Keywords: Image classification; Subspace learning; Graph semi-supervised learning; Low Rank 

Sample Reconstruction; 

1   Introduction 

High-dimensional data brings difficulties to image processing, so that how to eliminate redundant data 

in high-dimensional data becomes a crucial problem to be solved in pattern recognition [1] and computer 

vision [2]. Dimension reduction can effectively improve performance and efficiency, whose purpose is 

to eliminate redundant information to enhance the recognition speed. Subspace learning have been 

extensively used to dimensionality reduction methods and achieved impressive performance. As the 

unsupervised subspace algorithms, Principal Component Analysis (PCA) aims to seek a subspace whose 

projection sample has the most massive variance [3]. Meanwhile, Linear Discriminant Analysis (LDA) 

is an effective method in the supervised subspace learning [4], in which it captures the features with the 

largest discriminative low dimensional features from high dimensional data, so that the ratio of the 

dispersion between samples and the dispersion within samples is the largest. Locality Sensitive 

Discriminant Analysis (LSDA), as a further extension of LDA, aims at preserving the discriminant 

structure and local geometry of the data [5]. 

Low-rank representation model (LRR) is introduced for learning valid features from data containing 

redundant information and mining potential manifold structures. In this decade，LRR has been widely 

applied to dictionary learning[6], transfer learning[7], [8], domain adaptation [9]. In recent years, 

particularly, several improved LRR-based subspace models have been proposed. For instance, a subspace 

clustering approach about low rank structured representation was proposed by Yao et al. [10]. In order to 
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make the clustering more robust, this method applied the global structure to obtain the low rank 

representation and generated low rank structure to extract the neighborhood construction. Other LRR-

based feature subspace learning models with outstanding performance can be referred to [11], [12], [13]. 

Most subspace models with the impressive performance are supervised. However, in many practical 

problems, only a small number of labeled data are available, it caused weak discrimination. Several semi-

supervised models for feature subspace have been presented in recent years. The semi-supervised 

discriminant analysis (SDA) was proposed by Cai et al. [14], in which the method improved the 

discriminant ability of the model through labeled samples and explored manifold structure through 

unlabeled samples. Flexible manifold embedding (FME) is a semi-supervised learning framework [15], 

in which semi-supervised dimension reduction is performed by using the manifold structure of unlabeled 

sample and information of the labeled sample. Chen et al. proposed the method named rescaled linear 

square regression (RLSR), which make the feature selection model solve the optimal projection matrix 

under global and sparse conditions [16]. 

Inspired by the above semi-supervised model, a semi-supervised model named low rank sample 

reconstruction-based semi-supervised feature subspace learning is proposed in this paper. The core idea 

of our model is to combine label propagation and feature subspace learning to obtain better classification 

results. 

The key contributions of the proposed model can be summarized. 1) we proposed a novel semi-

supervised feature subspace learning model, which integrates the LRR model, label propagation, and 

feature subspace learning. The coefficients of LRR simultaneously constrain the prediction of label 

propagation information and feature subspace learning. 2) Our designed optimization solution applies 

the Lagrange multiplier [17] to calculate the objective function and guarantee its convergence. 3)We 

compared different traditional semi-supervised methods to conduct the experiment by using three 

publicly available datasets and two different classifiers (KNN and SRC). Numerous experiments results 

show the effectiveness of our model. 

The other section in the paper is arranged as follows. In the second section, we briefly introduce graph-

based methods and sample reconstruction constraints in related work. And then, in the third section, we 

introduce the proposed semi-supervised learning method in detail and listed the solution process of the 

objective function. In the fourth section, we evaluate the proposed method through comparative 

experiments and parameter analysis with traditional methods. Finally, the conclusion is presented in the 

fifth section. 

2   Related work. 

2.1   Graph-based methods 

Graph-based methods have excellent potential because of their diverse structures that can represent 

similarities between samples. In graph-based methods, given a weighted graph ( , , )G X E W= , where 

 
1

n

i i
X x

=
=  represents the vertex set. And, W is the weight of the undirected edge set ( )= ,i jE x x . Then, 

the graph-based algorithms will be defined as: 
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where ( )i ig g x=  is the loss function, which is required to be smooth the entire graph and ijW  is the 

coefficient of the weight matrix W . By Gaussian kernel function, W  is calculated as follows: 

                         ( )2

2
expij i jW x x= − −                                (2) 

The labels of unlabeled samples are predicted by the connection between unlabeled samples and labeled 

samples. The graph-based objective function can be written as follows: 
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Where 
iy  denotes the predicted labels. The labeled information is transmitted by the similarity between 

vertices. The more extensive similarity between the sample vertices, the labeled information is more 

easily propagated. More methods about graph-based can be reference at [18], [19], [20]. 

 

2.2   Sample reconstruction constraint 

 

The sample reconstruction constraint based on the core of the Fisher criterion is modeled to eliminate 

noise interference [21]. Assuming  1 2, , , nX x x x= is the training set, Z  is representation coefficient 

matrix, the reconstructed constraint item obtained from sample self-representation X XZ=  as follows: 
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s t X XZ E P P I

= −

= + =

                 (4) 

Where P   is feature subspace, which is an orthogonal matrix to reduce redundant information.

( )T

bS P XZ  and ( )T

wS P XZ  denotes the inter-class and within-class scatter divergence matrix, ( )Tr  

denotes the trace. Since Z   is non-convex, adding a relaxation term to the constraint term can be 

expressed as: 

     
( ) ( ) ( )

2 2 2

,

. . ,

T T T

u u vF F F
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          (5) 

Where I   is an identity matrix, 
uD   and 

vD   are two constant-coefficient matrices, and    is 

regularization parameter. In detail, ( ), 1u kB i j n=  , when ix   and 
jx   belongs to the same class. 

Otherwise, ( ), 0uB i j = . 

3   Our model 

The proposed objective function and its detailed description are presented in this section, and we also 

design the optimal scheme to solve the objective function by using Lagrange multiplier method. 

 

3.1   Proposed method 

 



 To identify the noisy information in the original samples and obtain the robust subspace, we implement 

low rank constraint on representation coefficient. Meanwhile, the low rank constraint is used to predict 

the labels of unlabeled samples during the graph-based label propagation process. The low rank 

constraint can effectively eliminate the noise component in the sample. Moreover, the reconstruction of 

samples can further explore the nearest neighbor relationship, which makes the different classes of 

samples far away from each other and improve the discriminability of the model. The objective function 

with low rank representation constraint can be obtained: 
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where 
*

Z  denotes the nuclear norm of Z . 
1  and

2  denotes two regularization parameters. 

Next, by integrating graph learning and low-rank reconstructed subspace learning into the same 

learning framework，we extend the semi-supervised method to feature subspace learning. In the graph 

propagation algorithm, the similarity between the two samples is constrained by low rank representation 

coefficient. The final objective function we can obtain as followed: 

           ( ) ( )( )
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where  1 2= , ,..., mB B B B denotes the matrix with all the label vectors of unlabeled samples and labeled 

samples. =[-1,...,-1,1,-1,...,-1]T C

iB R  is the i-th column of B . The c-th element of 
iB  is 1 and the 

other elements is -1 when 
iB  belongs to c  class.  0,...,0,...,0

T C

jB R=   is the label vector of j

-th unlabeled sample. F  represents the learned label matrix through the similarity measure with B . In 

equation(7), the first two items learn the complete label information through label propagation, ijZ  is 

used as similarity weights to constrain the relationship between two labels, we also introduce a non-

negative constraint on Z  as the non-negative regularization parameter. 

We have described the graph-based semi-supervised approach and low rank reconstructed subspace 

learning jointly. Next, we will introduce the optimal scheme. 

 

3.2   Scheme 

 

Since the minimization for all variables is not a convex problem, we design a solution based on 

alternating iteration. Aim at relaxing the issue of minimization, we introduce two auxiliary variables R

and J . The Eq. (7) can be rewritten as:  



          ( ) ( )( )
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Next, the Lagrangian function in Eq. (8) can be obtained as the following form: 
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Furthermore, Eq. (9) can be converted into the compact form: 

( )

( ) ( )( )
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Finally, the minimized problem of Eq. (7) can be rewritten as: 
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We use an iterative method to solve each variable. At the k-th iteration, variables other than F  are 

fixed, and the objective function formula for F  is: 

          ( )
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To simplify the solution, we convert Eq. (12) to the following form: 
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2 21 1

min
2 2

T k T

FF F
F P X F U Tr FLF− + − +               (13) 

where L D R= −  presents the matrix of graph Laplacian, D  denotes the diagonal matrix 

( * *

2
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ii

R R
D

+
=
  ).Eq. (13) can easily solved by setting the derivative to 0: 
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Then, we update the objective function about eliminating the terms irrelevant to P :   
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1
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2

T T T T

u u vF F F Fp
F P X P XZ I D P XZ D D P XZ − + − − − + (15) 

Due to the orthogonal constraint is contained in Eq. (15), the derivative can be obtained firstly:  
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           (16) 

Up to now, Eq. (16) can be solved regarding the methods in [22]. 

After fixing the variables independent of J  in Eq. (10), we can obtain: 

                     

2

2min
k

k

J

F

Y
J Z J

 

 
− + + 
 

                        (17) 

Eq. (17) is a classical rank minimization problem by using existing technology to solve [23]. 

Removing the terms irrelevant to R , we obtain: 
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The Eq. (18) can be rewritten as: 
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where 1kS +
 is a matrix consists of

2
1 1 1

2

k k k

ij i jS F F+ + += − . Eq. (19) can be transformed as follows: 
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                     (20) 

Eq. (20) can be regarded as the non-negative weight 
1l  -norm minimization that can be solved 

efficiently in [24]. Then, after solving the auxiliary variables J  and R , the variables other than Z  

are fixed, and the objective function for Z is: 
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The solution can be obtained simply by derivation. 

Finally, we express the objective function about the error matrix E  by fixing other variables: 
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Through defining 
1 1=

k

k Y
X XZ



+ − + , the i -th column of 
1kE +  is presented as: 
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We describe the detailed information of our scheme in Algorithm 1 



Algorithm 1 

Input: training set X  , label U  , 0Z R J= = =  , 0E =  , 
1 2 3 0Y Y Y= = =  , 

0.6, =
10

max 10 = , 1.1 =  

Output: F , P    

While not convergence do 

1. Update 1kF +  using (12) 

2. Update 1kP +  using (15); 

3. Update 1kJ +  using (17); 

4. Update 1kR +  using (18); 

5. Update 1kZ +  using (21); 

6. Update the 1

1

kY + , 1

2

kY + , 1

3

kY +  and  ; 

      ( )1 1 1

1 1

k k k kY Y X XZ E+ + += + − −  

      ( )1 1 1

2 2

k k k kY Y Z J+ + += + −  

      ( )1 1 1

3 3

k k k kY Y Z H+ + += + −  

( )1 1 1

4 4

k k k kY Y Z R+ + += + −  

  ( )maxmin ,  =  ; 

end while 

 

4   Experimental results and discussion 

 

4.1   Experimental results 

 

We choose 3 datasets to verify the method in the experiment, respectively named Extended YaleB, 

COIL20, and USPS in this section. According to the experimental criteria of the semi-supervised model, 



half of the whole samples were labeled and the rest of samples were not labeled. The detailed description 

of the dataset is shown below: 

Extended YaleB   Extended YaleB was photographed under a variety of controlled lighting conditions, 

including totally over 2, 000 frontal faces images. Part of its frontal face image is shown in Fig 1(a). 

Each image is adjusted to 32 32  pixels. For each class, we choose 32 face images for each class and 

half of the facial images as training samples randomly, and the others were chosen as test samples in our 

experiment. 

COIL20   The COIL20 contains 20 objects, each of which is rotated 360 degrees horizontally to take 

an image every 5 degrees and 72 images of each object. We cut the size of the image data to 32 32  

before the experiment as shown in Fig 1(b). 10 face images are chosen as training samples for each class. 

USPS   USPS database is a database for digital handwriting recognition. There are 9298 images from 

zero to nine in the data set. For our experiment, the whole images are 16 16  gray pixel values, which 

have been normalized. As shown in Fig 2(c), 10 images of per digit are selected for training and the 

others are test data. 

  

  (a)                                             (b) 

 

(c) 

Fig 1. Sample images. (a) Extended YaleB, (b) COIL20, (c) USPS 

Two representative methods of feature subspace learning and several novel semi-supervised approaches 

are chosen for comparison in experiments, including PCA, LDA, FME, RLSR, and SDA. To ensure that 

the experiment does not lose its generality, we use sparse representation classifier (SRC) and K nearest 

neighbors (KNN) to verify all methods on the test set. All experiments were performed 5 times to 

calculate standard deviation and mean as shown in Table 1 and 2. It is noted that, in Table 1 and 

2,"Unlabeled" and "Test" represent the test sequence of the data with no labeled part of the training set 

and the testing set in our experiment. 

Table1.  The classification results of experimental datasets with KNN (%) 

Methods 

    Extended YaleB             COIL20        USPS  

Unlabeled Test Unlabeled Test Unlabeled Test 



PCA --- 70.38  0.69 --- 84.19  0.45 --- 70.20  1.36 

LDA --- 85.75  0.63 --- 84.23  1.82 --- 78.12  2.30 

FME 79.84  1.42 84.12  1.32 77.53  1.87 73.26  1.41 75.78  2.83 64.52  2.13 

RLSR 75.78  1.84 76.42  1.32 82.84  2.24 81.86  1.85 67.79  3.52 70.52  3.28 

SDA 80.95  1.65 77.15  1.23 76.85  2.97 73.51  2.28 63.54  3.23 63.98  2.13 

Ours 80.95  1.65 86.39  1.91 84.28  1.86 85.33  1.24 76.99  2.62 71.26  1.77 

 

Table2.  The classification results of experimental datasets with SRC (%) 

Methods 

    Extended YaleB           COIL20       USPS 

Unlabeled Test Unlabeled Test Unlabeled Test 

PCA --- 80.68  1.42 --- 70.58  1.86 --- 77.10  1.51 

LDA --- 85.5  1.05 --- 66.0  2.74 --- 78.9  2.56 

FME 78.35  0.35 81.54  1.88 73.25  3.29 68.86  1.68 75.43  2.35 75.20  1.52 

RLSR 83.34  1.26 84.55  1.35 76.08  3.57 65.91  2.45 75.86  3.56 75.84  2.41 

SDA 84.98  0.54 81.23  1.29 72.17  2.35 74.65  3.14 72.89  2.34 71.52  1.61 

Ours 86.67  1.53 84.99  0.89 78.27  1.46 75.52  3.16 79.23  2.82 79.98  2.94 

 

Compared with the comparison method, the method we proposed shows better performance on all 

datasets. Furthermore, the experimental results under both classifiers show that our proposed approach 

has more robustness and effectiveness than other methods. 

 

4.2   Discussion on parameters and convergence 

 

In our model, there are three regularization parameters 1  , 2   and   . The COIL20 dataset was 

selected to discuss the effects of changes in these three parameters on the model performance by KNN 

classifier and the classification rate curve with the changes of parameters was drawn in Fig 2. It can be 

indicated from the figure that as the 1 , 2  and   change within a certain range, the classification 

rate does not change significantly. The fluctuation of the classification rate shows the performance 

stability in our model.  



        

(a)                                          (b) 

 

  (c) 

Fig 2. Classification results versus variational (a)
1 (b)

2 (c)  

In order to prove the convergence of the proposed method, we select Extended YaleB and used KNN 

classifier to draw the convergence curve with the increase of iterations. The convergence curve in our 

model can rapidly converge and the convergence curve will be stable within 50 iterations as shown in 

Fig 3. 

 
Fig 3. Objective function values versus iterative steps. 
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5 Conclusion 

In this paper, we propose a semi-supervised subspace learning model based on low rank sample 

reconstruction. To obtain complete label information in incomplete labels and improve the robustness of 

the model, we jointly learn low rank sample reconstruction and graph-based semi-supervised learning. 

To calculate the objective function and ensure its convergence, we designed an optimization solution. 

Model optimization can be achieved during iterative processing. We conduct comparative experiments 

with some classical feature subspace methods and other novel semi-supervised approaches on Extended 

YaleB, COIL20, and USPS and perform analysis experiments on the convergence and parameters of the 

model. Experimental results indicate that the effectiveness and robustness performance of this model is 

superior to other methods. 
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