
A Three-party Repeated Game Model for Data
Privacy in Mobile Edge Crowdsensing of IoT

Mingfeng Zhao1[0000−0002−1629−5793], Lei Chen2[0000−0002−3919−8056], Jinbo
Xiong1[0000−0001−9985−1953], and Youliang Tian3[0000−0002−5974−1570]

1 Fujian Provincial Key Laboratory of Network Security and Cryptology, College of
Mathematics and Informatics, Fujian Normal University,

Fuzhou 350117, China, zmf1900953654@163.com, jbxiong@fjnu.edu.cn
2 College of Engineering and Computing, Georgia Southern University,

GA 30458, USA, lchen@georgiasouthern.edu
3 State Key Laboratory of Public Big Data, College of Computer Science and

Technology, Guizhou University, Guiyang 550025, China
youliangtian@163.com

Corresponding author: Jinbo Xiong (jbxiong@fjnu.edu.cn)

Abstract. The low request response delay of mobile edge crowdsensing
(MECS) paradigm allows quick interactions among entities in practical
scenarios. However, there often exist dishonest behaviors in such interac-
tions, and the personal information leakage involved seriously threatens
the privacy and security of sensing users. To tackle this problem, previ-
ously we had proposed a non-repeated three-party game model, without
the consideration of multiple interactions in the actual scenario. Based
on game theory, this research therefore proposes a three-party repeated
game model. Specifically, we propose the corresponding social norms for
different phases of sensing data. It analyzes all possible behaviors de-
viating from rationality, calculates the change of corresponding payoff
function, and explores the influencing factors and constraints of players’
honest behaviors based on the premise of maximizing interests. Finally,
a significant number of simulations and numerical analyse indicate that
the proposed model is feasible and effective in maximizing the benefits
of game participants.

Keywords: Privacy protection · Mobile edge crowdsensing · Game The-
ory · Three-party repeated game model · Nash Equilibrium.

1 Introduction

In recent years, the popularity of wireless mobile and 5G terminal devices is
growing explosively [21, 18, 30]. Smart phones, wireless Bluetooth wearable de-
vices and other integrated sensors are becoming more abundant, making them
capable of powerful sensing and computing [35, 32]. Based on this background,
a paradigm MCS, mobile crowdsensing, has emerged [42, 22]. In MCS, a large
number of mobile users who carry the afore mentioned IoT intelligent terminal
equipment as the basic sensing unit interact with the sensing platform with the
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help of wireless sensor network to realize the collaborative work of task distribu-
tion and data collection [35, 28], so as to complete the large-scale and complex
social sensing tasks under various scenarios [33]. Meanwhile, with the devel-
opment of 5G base stations, the throughput of real-time data communication
and link bandwidth would be greatly improved. Nowadays, we are committed to
building a smart city paying more attention to strong interactions with high real-
time requirements, such as intelligent transportation systems [12], crowdsourced
bus service [6], connected autonomous vehicle service [4, 5, 39], and mobile health
system [40, 31]. This promotes the emergence of the MECS paradigm [36], which
includes sensing users, edge nodes and cloud service providers. By introducing
the concept of mobile edge computing (MEC) [2, 34], it solves the communica-
tion bottleneck of traditional cloud computing. In an MEC, a large number of
scattered edge nodes with different application services use their edge attributes
closer to the client, combined with certain computing and storage capacity, to
carry part of the functions of the remote cloud server [17].

On the other hand, the explosive growth of the number of intelligent IoT
devices has also brought massive multi-dimensional and heterogeneous source
data, and the sensing activities of multi-user collaboration may also expose their
social association attributes and other privacy information. Specifically, on the
one hand, the sensing user will choose the task published by the edge node, and
upload the data collected from the real-time sensing activity to the edge node
to obtain the task reward. In this process, there exist risks of user privacy leak-
age, such as sensing data ownership migration and adversary attacks that may
be encountered in the process of data transmission. At the same time, as semi
trusted and resource constrained entities, edge nodes may also have potential
active disclosure behaviors and node attacks. On the other hand, in the process
of the transaction between the edge node and the service provider, the data own-
ership has been migrated again, and the cloud service provider, as an untrusted
platform, may actively disclose the user’s private data to adversaries exchange
benefits. Therefore, it is urgent to solve the problem of user data privacy leakage
in MECS network. The center of big data privacy protection is privacy protection
technology.

The current work can be divided into: data distortion (focusing on differential
privacy technology), data encryption (such as homomorphic encryption, secure
multi-party computing, functional encryption, etc.) and restricted publishing
(focusing on data anonymity). As another hot field in the background of big
data, artificial intelligence can effectively drive the level of privacy protection,
while reducing the risk of privacy leakage in the application process with the
help of privacy protection technology. [38] is a good example as it integrates the
concept of game theory. However, it lacks the consideration of possible multiple
interactions between entities in the actual scene over a period of time. In game
theory, there are important differences in the nature of players in dealing with
short-term and long-term relationships. A tacit or cooperative relationship that
is difficult to form in the short term can constrain each other’s behaviors through
long-term potential retaliation, sanctions and other threatening behaviors, as
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shown in the work of [24], [26]. However, most of the existing work focuses on
the long-term behavior relationship between the two entities. Therefore, in order
to deal with data privacy of users in MECS network, this paper aims to build
a repeated game model for three-party entities, in order to find the influencing
factors and constraints that regulate the benign behaviors of multi-party entities
in MECS. The main contributions of this paper are summarized as follows:

– Build a repeated game model based on three-party entities, and analyze the
deviation behavior and payoff change among players in multiple phases of
the sensing data life cycle.

– On the premise of maximizing benefits, identify the influencing factors and
constraints of honest behaviors of players in different phases of MECS.

– Through a large number of simulation experiments and numerical analyse,
the proposed three-party repeated game model is proofed feasible and effec-
tive, suitable for MECS paradigm.

The rest of this paper is organized as follows. Section 2 introduces the related
works. Section 3 gives the preliminaries. Section 4 describe the proposed repeated
game model in detail. Section 5 discusses the experimental results and theoretical
analysis of the proposed model. Section 6 gives a summary of the research.

2 Related Works

As mentioned above, in the mobile edge group intelligence perception network,
user privacy threats caused by perceived data leakage have attracted many schol-
ars to conduct relevant research.

On one hand, the work mainly focuses on the application of cryptography
and block chain technology. The method based on cryptography, the scheme de-
sign and construction of data encryption, anonymity, disturbance, aggregation
and other aspects can be carried out. Blockchain technology provides verifica-
tion support and portable management for data security sharing, high reliability,
tamper resistance and so on [23],[19],[29]. In the intelligent perception paradigm
of mobile edge group based on the background of Internet of things, mobile edge
computing is one of the core technologies supporting the architecture, which
meets the needs of low latency and fast corresponding service requests of In-
ternet of things applications. Li et al. [16] proposed a privacy data aggregation
scheme for mobile edge computing to assist Internet of things applications, which
not only guarantees the data privacy of terminal equipment, but also provides
source authentication and integrity check, saving half of the communication cost
compared to the traditional schemes. Considering the problem of data privacy
protection in the process of collecting personal information, a protection algo-
rithm based on differential privacy model is proposed in [15], and a time window
partition and a dynamic network community discovery algorithm is designed to
reduce the differential privacy noise. With the help of layered sampling, the time
cost and cumulative errors are reduced. Experiments show that the algorithm
can keep the important structural features of the original network graph on the
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premise of satisfying the differential privacy protection model. In addition, users
mainly collect sensor data through intelligent Internet of things devices equipped
with sensors. In view of this, many methods to protect the privacy of intelligent
terminal devices have been proposed. Blasco et al. [3] put forward a three-layer
method to protect the privacy of citizens in order to solve the problem that
personal privacy is easy to be mined and attacked due to the need of smart city
services to access sensitive data of users [13, 14]. By combining the first layer and
the second layer of homomorphic public key encryption, local data collection is
safe, and the third layer adds differential privacy to control the spread of public
information.

When users enjoy personalized services provided by various context aware
applications, their sensitive information hidden in the context is exposed. Zhang
et al. [41] designed a privacy protection deception strategy based on the pas-
sive defense strategy for most of the current mechanisms. They proposed a new
technology: FakeMask, essentially a privacy check algorithm that can adaptive-
ly release a fake context according to the current context of the user, greatly
limiting the adversary to infer the actual context. Experimental evaluation and
scheme comparison in real smartphone environment show that FakeMask has
outstanding performance.

On the other hand,from the perspective of game theory, through modeling
and analyzing the behavior game between players, we can solve the prisoner’s
dilemma and other problems. In MECS network, many application scenarios
involve different entities with multiple target conflicts. The process of conflicts
is actually the choice and game of the best strategy, and the ultimate goal is
to maximize their own interests. At present, game theory has been successfully
applied in many representative communication and network scenarios, such as
defenses against DoS attack in wireless network [1], data privacy protection in
social networks [20] and privacy protection model in transportation systems of
IoT [27]. In [25], Moura et al. investigated and studied the main challenges of
mobile edge computing services to wireless resources based on game theory. They
discussed the specific game strategies, model evaluation and balance constraints
in the edge network scenarios by classical game and evolutionary game, and
emphasized the application trend and research direction of game theory model in
mobile edge computing services in the future. Jin et al. [8] considered two groups
of service providers with different request strategies to obtain the reward matrix.
This work aims at the problem of excessive permission request in the current
smart phone terminal, thus established two groups of evolutionary game model
for user privacy protection, and analyzed the stability strategy of the model.
Kim [9] proposed an MCS control scheme based on multi-level game model and
differential privacy concept in view of the serious loss of personal privacy in
mobile group intelligence perception. From the perspective of an MCS server
differential privacy(DP) controller and mobile devices, the dynamics of their
interactions are captured and analyzed, and the game process is repeated step
by step to explore effective solutions for promoting interaction among players.
At present, many real-world application scenarios can be simulated as prisoners’
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dilemma, and the relevant research literature also provides a variety of strategies;
however, it rarely conforms to the design objectives of the intelligent agent:
reactivity and initiative. In [11], the risk attitude and reputation factors are
combined into infinite repeated games, and the original game theory matrix
is transformed into a new matrix with cooperative equilibrium. By analyzing
the repeated prisoner’s dilemma and the results of simulation experiments, it
is verified that the performance of agents considering the above two factors
in the decision-making process,in both active and passive manner is improved.
Xiong et al. [38] propose an AI (Artificial Intelligence)-enabled three-party game
framework by combining machine learning and game theory, discuss the privacy
leakage problem of entity interaction in typical application scenarios of MECS,
and provide an effective and efficient scheme for ensuring data privacy in the
MECS of IoT.

In MECS, there are entities such as users, edge nodes, cloud service provider-
s, attackers and so on. From the above literature, mobile edge computing, as an
important component technology of MECS, has many scenarios based on game
theory. [9] provides an example of a scheme combining game theory and cryp-
tography to solve the problem of privacy protection in MCS paradigm. The
repeated prisoner’s dilemma game under multiple factors is considered in [11].
[38] combined the AI algorithm on the basis of game theory and cryptography,
provided an effective solution to the problem of privacy leakage risk in MECS
paradigm, without considering the impact of repeated interaction between enti-
ties over a period of time. In the practical application scenario of MECS, entities
often interact multiple times over a period of time, and therefor it is necessary
to consider the subjective and objective factors in the interaction process of
multiple entities. In addition, most of the above works are repeated games be-
tween two parties, without the extension to multiple parties, which stimulates
the development of our work in this paper.

3 Preliminaries

In this section, we formally define our system model, threat models and assump-
tions. We then introduce the problem description and design goals.

3.1 System Model

As shown in Fig.1, in MECS paradigm, there exist entities such as sensing users
(SUs), edge nodes (ENs) and cloud service providers (CSPs), which are described
as follows.

(1) Sensing users (SUs): a large number of ordinary people who apply smart
phones, tablets, wearable devices and other mobile devices as basic percep-
tual units. After selecting the sensing task independently, they utilize various
sensors integrated on the device to carry out sensing activities, and upload
the data to ENs with the help of wireless network.
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Fig. 1: System model of MECS

(2) Edge nodes (ENs): With the help of mobile Internet, sensing tasks are dis-
tributed to SUs and sensing data are collected and processed by ENs. A large
number of nodes with different functions and dispersions cooperate to com-
plete large-scale and complex social sensing tasks, and employ the processed
data to trade with CSPs.

(3) Cloud service providers (CSPs): provide real-time services to SUs to meet
their personalized needs by using sensing data or service models obtained
from transactions with ENs.

In our system model, the life cycle of sensing data in an MECS network
is divided into sensing data uploading phase and sensing data trading phase.
In practical application scenarios, there may exist adversaries who attempt to
obtain the user private data in each phase.

3.2 Infinitely Repeated Game

An infinite number of repeated games is a game process in which players repeat
the same structure for many times and there is no fixed time to end the game. The
behavior process of repeated implementation is called stage game. The specific
definition is as follows:

Definition 1: An infinite number of repeated games can be expressed as a
tuple < N,Si, Pi, H, δ, T >, where,
– N : a finite set of n players
– Si: action strategy sets of n players, where i ∈ N , and action profile could

be denoted as S = ×i∈NSi
– Pi: the payoff function of i ∈ N at every stage
– H: S → Rn, the set of players’ payoffs at the end of each stage game
– δ: the discount factor of players to evaluate the payoffs, 0 ≤ δ ≤ 1
– T : the number of the stages

Definition 2: The stage game G is a strategic game. Combined with its repe-
tition times T , we can determine a ”T -repeated game” process, and denoted as
G(T ).

G = {Si, πi; i = 1, ..., n}. (1)
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In (1), G is the original game of G(T ), and each repetition in G(T ) is called
a stage of G(T ). It can be seen from the above that Si is the strategy set of
player i; πi is his/her payoff at each stage, and it depends on (S1, S2, ..., Sn).

According to the system model architecture shown in Fig.1, it is obvious that
there is a chronological order for the players’ strategy selection. We assume that
player 1 has the priority to choose strategies, and there is no limit on player 2’s
strategy choice. This is also true between player 2 and player 3. In view of this
situation, the expansion form of the game is commonly used to analyze [10]. The
possible behaviors of the players are represented in the form of the behavioral
game tree, and the payment of each stage of the game process is given at the leaf
node of each branch, as shown in Fig.2. Here, t ∈ T , obviously, when t = T = 1,
it means that each player has played a single game.

Fig. 2: Extended behavioral game tree

3.3 Single-stage Game

Here, we will describe the behavior of the initial stage game based on the work
of [38]. For the sensing data uploading phase and the sensing data trading phase,
there are two different player sets N ′ and N ′′: SUs, adversary A1, ENs, and ENs,
CSPs and adversary A2. The player’s strategy set of two phases Si(i ∈ (N ′, N ′′)
correspond to (M , M ′) in [38]. Based on the structure of payoff function of
players in different phases, we respectively obtain the player’s payoff set (h, h′)
at the end of the first stage game from [38]. It is worth noting that we all abide
by two hypothesis: 1© SUs will not carry out sensing activities at any cost, and
the adversary will not blindly launch unprofitable attacks; 2© the accuracy of
data largely determines the privacy of user information, so the payoff function of
each player will be constructed based on this. Thus, It is easy to know that the
adversary A1 will not launch an attack when SUs do not upload their sensing
data, so play2 in Fig.2 has only three behavior branches, and affected play3 has
six behavior choices.
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4 Repeated-stages Game Model

In a single-stage game, each participant only pays attention to the current payoff.
However, the interactions between these participants are long-term and repeti-
tive in practice. Under these circumstances, participants will consider the impact
of current behavioral strategies on future payoffs. Therefore, based on the sit-
uation of single-stage strategy game [38], we model their multiple interaction
processes as a repeated game model.

4.1 Sensing Data Uploading Phase

When µ5 < µ3, the optimal strategy profile ` = 1, σ = 0, τ = 0 is the only pure
strategy Nash Equilibrium solution. If there is only one pure strategy NE solution
in the original game, each participant would adopt the NE strategy profile of
the original game in the next stage [7]. Therefore, the result of repeated game
in this case is that SU uploads sensing data, A1 does not launch an attack and
EN does not leak privacy, so the user’s private information is well protected.

When µ5 > µ3, the optimal strategy profile ` = 1, σ = G(d)
µ2Sens(d)

− µ1

µ2
, τ = 1

is the mixed strategy NE solution. We introduce a discount factor δ [37] due
to the payoff of infinitely repeated games being endless. We can use the same
discount factor δ to discount the future payoff of each stage, so that the total
payoff can be limited and comparable.

Given δ = e−r∆, where r is the preference rate for time and ∆ is the length
of a period. For one path of infinitely repeated games, we assume that the
payoff of participants at each stage are π1, π2, π3... , respectively. Also, we use
δSU , δA1 , δEN to denote the discount factor of SU, A1, EN, respectively. There-
fore, the total payoff of participants is shown in Formula (2).

π = π1 + δπ2 + δ2π3 + · · · =
∞∑
i=1

δi−1πi. (2)

For the case of µ5 > µ3, we propose social norms that are in line with the
actual situation. Usually, an SU always uploads sensing data, and refuses to up-
load until n1 times leakage behaviors are discovered. For A1, the initial strategy
is not to attack. It would switch to attack strategy and sustain n3 times until the
SU uploads data n2 times continuously. Additionally, if the SU does not upload
data, A1 would not launch an attack. EN chooses not to leak at the moment.
Once EN finds that A1 launch n3 consecutive attacks, it would switch to leak
strategy. Because the SU could not determine who committed the dishonest act
at this time, and EN refuses to admit. Also, when A1 does not launch an attack
for n4 consecutive times, EN switches to the behavior of not leaking. The more
the participants deviated from the social norms, the more their later payoffs de-
creased. In order to facilitate the analysis of problems without losing generality,
we assume that n1 = 1, n2 = 1, n3 = 2, n4 = 2.

If all participants abide by the initial behavior of the above social norms, the
strategic path in infinitely repeated games would be (` = 1, σ = 0, τ = 0) →
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(` = 1, σ = 0, τ = 0) → (` = 1, σ = 0, τ = 0) → · · · (`, σ, τ are omitted in the
following text). Therefore, we can calculate the total payoffs of SU, A1 and EN
as follows: 

uSU∗(d) = G(d)(1 + δSU + δ2SU + δ3SU + · · ·) = G(d)
1−δSU

uEN∗(d) = G(d)(1 + δEN + δ2EN + δ3EN + · · ·) = G(d)
1−δEN

uA∗
1
(d) = 0(1 + δA1 + δ2A1

+ δ3A1
+ · · ·) = 0

(3)

1© Considering the deviation of A1’s behavior
Assume that starting from the first round of the game, the new strategy path

of the game would be described as follows:

(1, 1, 0)→ (1, 1, 0)→ (1, 1, 1)→ (0, 0, 1)→ (0, 0, 1)
→ (0, 0, 0)→ (0, 0, 0) · · ·

Now, the total payoffs uA1d
(d) after A1’s behavior deviates would be:

uA1d
(d) = (µ6Sens(d)−R)(1+δA1

+δ2A1
). (4)

2© Considering the deviation of EN’s behavior
Similarly, starting from the first round of the game, the new strategy path

of the game would be described as follows:

(1, 0, 1)→ (0, 0, 1)→ (0, 0, 1)→ (0, 0, 0)→ (0, 0, 0) · · ·

Now, the total payoffs uENd
(d) after EN’s behavior deviates would be:

uENd
(d) = G(d) + (µ5 − µ3)Sens(d). (5)

3© Considering the simultaneous deviation of A1 and EN’s behaviors
The behavior of both deviates simultaneously in the first round, and the

strategy profile is (1, 1, 1); the new game strategy path would be described as
follows:

(1, 1, 1)→ (0, 0, 1)→ (0, 0, 1)→ (0, 0, 0)→ (0, 0, 0) · · ·
Now, the total payoffs of A1 and EN would be described as follows respectively:{

uA1
′
d
(d) = µ6Sens(d)−R

uEN ′d(d) = G(d) + (µ5 − µ3)Sens(d)
(6)

In order to restrain the game participants from choosing deviation behaviors,
their payoff function should satisfy the following inequalities:

uA1d
(d) < uA∗1 (d)

uENd
(d) < uEN∗(d)

uA1
′
d
(d) < uA∗1 (d)

uEN ′d(d) < uEN∗(d)

(7)

We can have the following inequalities:{
µ6 <

R
Sens(d)

δEN > (µ5−µ3)Sens(d)
G(d)+(µ5−µ3)Sens(d)

(8)

Obviously, When the discount factor δEN of EN and µ6 satisfy the relevant
range, the game participants will not choose to deviate from the social norms,
so as to protect the sensing user’s personal private information.
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4.2 Sensing Data Trading Phase

The analysis method of this phase is similar to that of the uploading phase. We
use δCSP and δA2

to denote the discount factor of CSP and A2 respectively. For
the case of k3 > k2, we also propose social norms that are in line with the actual
situation. Usually, an EN always chooses to trade data, and refuses to trade until
m1 disclosures are found. A CSP would firstly chooses not to leak any data, and
switches to leakage behavior once finds out that A2 has launched m2 times of
attacks. Additionally, if EN chooses not to trade, the CSP would not leak any
data. Furthermore, A2’s initial strategy is not to attack. And they would launch
m3 times of attacks continuously once found that CSP have leaked data. Mean-
while, when A2 finds that the CSP no longer leak data m4 times, if will choose
not to attack for maximized payoffs. In order to support a complete strategy
transformation process, we assume that m1 = 1,m2 = 1,m3 = 1,m4 = 2.

Similarly, we can have that when k4 <
3C

Sens(d) , the range of discount factor
is:

δCSP >
(k3 − k2)Sens(d)

G(d) + (k3 − k2)Sens(d)
(9)

Whereas, in the case of k4 >
3C

Sens(d) , the range of discount factors are:{
δASP >

(k3−k2)Sens(d)
G(d)+(k3−k2)Sens(d)

δA2
<

k4Sens(d)−C−
√
k24Sens(d)

2−2k4Sens(d)C−3C2

2C

(10)

As the range of k4 changes, when the discount factors range of relevant game
participants are satisfied, they would not have any reason to deviate from social
norms. In this way, it prevents the private information of users from being leaked.

5 Model Analysis and Validation

In this section, we conduct numerical analysis on the proposed three-party re-
peated game model, including sensing data uploading phase and sensing data
trading phase. The experiments were carried out on a desktop computer run-
ning Window 7 system, which was configured with Intel core i5-5200U, 2.20 GHz
CPU and 8 GB RAM, and the software used is MATLAB R2016a.

5.1 Sensing Data Uploading Phase

In this section, the parameter settings are the same as above. In the sensing data
uploading phase, Fig.3(a) illustrates that when δEN exceeds a certain value,
EN would change from the leaking strategy to the non-leaking strategy, and
this value depends on µ5 − µ3. With the increase of µ5 − µ3, the critical value
also increases, which is consistent with formula (8). µ5 is the positive influence
coefficient reflecting the payoff obtained by EN’s leakage behavior, and µ3 is the
reputation punishment coefficient of EN’s leakage behavior. µ5 is a constant value
for the sensing data of certain accuracy. By increasing µ3, that is, increasing the
punishment for EN on users’ side, the critical value goes down, which makes the
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Fig. 3: Performance evaluation results:(a) shows the influence of µ5 − µ3 and
δEN on strategy selection of EN; (b) and (c) show the influence of µ5 − µ3 and
δEN on payoffs of EN and SU; (d) shows the influence of k3 − k2 and δCSP on
strategy selection of CSP; (e) and (f) show the influence of k3 − k2 and δCSP
on payoffs of CSP and EN; (g) shows the influence of k4 and δA2

on strategy
selection of A2; (h) and (i) show the influence of k4 and δA2 on payoffs of A2

and EN.
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constraint conditions in equation (8) easier to be reached, forcing EN to choose
the non-leaking strategy. Fig.3(b) and Fig.3(c) show that the payoff of EN and
SU increases with the increase of δEN . At the critical value, the payoff of SU
will increase greatly with the change of strategy choice of EN. It is verified that
EN would be more inclined to comply with social norms within the range of
constraint conditions.

5.2 Sensing Data Trading Phase

In the sensing data trading phase, Fig.3(d) shows that CSP will be more prone
to non-leakage behavior with the increase of δCSP , and its critical value depends
on k3 − k2. k2 is the punishment coefficient for CSP’s leakage behavior, and k3
is the positive influence coefficient reflecting the payoff of CSP obtained through
the leakage behavior. Similarly, we can adjust k2 on the side of EN to reduce
the critical value according to formula (9), forcing CSP to comply with social
norms and choose not to leak. As can be seen from Fig.3(e) and Fig.5(f), the
payoff of CSP and EN are increasing with the rise of δCSP . In detail, Fig.3(e)
shows in the case that the value of k3 − k2 increases, the payoff of CSP increases
with the rise of δCSP , which indicates that the smaller k2 is, the lighter the
punishment on CSP is, and CSP is more likely to choose the leakage strategy. It
is verified that k2 is the critical factor influencing CSP’s choice of leakage and
non-leakage strategy. Additionally, when δCSP is at the critical value, the payoff
remains the same regardless of whether CSP chooses the leakage behavior or
not. When δCSP exceeds the critical value, CSP would gain more from choosing
non-leakage behavior over leakage behavior, which verifies CSP’s corresponding
constraint conditions on compliance with social norms in formula (10). Fig.3(f)
shows that EN’s payoff has a significant change at the critical value, which also
reveals the key influence of CSP’s leakage and non-leakage behavior on EN’s
payoff.

When k4 >
3C

Sens(d) , formula (10) indicates that a smaller discount factor δA2

is required to satisfy the constraint. Fig.3(g) manifests that A2’s strategy is
more inclined to leak with the increase of k4, forcing us to choose smaller δA2

.
Additionally, Fig.3(h) shows that when k4 is at a small value and δA2

does not
meet the constraint conditions, the payoff from A2’s choice of leakage is much
less than the choice of non-leakage. Therefore, on the premise of meeting the
constraint conditions, the adversary A2 after repeated games would not deviate
from the social norms. In this case, EN’s payoff would also increase significantly
in this range, which is consistent with the results in Fig.3(i).

6 Conclusion

In view of the user data privacy problem of two-party interactions discussed in
most of the existing work, based on game theory, we constructed a three-party
repeated game model for sensing data uploading phase and the sensing data
trading phase in MECS. By considering the possible interaction strategies among
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participants in different phases, analyzing their potential deviation strategies,
and calculating the change of payoff, this paper further explores the influencing
factors and constraints that regulate participants’ honest behaviors in the game.
Finally, through simulation experiments and numerical analysis, our proposed
model shown feasible and has a certain guiding significance for user data privacy
protection in MECS applications.
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