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Abstract. The turnout handles the direction of the train which is one of the key
equipment in the railway transportation system. In this paper, by using real action current
data obtained from switch machine model No.ZD7, a turnout fault diagnosis model based
on the FastDTW pattern recognition algorithm was proposed. Firstly, the original current
curve was segmented relate to the features of them. Then the warping path distance
between the standard sample and the tested current curve was obtained according to
FastDTW algorithm. Finally a dynamic optimized threshold was used to confirm whether
there is a fault happened in the turnout. According to the experiment results, the proposed
diagnose model without the prior knowledge of fault samples can works well both with
single and double acting type turnout machines, owning to the following elements: the
diagnose accuracy can be more than 96%, the time-cost can be improved more than 5
times compared with traditional DTW based algorithms.
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1 Introduction

Railway turnout system is an important part of railway infrastructure and a frequent
failure part in rail transit. Its health directly affects the safety of the railway system. At present,
enhancing the safety of turnouts mainly depends on setting the alarm threshold of the signal
curve, Periodic inspection of system logs by professional and technical personnel to determine
the health status of turnouts. However, this method is inefficient, and the phenomenon of
underreporting and misreporting is common, which cannot meet the requirements of railway
safety guarantee.

With the continuous development of artificial intelligence and big data technologies,
various intelligent fault diagnosis methods for turnouts are gradually being widely studied. In
essence, fault diagnosis is a pattern recognition problem. As a powerful pattern recognition
technology, artificial intelligence has been widely used in turnout fault problems. For example,
Bayesian networks[1], SVM[2], HMM[3], etc. However, most of the existing research methods
of turnout fault diagnosis focus on the signal data of single action turnout. There are few
related researches on the fault diagnosis of double action turnout. In view of the above reasons,
based on the NO.ZD7 turnout switch operating current data, this paper proposes a FastDTW-
based turnout fault diagnosis method by analyzing the warp path distance between the
switchpoint current and the standard template data to be diagnosed. Experimental data shows
that the method proposed in this paper does not require a large amount of prior fault data, and
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the algorithm accuracy rate is more than 96%, and the time performance is improved by more
than 5 times compared with the traditional DTW algorithm. It is Suitable for new train control
systems with higher accuracy and real-time requirements.

2 Methodology

Dynamic Time Warping(DTW) algorithm is used to calculate the distance similarity of
any two time series, and it is not necessary that the two time series have the same length[4]. It
uses the method of dynamic programming to find the warp path, and its time complexity is
O(m×n). When the time series is long, the efficiency of the algorithm is very low. FastDTW[5]

algorithm accelerates DTW algorithm by limiting the scope of path search and data abstraction.
It is an improved algorithm on the time complexity of DTW algorithm. The algorithm can find
an approximate optimal warp path between two time series, and the time consumption
increases linearly with the increase of input time series, and its time complexity is about O(n).
FastDTW algorithm has three main processes: coarsening, projection and refinement. Figure 1
shows the speedup of fastdtw

(1) Coarsening: Shrink the original time series, using half of the original time series
sampling points to represent the original time series, and the value of each sampling point of
the shrunk time series is the mean value of two adjacent sampling points of the original time
series. As shown in Figure 1, the distance matrix under the 1/1 granularity is the original
distance matrix, and the 1/2, 1/4 and 1/8 granularity are the matrices during the three
coarsening process of the original time series.

(2) Projection: DTW algorithm is run on the distance matrix of lower resolution. As
shown in Figure 1, the black line segment is the warp path found by running DTW algorithm
on this granularity.

(3) Refinement: After finding the warp path on the lower resolution matrix, the mesh that
the warp path passes through is mapped to the higher resolution matrix.

Fig. 1. The acceleration process of FastDTW.

The core idea of FastDTW algorithm is to speed up DTW by limiting the search scope
and data abstraction, that is, to search only the grid in the projection distortion path (the
deepest meshes in Figure 1). However, the optimal warp path may not be included in the
projected warp path, so the FastDTW algorithm adds a radius parameter, it is allowed to
search the radius meshes outside the projection distortion path mesh, that is, the shading
lighter mesh in Figure 1 (radius in Figure 1 is 1). The larger the radius, the more accurate the
warp path will be. If the radius parameter is set to the same length as the input time series, the
FastDTW algorithm and DTW algorithm have the same efficiency.



3 Turnout fault diagnosis model based on FastDTW

3.1 Characteristic analysis of turnout action current curve
With the continuous development of railway signal system, sensors are often equipped in

key equipment of the system, such as switch machine, to monitor the running signal data of
the equipment[6]. When the switch fails, its abnormal action process will be fed back to the
switch machine, resulting in abnormal monitoring signal data. Therefore, the current curve of
switch machine monitored in the process of switch action can reflect the health status of the
switch. In this paper, the action current curve of the turnout equipment under the condition of
operation at the time of delivery is taken as the standard template. If the difference between
the action current curve to be measured and the action current curve of the template is large, it
indicates that the turnout is likely to have faults in this action, so that the fault diagnosis of the
turnout can be realized.

On the other hand, with the development of China's rail transit system, there are many
types of turnout equipment, such as single acting, double acting and multi acting. The action
signal data of double action and multi action turnout is more complex than that of single
action. Figure 2 shows the normal current curve of single action turnout and double action
turnout.

Fig. 2. Current curve of different types of turnout.

3.2 Fault Diagnosis Based on FastDTW
The warp path distance between the current curve to be diagnosed and the current curve

of the template can be obtained by FastDTW algorithm. The warp path distance represents the
difference between the curve to be diagnosed and the template curve. The smaller the distance
of the warp path, the higher the similarity between the two curves, and the larger the distance,
the lower the similarity between the two curves. Therefore, a threshold for the distance of a
warp path can be set to determine the health status of the turnout. In addition, the turnout
equipment has different operating conditions and different service lives, which results in
different optimal diagnostic thresholds for different turnouts. Therefore, the setting of the
optimal threshold needs to be continuously adjusted as the equipment changes to achieve a
dynamic threshold.

Due to the varying length of each switch's action conversion process, the actual current
data sampling lengths of the multiple monitoring switches are different, which leads to the
difference in the distance of the warp path obtained by the FastDTW algorithm for different
turnouts of the same model even if no fault occurs But relatively large, as a result, the
effectiveness of the threshold is reduced and the difficulty of determining the threshold is
increased. In this paper, in order to properly eliminate the influence of the difference in the



length of the input data, the mean value of the warp path distance is processed, and the final
warp path distance is calculated by FastDTW to divide the warp path distance into the curve
length to be diagnosed.

(a). Single action. (b). Double action.
Fig. 3. The warp path distribution of different types of turnouts.

For how to confirm the fault judgment threshold, the warp path distances of normal current
curve, fault current curve and its template current curve of different types of turnouts are
analyzed in this paper. As shown in figure 3, figure 3(a) and figure 3(b) are respectively the
warp path distance distribution diagrams of the current curve of the single action type turnout
and the double action type turnout and its template current curve. It is not difficult to see from
the figure that the distance between the normal curve of the single action turnout and the
double action turnout and its template curve is mainly concentrated between 0.0A ~ 0.1A. The
distance between the fault curve and the template curve of the warp path exceeds this value,
and the distribution is relatively discrete. Therefore, a threshold of warp path distance can be
set to determine the health status of turnout.

4 Model performance analysis

In order to test the performance of the proposed model, based on the actual monitoring
data of single-month switch machine operating current signals recorded by a railway bureau in
China, experiments were performed on single action and double action turnouts. Among them,
200 pieces of data are used to determine the dynamic threshold, 120 pieces of data are used to
test the proposed method (single action and double action ratio is 1:1). At the same time, a
comparative experiment with DTW(ITDM-BD) and Frechet Distance[7] is added
4.1 Model accuracy analysis
4.1.1 Determination of the dynamic threshold

In this section, we randomly trained 200 turnout current data according to the proposed
model and Fresch distance-based turnout diagnosis method to obtain the optimal threshold of
the training data set. It is divided into two types of threshold determination experiments: single
action type and double action type. The experimental results are as follows..

Figure 4 shows the results of single and double action turnout fault diagnosis F1-Score for
ITBM-BD, ITBM-BF and Frechet Distance. We choose the highest F1-score threshold as the
best threshold, then the optimal thresholds of three models for single action turnout are 0.11A,



0.11A and 2.1A respectively and the best thresholds of double action turnout are 0.09A, 0.09A
and 2.3A respectively.

(a). ITDM-BD (b). ITDM-BF. (c). Frechet Distance.
Fig. 4. F1-score comparison of three methods.

4.1.2 Model accuracy test
Based on the best thresholds determined in section 4.1.1, the model proposed in this paper

is used to test the accuracy of the test set composed of 120 randomly selected data sets. The
test results are shown in Table 1.

Table 1. Model accuracy test results.

Model name Turnout type F1-Score

ITDM-BD
Single Action 98.3%
Double Action 100%

ITDM-BF
Single Action 96.6%
Double Action 100%

Frechet Distance
Single Action 88.7%
Double Action 84.3%%

As can be seen from Table 1, both ITDM-BD and ITDM-BF reach a higher F1-Score.
Combining the F1-Score variation ranges of the two under different thresholds in Figure 4, it
is not difficult to see that the two have little difference in accuracy performance, and both can
meet actual application requirements. And both models are better than Frechet Distance based
diagnosis model.
4.2 Model time performance analysis

In this section, 150 pieces of real data are divided into 5 test sets of different sizes, and the
running time efficiency of ITDM-BD and ITDM-BF is tested respectively.

Table 2.Model run time.

Model Turnout Type
Input dataset size

30 60 90 120 150

ITDM-BD
Single 14.11s 24.12s 34.91s 45.27s 63.93s

Double 25.42s 45.73s 65.67s 98.13s 120.96s

ITDM-BF
Single 2.09s 3.79s 5.13s 7.29s 9.67s

Double 3.60s 6.48s 9.31s 12.85s 16.82s



As can be seen from Table 2, because ITDM-BF uses the FastDTW algorithm to calculate
the warp path distance, its speed performance is significantly better than that of ITDM-BD,
and the algorithm time efficiency is improved by at least 5 times.

5 Conclusion

For the fault diagnosis of turnout, this paper takes the current data of the switch machine
monitored during the turnout operation as input, and obtains the current health status of the
turnout to be diagnosed through artificial intelligence algorithms such as segmentation, pattern
recognition and threshold determination. Experimental results show that ITDM-BD is not
significantly different from ITDM-BF in accuracy performance, but the latter is significantly
better than the former in terms of time efficiency. Therefore, ITDM-BF is more suitable for
new train control systems with high accuracy and high real-time performance. In addition,
without a large number of fault sample data, and for single- and double-acting turnout
equipment, the model proposed in this paper can still efficiently and correctly diagnose
turnout fault conditions, indicating that ITDM-BF has a wider scope of application. As the
sample data is too small, it is necessary to verify whether the model in this paper is satisfied
with the hyperactive turnout equipment, and the determination of the specific failure type of
the turnout is still a future research direction.
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