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Abstract. Drone detection and identification technique is of great significance both in the 

military and civilian fields. Radio frequency (RF) fingerprinting of drone is considered as 

one of promising techniques due to its uniqueness. Deep learning based RF fingerprinting 

identification technique can extract hidden features in RF data and then achieve excellent 

performance. Motivated by this idea, this paper proposes a drone identification method 

using complex-valued convolutional neural network (CNN) algorithm with higher 

classification accuracy and faster equipment running time. The complex-valued CNN 

method convolves the complex convolutional kernel and the real and imaginary parts of 

the data features separately. In order to verify the proposed method, five state-of-the-art 

recognition algorithms are adopted to compare their recognition performance and 

equipment efficiency. Simulation results show that our proposed drone identification 

method can efficiently recognize the signal of various drones within less computation time. 

Keywords: Drone identification, complex-valued CNN, intelligent recognition, RF fingerprinting, 

deep learning. 

1   Introduction 

In recent years, drones have quietly infiltrated into people's daily lives and have brought drastic 

changes to people's lives [1]. In rural areas, drones have greatly improved transportation capacity in 

remote areas and agricultural production efficiency. In cities, drones not only play an important role in 

solving the problem of logistics, but also provide detailed land use information and law enforcement 

evidence for urban planning, construction and management, such as road construction, traffic patrols and 

city law enforcement. However, the widespread application of drones is bound therefore raising a series 

of technical and public safety issues [2]. Relevant regulators must be able to adopt effective technologies 

to detect and identify various drones [3].  

RF fingerprinting can be used to detect and identify drones. Due to the different locations and 

configuration parameters of each smart device, the signal sent by smart devices all has their specific 

fingerprint [4]. The RF fingerprinting identification technology collects signals from various devices 
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with their own fingerprint through the receiver and distinguishes them. Specifically, RF fingerprinting-

based identification method usually includes two parts: training and identification [5]. The training part 

means that after receiving devices such as antennas collect wireless signals from various smart devices, 

they collect their inherent signal characteristics (fingerprint). The identification part means that when an 

unknown signal is received, we can complete the identification of the unknown signal according to the 

characteristics of signal that have been collected above [6]. Generally, the above-mentioned RF 

fingerprinting identification process does not require complicated calculations and can be directly 

embedded in the host of the receiver. This technology is very suitable for various types of internet of 

things (IoT) devices [7]. 

Additionally, deep learning algorithms are widely used in wireless communications [8][9][10] and 

achieve good performance in physical layer [11][12]. Y. Wang et al. [13] used two layers of convolutional 

neural network (CNN) networks to identify the modulation signals under unknown channels. What’s 

more, RF fingerprinting technology also uses deep learning algorithms. J. Yu et al. [14] proposed a 

multisampling convolutional neural network (MSCNN) to identify ZigBee devices efficiently with low 

cost. Therefore, the existing technologies RF fingerprinting recognition technologies based on deep 

learning can also be applied to drone detection and recognition methods.  

Based on the RF data collected from true drone devices, this paper proposes a drone identification 

method via complex-valued CNN in order to identify genuine drone devices. Two RF receivers are used 

to receive the high-frequency and low-frequency parts of the drone RF data, which are 2.4GHz wifi 

signals. Then discrete fourier transform (DFT) is performed on the RF data from the two receivers and 

they are connected together to form the entire RF spectrum of drones. After processing the drone signal, 

we convolve the complex convolutional kernel and the real and imaginary parts of the data features 

separately and compare the performance of five different algorithms who are trained on independent 

datasets. Simulation results are given to confirm equipment running time and identification performance 

of our proposed method.  

The remainder of this paper is organized as follows. In Section 2, we introduce the drone 

identification system and our specific datasets. Section 3 presents the analysis of two drone identification 

methods and their neural network structure. Section 4 introduces the simulation results and we make 

conclusion in section 5.  

2   System Model and Datasets 

2.1   System model 

In our proposed drone identification system, we use complex-valued CNN algorithm to detect and 

recognize the signals of different drones. This system is shown in Fig.1, which consists of three parts: 

signal processing part, classification part and evaluation part. The first part is to receive and pre-process 

the complex RF data of drones. Further, the second part is to train the complex-valued CNN algorithm 

based on those RF signals in order to classify unknown received drone signals. Last but not least, we 

could analyze the identification accuracy and other evaluation criteria based on the output results of our 

proposed drone identification system in the evaluation part. 

 

2.2   RF data based drone datasets 

Based on the system model, drone datasets are composed of the complex RF data collected from real 

drones. These real drone signals are provided by a large open source drone database. This database has 



collected many very valuable real drone RF data through the following three modules: drones under 

analysis module, fight control module and RF sensing module. What’s more, we used four types of drone 

signals in this database, as is shown in Fig. 1. We can see from the figure that the drone signal datasets 

contain one type of Background activities (collecting RF background activities data when drones are off) 

and three types of drone activities (collecting RF background activities data when drones are on). More 

importantly, three types of drone activities represent three different brands of drones, which means 

different brands have different prices, protocols, and technologies. After IQ sampling the RF data of each 

drone activity, we can get drone signal datasets. 

 

 

Fig. 1. System model of our proposed drone identification method. 

Additionally, we used a total of 4,400 drone signal samples in our experiment, with an average of 

1100 signal samples per drone activity. These samples are randomly assigned to a proportion of 7: 3 for 

the training and testing of the Complex-valued CNN. The length of each sample is 2048. What’s more, 

in order to better extract the features in the datasets, we split each sample into in-phase and quadrature 

component, whose data form is a real-valued matrix of 2 × 2048. These datasets will be used as the 

input to the drone identification via complex-valued CNN system so that it can identify different drone 

signals. Last but not least, Table 1 shows the software and hardware configuration used in our data 

preprocessing, neural networks training and algorithm model verification. 

Table 1. Software and hardware configuration details. 

Running environment Details 

Software Spyder, MATLABR2019a 

Language Python3.7.1 

Software library Keras 2.2.2 

CPUs 8 Intel Xeon E3 (x86_64) 

GPUs 4 NVIDIA GTX1080Ti 

Operating system Ubuntu 16.04.1-Linux 

Signal collector

Drone1

Drone2

Drone3

Background 

activities

Pre-

processing
Which  drone?

Complex-valued CNN 



3   Drone Identification Methods 

In this section, two different drone identification methods based on deep learning is introduced. One 

of them is traditional drone detection and identification method based on fully connected deep neural 

network (FCN), the another one is drone identification via complex-valued CNN. Each layer of neural 

network and specific parameters of them will be described in details.   

 

3.1   Traditional drone detection and identification method based on FCN 

The architecture of traditional drone detection and identification method based on FCN can be 

divided into three parts: input layer, hidden layer and output layer. Obviously, we need to focus on the 

hidden layer who contains 4 fully connected (FC) layers. The number of neurons in the first, second, and 

third FC layers is 256, 128, and 64, respectively. After every fully connected layer, batch normalization 

(BN) layer and activation function layer that uses ReLU function is added. Moreover, adding the Dropout 

layer after each layer is also essential, who can reduce network parameters and avoid overfitting. The 

number of neurons in the fourth FC layer is the same as the number of drone signals we want to identify. 

In addition, by comparing the true labels of the input layer with the predicted labels of the output layer, 

we can know the recognition performance of this traditional FCN method. 

 

3.2   Drone identification via complex-valued CNN 

Our proposed drone identification method via complex-valued CNN is introduced in this section. 

Complex-valued CNN is an extension of the traditional real-value CNN in the complex field. Since the 

drone signal data comes in the form of IQ data, we have reasons to believe that complex-valued CNN 

will have a stronger ability to extract features. Hence, we add real-valued CNN models in our simulation 

experiments in order to compare the identification performance of drone signals with complex-valued 

CNNs. 

As we all know, convolutional operation has a very important position in CNN, which can sparse 

network parameters and extract data features within all directions. Therefore, the significance of complex 

convolutional operation is self-evident in complex-valued CNN, and it can be achieved by multiple real-

valued convolutional operations. First, we introduce a complex vector 𝐡 and a complex filter matrix 𝐖, 

whose definition is as follows: 

h x iy                                        (1) 

W A iB                                       (2) 

where 𝐱, 𝐲 are real vectors, and 𝐀, 𝐁 are real matrices. The convolution process of 𝐡 and 𝐖 is as 

follows: 

( ) ( )W h A x B y i B x A y                             (3) 

from this formula we can see that the complex convolutional operation can be split into the sum of the 

convolution of the real and imaginary parts of one vector 𝐡 and the same two parts of another matrix 

𝐖, respectively. According to this formula, we can infer the complex convolution operation between the 

complex feature map 𝑀 and the complex convolution kernel 𝐾: 

( ) ( )R R I I R I I RM K M K M K i M K M K                     (4) 

where the subscript 𝑅 represents the real part and the subscript 𝐼 represents the imaginary part. 



After introducing the compress convolutional operation, the structure of complex-valued CNN in 

our proposed drone identification system is shown in Fig. 2. It consists of two parts: complex 

convolutional layer and complex FC layer. On the one hand, the first complex convolutional layer 

contains 128 filters whose convolutional kernel is 16 and the second complex convolutional layer is 

composed of 64 filters, whose convolutional layer is 8. After the complex convolutional layers, there are 

also three complex FC layers. The number of neurons in the first, second and third complex FC layer is 

256, 128 and 2 respectively. In order to speed up the training speed of the deep network and avoid 

overfitting, we add a complex BN layer and a Dropout layer after each complex convolution layer or FC 

layer. Specifically, the number of neurons in the third complex FC layer is determined by the number of 

drone activities that we want to identify, and the activation function of this layer is Softmax, which can 

output the predicted probability of each category. 

 

 

Fig. 2. The structure of complex-valued CNN in our proposed drone identification system. 

4   Simulation results 

In this section, we analyze the classification accuracy of five drone identification methods for our 

drone signal datasets contain one type of background activities and three types of drone activities. These 

algorithm models are trained on independent datasets, which 70% of them are used for training and 30% 

of them are used for testing. We comprehensively evaluate the complex-valued CNN-based algorithm 

proposed in this paper in terms of model classification accuracy, prediction time of a single sample, and 

confusion matrix. 

 

4.1   Classification performance of drone identification model  

Table 2 shows the classification accuracy and GPT-Time of single sample in different drone 

identification models. These five methods including complex-valued CNN (our proposed), real-valued 

CNN, traditional drone identification method based on FCN, long short-term memory (LSTM), decision 

tree (DT) and support vector machine (SVM). First, we can clearly see from the table that deep learning 

methods get higher recognition accuracy than machine learning algorithms (DT, SVM). The traditional 

FCN algorithm is 30% higher than LSTM algorithm and reaches 85%. Additionally, two CNN-based 

recognition algorithms both get accuracy of more than 90%. Our proposed complex-valued CNN-based 
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identification algorithm has the highest accuracy rate, even reaching 99.5%. Because of lacking the 

ability to extract features in the complex domain, real-valued CNN algorithm’s accuracy rate is 7% lower. 

Next, we focus on the running time of a single sample within all algorithms, who are all running on 

the same machine. We can see from the third column of the table that the running GPU-time of SVM 

algorithm is the longest, reaching 63ms, who is dozen times of other algorithms. The reason is that SVM 

algorithm is not suitable for classification models with too long data length. The running GPU-time of 

DT is the shortest, only 0.068ms. However, the GPU-time of neural networks is basically similar. 

Complex-valued CNN algorithm runs slightly efficient than other deep learning algorithms because it 

has fewer neurons. Taken together, complex-valued CNN algorithm not only has higher classification 

accuracy, but also has less running GPU-time. 

Table 2.  Accuracy and GPU-Time of each drone identification model.  

Algorithms 
Accuracy  

(%) 

GPU-Time 

(ms/sample) 

Complex-valued CNN (proposed) 99.50 1.3448 

Real-valued CNN 92.93 5.0233 

FCN  85.05 1.6006 

LSTM 55.63 2.0082 

DT 53.93 0.0685 

SVM 23.48 63.5852 

 

 

4.2   Confusion matrices of deep learning algorithm models 

Finally, we provide four confusion matrix of deep learning algorithm models in Fig. 3, which 

facilitate some details of this four algorithm performance. As is shown in this figure, BG represents the 

background activities label and D1~D3 represent the drone1~drone3 activities label. By observing the 

squares on the diagonal of all confusion matrices, who represent correctly predicted labels, we can 

distinguish the two CNN-based algorithms from other deep learning algorithms. LSTM's confusion 

matrix is very confusing, and it is almost impossible to accurately predict all drone activities signals. 

FCN algorithm just performs well in D3 labels. In contrast, two CNN algorithms perform well in 

predicting three types of drone activities, and the difference in the accuracy of predicting background 

activities signals has led to their overall gap. The above shows that the complex-valued CNN can 

accurately distinguish every drone signals so that our proposed method has better recognition ability and 

robustness. 



     
(a) Complex-valued CNN (proposed)             (b) Real-valued CNN 

      
(c) FCN                                 (d) LSTM 

Fig. 3. Confusion matrices of deep learning algorithm models. 

5   Conclusions 

In this paper, we have proposed a drone identification method via complex-valued CNN driven by 

RF fingerprinting. The proposed complex-valued CNN algorithm is based on real-valued CNN by 

convolve the real and imaginary parts of the convolution kernel separately. Then, we compare complex-

valued CNN with other popular algorithms by training and verifying the classification accuracy and 

recording running time of them. Simulation results show that the proposed drone identification method 

via complex-valued CNN achieve excellent performance in identify drone signals and need less 

equipment loss. In the future work, we will consider expanding the drone datasets and trying to identify 

RF data of different running modes in the same drone. More importantly, we expect to prune some 

neurons in the complex-valued CNN proposed in this paper in order to ensure the identification accuracy 

and improve the network operation efficiency. 
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