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Abstract. Automatic modulation classification (AMC) plays an essential role in signal 
demodulation and interference identifica-tion. In this paper, we propose a novel AMC 
method using the Hybrid Convolutional Neural Network (HCNN), which combines with 
two different convolutional neural networks (CNNs) jointly using various signal features. 
In the former CNN, spectral correlation features (SCFs) are generated as network input, to 
classify FSK and BPSK. In the latter CNN, the Attention-based Densely Convolutional 
Neural Network (AD-CNN), which is trained using regular constellation images (RCs), is 
proposed to identify the modulation formats that are hardly recognized by the former CNN, 
such as QPSK, 16-QAM and 64-QAM. The simulation results demonstrate that HCNN 
displays superior classification performance than existing AMC methods with lower 
computational complexity. 
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1   Introduction 

With the rapid development of wireless communications, new paradigms of 
telecommunications emerge currently [1]. However, the shortage of wireless spectrum is 
becoming an outstanding problem. To monitor spectrum resource tension and increase spectrum 
efficiency, the radio spectral sensing is introduced in commercial and civil applications [2]. With 
the task of ensuring the proper functioning of radio spectral sensing, automatic modulation 
classification (AMC) is utilized essentially as the link between signal receiving and demodu-
lation to identify the signal format corrupted by noise [3]. 

 
Generally, AMC can be divided into two methodologies, i.e., likelihood-based methods 

(LB) and feature-based methods (FB) [4]. LB methods have a better integrated performance of 
precision. However, LB methods need prior knowledge of statistical information of the signals, 
which increases the computational complexity in practice [5]. Comparatively, FB methods deal 
with modulation classification straightforwardly without prior information [6]. Various features 
are widely utilized in FB methods including high-order statistics [7], cyclostationary spectrum, 
etc. Kim et al. implemented the maximum of cyclostationary spectrum over frequency to reduce 
the computational complexity [8]. However, cyclostationary-based AMC lacks the ability to 
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deal with the classification between M-ary phase shift keying (M-PSK) and M-ary quadrature 
amplitude modulation (M-QAM). Huang et al. proposed grid constellation matrix and fully 
convolutional network for classification through a short training process. However, it is limited 
to classify Frequency-shift keying (FSK) using this method [9]. On this basis, this paper focuses 
on improving classification accuracy of FB methods. 

 
The convolutional neural network with strong representative ability can be applied in AMC 

for higher classification accuracy [10]. Based on this, the authors proposed a low complexity 
deep neural network (DNN) to identify the signal modulation formats [11], but it hardly extracts 
high-dimensional features since the lack of the convolutional layers. In [12], convolutional 
neural network is utilized in AMC to extract features from constellation images. However, CNN 
with constellation images have limitations when the classification is conducted among FSK and 
M-QAM. 

 
In this paper, a novel AMC method named Hybrid Convolutional Neural Network (HCNN), 

is proposed involving Deep Convolutional Neural Network (DCNN) and Attention-based 
Densely Convolutional Neural Network (AD-CNN). HCNN can effectively classify seven 
widely-used modulation formats with high classification accuracy and low computational 
complexity. Several contributions of this paper are listed as follows. 

(1) Considering the various of signal features, the signal spectral correlation features (SCFs) 
and regular constellation images (RCs) are represented as the inputs of HCNN respectively. 
With SCFs and RCs, signal high-dimensional features are considered sufficiently. 

(2) Deeper network structure and dropout layers, which can extract high-dimensional 
features directly and avoid overfitting, are exploited to obtain better performance in DCNN. 

(3) AD-CNN combines the densely convolutional neural network and the attention block. 
It enhances the ability of feature extraction ulteriorly and reduces the network parameters 
simultaneously. 

(4) Concretely, DCNN provides the classification ability among 2FSK, 4FSK, MSK and 
BPSK. Meanwhile, AD-CNN is utilized to improve the classification accuracy among QPSK, 
16-QAM and 64-QAM. Simulation results show that higher classification accuracy is achieved 
comparing to existing AMC methods with lower computational complexity.  

 
The remainder of this paper is organized as follows. Section II provides an overview of the 

signal model and the proposed SCFs and RCs. In Section III, we explain the network structure 
of HCNN. Section V exhibits simulation results and conclusion of this paper is given in Section 
VI. 

2   Signal model and features extraction 

2.1   Signal model  
       Assume that radio frequency signals are received by the single-antenna receiver. The 
signal transformed to baseband can be formatted as follows, 
 

                              (1) 
 

y(n) = he j(2π f0n+θ )x(n)+ w(n),n = 1,...,N



 

 
 
 
 

where h denotes Rayleigh fading channel coefficients, 𝑓! and 𝜃! denote the frequency and phase 
offset, respectively. 𝑁	denotes the signal sample length. 𝑥(𝑛)  denotes the 𝑛 − 𝑡ℎ	complex 
sample in received segment signal. 𝑤(𝑛)	denotes the additive white gaussian noise (AWGN) 
with mean zero and variance 𝜎". Meanwhile, the received signal-to-noise ratio (SNR) is defined 
as ℎ"/𝜎". 
 
2.2    Spectral correlation features 
      Cyclostationary signal 𝑥(𝑡)  is a kind of random signal whose statistical characteristic 
parameters change periodically, i.e., 
 

                                     (2) 
 

where its autocorrelation coefficient 𝑅#(𝑡, 𝜏) and mean value E[x(t)] both change with t in a 
period T for any value of τ. Compute the Fourier series of  𝑅#(𝑡, 𝜏), then we get the cyclic 
autocorrelation coefficient. Considering the signal cyclic ergodicity, can be formatted as follows. 
 

                            (3) 
 

To derive a proper signal processing and surpass the influence of AWGN, we obtain the 
signal cyclic spectrum, which is the Fourier series of and can be defined as follows, 
 

                                (4) 
 

where  denotes the signal segment length, α denotes the cyclic frequency, and 𝑋$ denotes fi-
nite time Fourier transform. 
 

In a real scenario, signal samples are always be divided into K. Then we average the cyclic 
spectrum of each segment, which can be formatted as follows. 
 

                                     (5) 
 

Considering various modulation formats have various signal cyclic spectrums, signal 
cyclic spectrum can be exploited for AMC. By normalizing the 3-dimensional cyclic spectrum 
along the Z axis, the 3-dimensional cyclic spectrum can be normalized to the 2-dimensional 
cyclic spectrum in the X-Y plane. Therefore, we extract the SCFs from signal cyclic spectrum, 
which are related to the carrier frequency f and symbol rate Rs. Some examples of SCFs under 
different modulation formats are presented in Figure 1. The figure shows that SCFs among 
2FSK, 4FSK, MSK, BPSK have distinct patterns, while QPSK, 16-QAM, 64-QAM represented 
in the same form as SCFs. 
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Genreally, SCFs have two advantages. Firstly, different SCFs are generated by different 
modulation formats so as to classify modulation. Secondly, SCFs have the robustness to AWGN, 
which could be exploited for modulation classification appropriately at low SNR. 

 
 

Fig. 1. Spectral Correlation Features for seven modulation formats. 
 
2.3    Constellation Features 

To further classify modulation formats of QPSK, 16-QAM, 64-QAM, received complex 
signal symbols are transformed into RCs as the input of the network. We plot the real and 
imaginary parts of the signals by transforming the signal samples into 2-dimensional scatter 
diagrams as RCs. Practically, RCs are widely used to learn effective representations from signals. 

 
A generation diagram is conducted in Figure 2 to illustrate RCs of three widely-used 

modulation formats (i.e. QPSK, 16-QAM, 64-QAM) at different SNRs. For different 
modulation formats under the same SNR, RCs are used to represent signal minutiae features. 
Generally, RCs provide a relatively new approach to extend its representation discrimination. 

 
Fig. 2. Regular Constellation Images for three modulation formats under different SNRs. 



 

 
 
 
 

3   HCNN based classification method 

3.1   Structure of HCNN 
Our proposed HCNN consists of two CNNs, so as to classify seven modulation formats of 

BPSK, QPSK, 2FSK, 4FSK, MSK, 16-QAM, 64-QAM. As shown in Figure 3, the former CNN, 
DCNN, is designed to classify modulation formats except QPSK, 16-QAM, 64-QAM, since the 
characterization limitation of SCFs. The latter CNN, AD-CNN, trained using signal RCs, is 
designed to classify QPSK, 16-QAM, 64-QAM. 

 
 

Fig. 3. The sturcture of HCNN. 
 

3.2  Structure of DCNN 
DCNN includes three convolutional blocks, one fusion block and three fully-connected 

blocks. Each convolutional block consists of four convolutional layers followed by batch 
normalization. In first three convolutional layers, convolutional kernel size decrease to 3×3 and 
stride step set as 1 in order to realize sparse connectivity between layers. Moreover, ReLU 
activation function is utilized to increase sparsity and nonlinearity. Specially, the fourth layer, 
whose kernel size is 2 × 2 and stride step is 2, replaces max-pooling layer to prevent feature loss 
in down-sampling. Besides, the channels are incremental among convolutional blocks, 
intending to get sufficient specific receptive fields. The fusion block unifies the form of feature 
representations for the fully-connected blocks by convolutional layer and fusion layer. In fully-
connected blocks, there are 3 fully connected layers whose channel numbers are 256, 64, 4, 
respectively, reducing output channels and improving computational efficiency. The dropout is 
set as 0.6 to solve overfitting problem [14] and increase robustness to model mismatches. 
Additionally, the output channel number of the last hidden layer is limited to 2, which indicates 
that the dimension of the deep feature is reduced to 2 and beneficial to two-dimensional 
visualization. Finally, with Softmax [15], the output layer could sum all neurons to one and map 
multiple scalars to probability distributions.   

 
 



 

 
 
 
 

 
 

Fig. 4. The structure of DCNN. 
 
3.3  Structure of AD-CNN 

AD-CNN uses RCs to solve the classification among QPSK, 16-QAM and 64-QAM. 
Considering the similarity of RCs between 16-QAM and 64-QAM in low SNRs, AD-CNN is 
involved essentially to optimizate the CNN structure so as to increase classification accuracy. 
As shown in Figure 5, AD-CNN consists of four parts, attention blocks, convolutional layers, 
max- pooling layers and fully-connected blocks. 

 

 
 

Fig. 5. The structure of AD-CNN. 
 

Initially, attention block is composed of dense convolutional block and attention layer. For 
dense convolutional block, it has direct connections among nonadjacent layers, which is inspired 
by ResNet [16] and shown in Figure 6. To improve the feature utilization, each layer in the 
dense convolutional block receives the composition of preceding layers’ output, meanwhile, as 
the input for subsequent layers. Incorporating both accuracy and efficiency, dense convolutional 
block brings two advantages. Firstly, it solves the problem of network gradient disappearance 



 

 
 
 
 

and explosion. Secondly, it reduces the parameters that high-dimensional features can be 
extracted with low computational complexity. 
 

 
 

Fig. 6. The sturcture of dense convolutional block. 
 

 
 

Fig. 7. The sturcture of attention block. 
 

 
 

Fig. 8. The sturcture of attention layer. 
 

Assume the network includes L layers, on which adopt a non-linear transformation 𝐻%(∙). 
The output of the 𝑙 − 𝑡ℎ layer can be denoted as 𝑥%. Therefore, the input of 𝑙 − 𝑡ℎ layer, which 
contains the features from all the previous layers, can be denoted as follows, 
 

𝑥% = 𝐻%([𝑥!, 𝑥&, . . . , 𝑥%'&])                                                 (6) 
where  refer to the connection of the function diagram generated by layers. 
 

Besides, attention layer is added after every two 1 × 1 convolution layer and 3 × 3 
convolution layer in dense convo-lutional block, which is pictured in Figure 7. For attention 
layer, it could recalibrate the feature channel weights by calculating the interdependence among 
channels and improve significant performance of the most advanced architecture. As shown in 
Figure 8, there are four steps for the attention layers to recalibrate the features. Firstly, in order 
to construct the interdependence among channels, we convert the feature map  on 
the spatial dimension 𝐻 ×𝑊 to the channel descriptor. Next, the feature map U is shaped to 
1×1×C by a global average pooling layer. Thirdly, the gating mechanism composed of full 

x0 ,x1,...,xl−1

U ∈RH×W×C



 

 
 
 
 

connection layers and sigmoid activation function is used to learn the nonlinear interaction 
among multiple channels. The feature map is shaped to 1×1×C and then decoded back to 1×1×C 
as the reweighed vector 𝑉( with the gating mechanism. Lastly, the output of attention block Y 
can be formatted as follows, 
 

         Y = ∑ 𝑈( ∙ 𝑉()
(                                                                 (7) 

 
where 𝑈( is the U of each channel and multiplied with reweighed factor 𝑉( in vector V. 
 

Generally, several optimizations of AD-CNN are listed as follows. 
(1) In AD-CNN, feature reuse and recalibration are considered simultaneously. On the one 

hand, dense convolutional block achieves feature reuse and reduces the number of parameters 
remarkably. On the other hand, attention layer linked with convolution could reweight 
calibration for each feature channel. It helps to extract effective features and improve the 
classification accuracy. 

(2) It is creative to make some optimization in the structure of AD-CNN so as to have an 
combination of classification accuracy and computational complexity. For instance, max-
pooling layers in dense convolutional block are removed to protect low-level features. 1 × 1 
convolutional layers are involved to protect global features and reduce feature redundancy. 

4   Simulations 

In this section, simulations are operated to illustrate the superiority of HCNN. The signal 
candidate modulation format set is M = {2FSK, 4FSK, MSK, BPSK, QPSK, 16 − QAM, 64 
−QAM}. To reduce the computational complexity and improve the generalization ability, the 
normalized pixel size of SCFs and RCs are down sampled to 80 × 80. SCFs and RCs are both 
obtained by received signals with different pre-defined sample lengths, i.e., 1024, 2048, 4096, 
9600. In the training stage, 40000 SCFs and RCs are involved respectively for each modulation 
at a given SNR as training data. In the classification stage, 10000 SCFs and RCs in different 
assumed conditions are used to calculate the classification accuracy 𝑃**.  

 
In Figure 9, we compare the performance of HCNN under different settings of sample 

lengths. For same sample length, the HCNN performs consistently within the range of SNR, 
proving the practicability of HCNN. Moreover, better classification performance by employing 
more signal samples, proving the asymptotic behavior of HCNN. 



 

 
 
 
 

 
 

Fig. 9. The performance of HCNN under different settings of sample lengths. 
 

Figure 10 is an overall methods comparison among HCNN proposed, HCNN with both 
DCNN, CNN with RCs [6] and CNN with SCFs [8] under different SNRs, and the sample length 
is set as 4096. The result vertifies that proposed HCNN outperforms the others for the entire 
SNR range. Specifically, HCNN proposed yields 3 dB gains over HCNN with both DCNN at 
95% 𝑃**, illustrating the superiority of the HCNN. However, the accuracy is only up to 0.63 
when using a single kind of signal feature, indicating the wide range of classification modulation 
formats of HCNN. The reasons are from two aspects. Initially, AD-CNN in HCNN can extract 
more discriminative features from input features. Additionally, it is illustrated that single-feature 
limits the types of classification modulation. More importantly, the per epoch training time of 
proposed HCNN and HCNN with both DCNN are 90 seconds (s), 710s, respectively, using the 
same dataset and equipment (a GTX1080 GPU). It shows the lower computational complexity 
of HCNN. 



 

 
 
 
 

 
 

Fig. 10. The performance comparison among HCNN and other AMC methods. 

5   Conclusion 

In this paper, a novel AMC method named HCNN is proposed. First of all, the HCNN 
combines with DCNN and AD-CNN to make classification decisions of seven modulation 
formats with high accuracy. DCNN uses deep convolutional neural network and replaces the 
pooling operation by convolutional layer to reserve discriminative features. Especially, AD-
CNN is designed to consider feature reuse and recalibrationare simultaneously, in order to 
improve performance and reduce computational complexity. Besides, SCFs and RCs are 
conducted respectively to expand the modulation scopes of classification. Simulation results 
verify the accuracy superority and low computational complexity of HCNN. 
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