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Abstract. Automatic modulation classification (AMC), as a key technology of cognitive
radio (CR), aims to identify the modulation format of the received signal. In this paper,
we propose a novel dense memory fusion neural network(DMFN) based AMC method
where grid constellation matrix (GCM) extracted from the received signals with low
computational complexity are utilized as the input of DMFN. In DMFN, densnet with
densely connected structures is designed to extract high representative feature of GCMs,
the unit of long short-term memory (LSTM) and fully connected layer are used to make
classification decisions. Extensive simulations demonstrate that DMFN yields significant
performance  gain  and  takes  higher  robustness  comparing  with  other  methods.  In
addition, DMFN based AMC scheme achieves 90% classification accuracy at 4dB when
the symbol length is set as 512, which illustrates its outstanding performance.
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1   Introduction

With the rapid growth of mobile devices,  the radio frequency (RF) spectrum resource
become more scarce[1][2][3]. The development of radio technology is largely constrained by
the shortage of RF spectrum resource.  To alleviate the spectrum shortage,  cognitive radio
(CR)[4],  Cognitive  Radio  proposes  a  dynamic  spectrum  access  method,  which  can
dynamically access the idle band to avoid interference by perceptually the state of the target
band[5]. It shows that there is a need for improved spectrum sensing and signal identification
algorithms to enable sensors and radios to detect and identify spectrum users and interference
in the widest possible range, thereby improving the signal-to-noise ratio (SNR). In order to
ensure the normal usage of the spectrum in CR, automatic modulation classification (AMC),
which  servers  as  an  intermediate  step  between  signal  detection  and  demodulation,  is  a
promising key technology to identify  the modulation formats of the target signals corrupted
by noise and interference. AMC is widely used in military and civil communication fields,
such as software radio, cognitive radio, spectrum detection and management, signal detection,
adaptive  modulation  transmission,  threat  analysis,  interference  identification,  signal
authentication, electronic reconnaissance, non-cooperative communication, etc.[6]. It plays an
important role in intelligent signal analysis.
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In general, AMC methods can be roughly divided into two different types, which are the
likelihood-based (LB) and feature-based (FB) approaches[7][8]. LB method take AMC as a
hypothesis  testing  problem,  which  can  get  the  optimal  solution  under  Bayesian  sense  by
minimizing the probability of misclassification. However, when the receiving signal appears
parameters of an unknown probability distribution, the complexity of the method increases
and the robustness decreases, which greatly limits its application in practice[9][10] . Though
FB methods are sub-optimal methods, it is easier to apply in practical implementations than
the former method because of its low computational complexity and less prior knowledge
required.  So this  paper  is  going to  improve the  performance  of  FB methods to  get  more
classification accuracy gain.

The FB-based AMC method can be roughly divided into two steps. The first step is to
extract statistical features from the received signal. The second step is to use the extracted
feature parameters to design a classifier for classification. In recent years, many researchers
use some novel features to improve the performance of the FB method. Smith et al. in [11]
used the high-order  cumulant  feature  as  the  input  of  a  fully  connected  neural  network  to
implement  the  AMC  method,  however,  the  computational  complexity  of  higher-order
cumulants is high. The extracted characteristic feature include amplitude-phase information,
and signal constellation representation. Plenty of  novel neural networks are utilized to process
those features, such as Alexnet [12], Resnet [13]. However, both of them can not satisfy the
requirement of high performance at low SNR. Some other researchers pay attention to change
the loss function to constrained neural network to converges. Sai Huang et al. use contrastive
loss [14], compressive loss [15] to enhance intra-class aggregation and inter-class separability,
which may make it harder to converge for networks. Moreover, part of his effort was devoted
to identifying overlapped sources by using multi-gene genetic programming with structural
risk minimization rinciple [16].

In this paper, we propose a novel dense memory fusion neural network (DMFN) based
AMC method.  Firstly,  we utilize  grid constellation matrix  projection  to  generated  GCMs,
which  contains  the  constellation  information  of  the  received  signal  and  discards  some
redundant information. Secondly, a dual model fusion network structure is designed to learn
the  deep  information  of  GCMs and improve  AMC performance.  Thirdly,  simulations  are
conducted to verify the performance and robustness of proposed DMFN based AMC method.

2   Problem statement

2.1   Signal model
Assume that  the radio frequency signal is  received  by the signal  antenna system and

transformed to baseband signal. Therefore, a general expression for the complex envelope of
the received baseband signal is given by

(1a)

(1b)



where  and  represent the unknown amplitude and symbol sequence, respectively. 

denotes  the  residual  channel  effects  and  is  invariant  during  the  AMC process.   is  the

frequency offset, and   represents the phase jitter.   and   are the symbol spacing and
timing errors, respectively.

  is  the additive white Gaussian noise.  Suppose that  the average power of each
symbol is normalized, the signal-to-noise ratio (SNR) is formulated by

 

(2)

2.2   System model
Fig. 1 presents the modulation classification Architecture of this paper,  which can be

roughly  divided  into  to  modules,  i.  e.,  feature  extraction  module  and  LSTM-based
classification module. Firstly, the raw IQ signal received by the antenna receiver should go
through the feature extraction module, which can extract GCM features different from the raw
IQ feature and the traditional constellation. Secondly, we utilize the GCM as the input of the

classification, which is composed of DenseNet and LSTM. Finally, we got the hypothesis 

of this AMC issue, in which  is set as 5.

Fig. 1. Dense memory fusion neural network based AMC scheme.

3   DMFN based modulation classification

3.1   Grid constellation matrix
Considering that the received signal can be separated by two part: the imaginary part and

the real  part  [17] ,  we often project  the raw "IQ" signal  into cartesian  coordinate  system
through mapping the I component to the X-axis, and the Q component to the Y-axis. I, Q
components denote the imaginary and real part of the received complex signal, respectively.
Regular constellation images (RC) are generated by mapping the I,  Q data into scattering
points on the complex plane.

In order to facilitate the network to learn effective representations from the signal, the
received signal are transformed into GCM as the input of the network. Firstly, we pre-draw the

 grid on the RC. Secondly, we calculate the number of sample points that fall in each



grid, and finally, after all the sample points are calculated, we normalize the   grid,
resulting in a grayscale matrix image that represents the density of the constellation map.

In  this  paper,  the  predetermined  size  of  the  grid   are  set  to  40,  both.  Some
example of GCM for five modulation formats versus SNRs are given in Fig. 2. The highlight
pixels in the image indicate that signal symbols are clustered in these area.

Fig. 2. GCMs for five modulation formats with different SNRs.

3.2   Structure of DMFN
In order to explore deep representations and recognize the signal format. DMFN, a data-

driven automatic modulation classification structure is  designed. As is shown in Fig. ,  the
DMFN mainly consist of two modules, the feature extraction module and the classification
module. The feature extraction module extracts the deep representations from the raw GCM
images.  The  classification  module  utilizes  the  deep  high-dimensional  representations  to
perform the final classification decision. As the GCM is quite different with the pictures of
actual  physical  environment.  Therefore,  the  DMFN  is  different  with  the  deep  learning

networks using in computer vision field. Firstly, We set the convolutional kernel size as 
to  actualize  sparse  connectivity.  Secondly,  we  utilize  the  LSTM  to  transform  the  high-
dimensional feature into one-dimensional feature using as the input of the last fully connected
layer.

In the feature extraction module, the first  convolution is utilized to pre-process the
raw GCM features  and  obtain  the  preliminary  representations.  The max-pooling  performs
down-sampling  to  reduce  the  size  of  the  preliminary  representations.  Next,  in  order  to
incorporate efficiency and accuracy,  we adopt four dense blocks to extract  the underlying
high-dimensional features. The four dense blocks have the similar structure. Take dense block
1 as example, it contain six units, one convolution and one pooling. The six unit make up the
densely  connections,  each  unit  connects  with  all  previous  units  to  reuse  the  feature  and
strengthen feature propagation. The convolution after six units is used as the transformation to



connect  the  dense  blocks.  Besides,  rectified  linear  unit  (Relu)  activation  function  in  the
convolution is able to enhance the nonlinearity of the DMFN. The last part of dense block 1 is
pooling, which is utilized to enhance the sparsity of the feature generated from the former
convolution and reduce the number of network parameters.

After the feature extraction, we get the high-dimensional feature which can represent the
raw signal format.  However,  the high-dimensional feature is unable to perform the finally
classification directly. Hence, we use the classification module to reduce the dimension and
improve the computation efficiency. The classification module consists of LSTM layer and
fully connected layer, we first use the LSTM layer to transform the high-dimensional feature
into  one-dimensional  feature.  Then,  fully  connected  layer  output  the  unified  units  whose
number  is  equal  to  the  modulation  formats.  the  value  of  the  unified  units  are  utilized  to
conduct the finally classification.

Fig. 3. The structure of DMFN.

3.3   Loss function
The most widely used classification loss function in multi-classification problem, cross-

entropy loss, is presented as follows:

(3)

Where  is the indicator function, and  denotes the deep feature of the  -th sample,

belonging to the  -th class.  The embedding feature dimension  is set to 32 in this paper.



 denotes the -th column of the weight  and  is the bias term. The

batch size and the class number are  and , respectively.
In order to prevent the network weights from taking extremely large values and over-

fitting, we add a regularization term to the cross-entropy loss function. So the loss function is
given by:

(4)

Where   denotes the  Euclidean norm.   denotes the  -th column of the weight

 of the  -th sample and   is the coefficient of the regularization term, which is
specifies by the user.

We update the weight  utilizing mini-batch stochastic gradient descent and error back
propagation  algorithm  until  the  loss  converges  to  a  constant,  and  then  get  the  optimal

parameter  of DMFN, which is given by

 
(5)

4   Simulation

In this section, extensive simulations are conducted to illustrate the superiority and offset
robustness  of  the  proposed  DMFN.  An  open  source  dataset  platform,  RadioML
(https://github.com/radioML), is used to generate the modulated signal for fair comparison.
We  utilize  the  RadioMl  platform  to  generate  the  modulation  signals  and  simulate  each
modulation format as SNR ranges from -6 dB to 14 dB with a step of 2 dB. The candidate

modulation set is = {BPSK, QPSK, 8PSK, 16QAM, 64QAM}. Ten thousand samples for
each  modulation  format  at  certain  SNR are  used  to  train  and  verify  the  performance  of
proposed AMC scheme, and one thousand samples to test. In the training process, the Monte

Carlo trails are used to calculate the probability of correctly classifying  , which is given as
follows

(6)



Where denotes the prior probability of modulation format  and we assume that the

prior probabilityof each modulation format is equal to  .  is the probability

that the modulation format is correctly estimated as  .

Fig. 4. Classification accuracy of DMFN versus symbol length.

Fig. 4 shows the classification performance of DMFN versus SNR with different symbol
lengths. It is obvious that better classification performance is achieved by using more signal
symbols. The classification accuracy reaches 94.94% when the SNR is 6dB and the symbol
length is 128.



Fig. 5. Classification accuracy comparison among DMFN and the other AMC methods.

Fig.  5  illustrates  that  the  performance  of  DMFN is  better  than  the  other  two  AMC
methods, i.e. Resnet[18], Alexnet[19], under the same symbol length and SNR. Those two
deep  learning  neural  network  structures  are  selected  to  conduct  comparison.  We  slightly
modified the number of neurons in the final fully connected layer from the original 1000 to the
5, which is the number of modulation format. As is shown in Fig. 5, given the same symbol
length, for Resnet34 and Alexnet, the former is better than the latter overall. However, Both of
them are slightly insufficient compared with DMFN. The performance gain yielded by DMFN
deep learning model can be explained by the combination of densenet and LSTM structure.



Fig. 6. The robustness of DMFN and the other AMC methods.

Fig. 6 compares the robustness of proposed DMFN, Resnet34, Alexnet. The robustness
of  DMFN  based  AMC  scheme  versus  normalized  frequency  offset  with  symbol  length

 is depicted. The symbol length and SNR are fixed at 512 and 6dB, respectively. The

range of frequency offset is set from 0 to  with a step of . It can be observed that
the frequency offset  severely degrades the classification performance and DMFN performs
best of all, proving its robustness to frequency offset.

5   Conclusions

In this paper, we proposed a GCM based AMC method named DMFN. Firstly, GCM are 
utilized as the initial input of the network. Secondly, a densnet construction is conducted to 
extract distinguishable feature from GCMs and a LSTM based classifier is designed to make 
classification decisions. Finally, extensive simulations are designed to verify the superiority 
and robustness of DMFN compared with other existing methods.
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