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Abstract. Network  Function  Virtualization  (NFV)  is  a  technology  that  implements
network  functions  through  virtualization  on  x86  servers.  In  order  to  improve  the
forwarding performance of a VM(virtual machine), usually the most effective method is
to use multiple cores and exclusive methods of the vCPUs in the VM to monopolize the
physical  CPU resources for  multiple forwarding processes to  use independently.  The
forwarding process discards the interrupt-based asynchronous signal sending mechanism
to avoid the impact of interrupt switching on the forwarding overhead. Instead, it uses a
while 1 dead-loop to poll the packet receiving queue. Once there is a packet in the packet
receiving queue, the packet is immediately forwarded. Because the vCPU bound to the
forwarding process works in an infinite loop polling mode, the vCPU occupancy display
is 100% regardless of whether it is in the no-load or full-load phase. Because the VM
cannot obtain the real load of each forwarding vCPU in real time and expand it in time, it
will cause VM to lose a lot of packets due to overload operation, which will affect the
quality of the service carried by the VM. This article studies how to measure the real
utilization of vCPU in real time. The results show that the real vCPU occupancy can be
accurately calculated using this solution.

Keywords:  DPDK,  SR-IOV,  OVS-DPDK,  NFV,  vCPU,  VM,  Occupancy  Rate,
Forwarding Process.

1   Introduction

Network  Functions  Virtualisation  aims  to  transform  the  way  that  network  operators
architect  networks  by  evolving  standard  IT  virtualisation  technology  to  consolidate  many
network equipment types onto industry standard high volume servers, switches and storage,
which  could  be  located  in  Datacentres,  Network  Nodes  and  in  the  end  user  premises.  It
involves  the implementation of  network  functions in  software  that  can  run on a  range of
industry  standard  server  hardware,  and  that  can  be  moved  to,  or  instantiated  in,  various
locations in the network as required, without the need for installation of new equipment [1].

With  the  continuous  advancement  of  operator  network  reconstruction,  innovative
technology architectures represented by SDN/NFV are accelerating the network towards full
cloudification, and the transformation of the network into a data centered cloud-based network
has  become  the  focus  of  industry  attention,  such  as  foreign  AT&T Domain  2.0,  China
Telecom's CTNet2025, China Mobile's Novonet, and China Unicom's CO reconstruction. At
present, the general consensus reached in the industry is that 5G networks will be based on
SDN/NFV technology and cloud computing technology to implement network virtualization
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and cloud deployment. The "China Telecom 5G technology White Paper" released by China
Telecom puts forward the logic architecture of 5G target network, referred to as "three clouds"
network  architecture.  The "three  clouds"  architecture  meets  the  characteristics  of  flexible,
intelligent, integrated and open 5G network in the future, and is also built on the technology
foundation  of  SDN/NFV  and  network  cloud[2].  With  the  maturity  of  virtualization
technology, considering the issues of bandwidth and latency, the concept of edge computing
has begun to be introduced [3]. With edge computing, a large number of computing tasks can
be  processed  directly  near  the  source  of  the  data  generation,  which  greatly  eases  the
transmission pressure on the network. At the same time, tasks are processed at the edge, which
reduces the delay caused by data transmission speed and bandwidth limitations, and users get
faster response time. Edge computing is generally a micro data center composed of several
servers.  Under  the  condition  of  limited resources,  the  dynamic  elastic  scalability  of  NFV
virtualization technology is used to achieve the efficient use of edge computing resources.

The problem of insufficient software forwarding performance in virtualization has been
greatly improved after the rise of DPDK technology. In this article, we start with the analysis
of  virtualization  technology and  introduce  several  typical  software  forwarding  models.  In
order to improve the software forwarding performance, the DPDK needs to bind the core to
exclusive vCPU resources for the while loop packet processing. The vCPU utilization counted
by the general operating system = (1-percentage of time occupied by the idle process). Since
the vCPU bound by the DPDK runs in an endless loop, the vCPU will not enter  the idle
process, so the vCPU utilization is always 100%.

This brings up a question: What is the actual vCPU utilization rate, and does it need to be
expanded? Virtualization has the ability to flexibly scale in/out, so how to accurately calculate
the  actual  vCPU  occupancy  rate  at  the  current  moment  makes  it  possible  to  implement
automatic elastic scaling of virtual network elements based on a preset threshold of vCPU
occupancy. In this paper, the method of real-time quantitative measurement of vCPU's real
occupancy is researched and described, in order to achieve real-time accurate display of the
vCPU under the situation of dead loop running vCPU real vCPU occupancy.

Chapter 2 of this article first introduced virtualization-related technologies, and described
several typical general server-based forwarding models. Finally, in Chapter 3, the vCPU load
indeterminacy when the VM implements soft forwarding is studied in depth.

2   Virtual machine forwarding

2.1   Virtualization technology

      Virtualization currently uses Intel's x86 architecture. Intel's virtualization technology (VT) 
mainly includes VT-x technology for CPU processors, VT-d technology for I/O chipset and 
VT-c technology for network interface cards. These are hardware-assisted virtualization 
technologies that provide strong underlying technical support for the widespread development 
of NFV.
      Virtualized network elements in the CT industry generally use the open source Linux 
operating system, which uses "network interface card reception-> network interface card 
interruption-> kernel reception-> send messages to user processes-> switch to user mode-> 
user process processing packet" packet processing mode, which involves multiple memory 
copies, kernel mode/user mode switching, and process scheduling, which is very inefficient. 



What is more serious is that the VM runs on the Host machine, which means that the VM user 
application layer receives a packet and needs to pass through the kernel processing of the Host
OS kernel and the VM OS kernel twice. For virtualized network elements with large 
forwarding traffic, the performance loss is unacceptable. The DPDK (Data Plane Development
Kit) technology was born [6]. DPDK runs in user mode and uses the PMD ( Poll Mode 
Driver). PMD consists of APIs provided by specific drivers in user space for setting up 
devices and their corresponding queues. Abandoning the interrupt-based asynchronous 
signaling mechanism brings great cost savings to the architecture. Avoiding interruption 
performance bottlenecks is one of the keys for DPDK to improve packet processing speed. At 
the same time combined with zero-copy, memory huge pages, NUMA, SR-IOV and other 
technologies, greatly improved software forwarding capabilities [4][8].

2.2   Virtualized forwarding model

      In the pure server case, software forwarding mainly has the following three forms:
      1) VM forwarding based on OVS-DPDK
      OVS-DPDK [7] runs in Host OS user mode, DPDK on a VM runs in Guest OS user mode,
and VF is a virtual network interface card assigned to the VM. As shown in Fig 1: Packet 
interaction for two VMs in the same Host, it is forwarded through the OVS-DPDK of the 
Host, see the curve marked by the label a in the figure; For packet interaction between two 
VMs across the Host, the OVS-DPDK bypass kernel receives packets directly from the 
physical NIC. OVS-DPDK sends packets to the corresponding VM through table matching, 
and the VM user mode DPDK bypasses the VM OS kernel to directly receive packets. See 
curve marked with label b in the figure. This forwarding model is very flexible, and because 
the Host and Guest kernel processing is bypassed, forwarding performance is also guaranteed 
to some extent, but because OVS-DPDK also needs to occupy a certain amount of CPU 
resources, it will affect the VM's resource occupation allocation to a certain extent.. At the 
same time, OVS-DPDK serves as a unified output for all VMs on the Host, and the forwarding
performance of all VMs cannot exceed the forwarding performance of OVS-DPDK, which is 
a bottleneck point in forwarding performance.

Fig. 1. VM forwarding model based on OVS-DPDK



      2) Virtual forwarding based on SR-IOV
      The VM uses SR-IOV technology to directly take packets from the physical network 
interface card for processing, completely bypassing the kernel mode and user mode processing
on the Host, and its performance is almost equivalent to the processing of receiving and 
sending packets on the Host. A physical network interface card supporting VT-c technology 
can virtualize multiple vfs. Each vf corresponds to an independent packet sending and 
receiving memory space on the physical network interface card. These vf are allocated to the 
corresponding VMs respectively. One correspondence makes it possible for the VM to read 
and write packets directly from the physical NIC memory. This SR-IOV method, combined 
with DPDK, completely bypasses the processing of the forwarded packets by the Host OS and
Guest OS kernels, and the software forwarding performance is greatly improved [5]. The VM 
forwarding model of SR-IOV+DPDK is also the current choice to pursue the ultimate pure 
software forwarding. As shown in Fig2: Packet interaction for two VMs in the same Host, skip
the Host OS and forward it directly by the switching chip on the physical network interface 
card, see the curve marked by the label a in the figure; For packet interaction between two 
VMs across the Host, the VM directly writes the packet to the physical NIC memory and 
sends it to the external switch, and the other VM reads the packet directly from the physical 
NIC memory of the Host, and combines the packet processing with the user mode DPDK, see 
the curve marked with label b in the figure. This forwarding model is the optimal model of 
VM pure software forwarding, but it is less flexible than the above model 1 due to the 
requirement of hardware characteristics support for the physical network interface card.

Fig. 2. SR-IOV-based VM forwarding model

      3) VM forwarding based on Intelligent Ethernet Card
      This model is derived from model 1, which sinks ovs-dpdk into the Intelligent Ethernet 
Card to release the occupation of OVS-DPDK on the Host  CPU resources in model 1. The 
powerful throughput capacity of the special forwarding chip in the Intelligent Ethernet Card 
will not become the forwarding performance bottleneck of the VM belonging to the Host. In 
addition to OVS-DPDK, some services in the VM can also be sunk, such as tunnel 
encapsulation and decapsulation, fragmentation and reassembly, load balancing, and so on. 



According to the actual service deployed by the VM, the corresponding service sink 
processing is performed to valuable CPU resources are released for use by VM. As shown in 
Fig 3: Packet interaction for two VMs in the same Host, skip the Host OS and forward it 
directly by the switching chip on the Intelligent Ethernet Card, see the curve marked by the 
label a in the figure; For packet interaction between two VMs across the Host, the VM directly
writes the packet to the Intelligent Ethernet Card memory and sends it to the external switch. 
The other VM reads the packet directly from the Host's physical network interface card 
memory and combines the packet processing with the user mode DPDK, see the curve marked
by label b in the figure; Some services functions sink the Intelligent Ethernet Card, for this 
type of forwarded packet, it can be forwarded directly after being processed by the Intelligent 
Ethernet Card without being sent to the CPU for processing, which can save valuable CPU 
resources, see the curve marked by label c in the figure.

Fig. 3. VM forwarding model based on Intelligent Ethernet Card

      Among the above three virtual forwarding models, the VM dpdk and Host ovs-dpdk in 
model 1 and the VM dpdk in models 2 and 3 will all involve vCPU binding operations to 
improve software forwarding capabilities.

2.3   Soft forward CPU load uncertainty

      Network Function Virtualization is a technology that implements network functions 
through virtualization on x86 servers. In order to improve the forwarding performance of a 
VM, usually the most effective method is to use multiple cores and exclusive methods of the 
vCPUs in the VM to monopolize the physical CPU resources for multiple forwarding 
processes to use independently. The forwarding process discards the interrupt-based 
asynchronous signal sending mechanism to avoid the impact of interrupt switching on the 



forwarding overhead. Instead, it uses a while 1 dead-loop to poll the packet receiving queue. 
Once there is a packet in the packet receiving queue, the packet is immediately forwarded. As 
shown in Fig.4, in the VM for network function virtualization, there are multiple vCPUs, and 
the forwarding process is bound to these vCPUs in an exclusive way of binding cores, and an 
endless loop polling method is used for efficient forwarding service processing.

Fig. 4. Multi-vCPU VM

      Because the vCPU bound to the forwarding process works in an infinite loop polling 
mode, the vCPU occupancy display is 100% regardless of whether it is in the no-load or full-
load phase.
      When a network-capable VM is deployed, it estimates the processing throughput required 
by the VM based on information such as the current business scenario and the number of 
users, and deploys redundant capabilities. As business scenarios change and the number of 
users increases, the redundant processing capabilities of the originally deployed VMs will 
become less and less redundant, or even exceed the original processing VM's forwarding 
processing capabilities, causing packet processing to be discarded in a timely manner.
      Currently, the maximum throughput of VMs with network functions in typical scenarios is
generally provided. In the daily operation and maintenance process, various statistical (VM 
throughput, packet loss, and other statistical information) of VMs that rely on human 
resources to detect network functions are used. Plan for subsequent expansion. This method 
relying on human guarantees is inefficient, and is subject to human factors, which has greater 
risks. Also, different types of x86 CPUs have different processing capabilities, which 
increases the difference in the maximum throughput value of the VM originally given.

3   Technical solutions and implementation

      In order to improve the operation and maintenance efficiency in the virtualization scenario 
and reduce the risks caused by differences in physical equipment and human factors, this 
paper proposes a calculation method for the real CPU occupation rate of the vCPU bound by 
the endless loop operation of the VM forwarding process of network functions , Which can 
conveniently and intuitively display the real CPU usage of each vCPU of the VM to which the
network function virtualization belongs, and make a VM capacity expansion plan in advance. 
The technical scheme is as follows:



      First, we need to set the weight value according to the different packets that the VM needs 
to process. The packet weight value is obtained based on the CPU resources consumed by one 
packet processing. The size of the weight value is determined by the implementation 
complexity of different services, so the weight value remains unchanged after the service 
function goes online.
      Secondly, it is necessary to obtain the crystal clock of the physical CPU of the general 
server as the reference clock, and based on the reference clock, simulate the processing of 
forwarded packets to obtain the processing time of the baseline service (IPV4) packet, 
according to the reference clock and the processing time of the baseline service packet, get the
total number of packets that can be processed in a vCPU usage calculation cycle.
      Finally, based on the statistical values of different service packets processed by the VM in 
a calculation cycle, and combining different weight values of different service packets, the 
number of limit service packets can be calculated. According to the formula:

CPU usage=number of baseline service packets
totalnumber of packets

×100%

      We can get the real vCPU usage in the current calculation cycle.
      It should be noted that hardware resources such as the CPU computing unit and CACHE 
are shared resources. Due to the different load of the bearer service in different time periods, 
the use of shared hardware resources is different. This has an impact on the accuracy of the 
originally calculated baseline service packet processing time.. To reduce the impact of shared 
hardware resource usage on the accuracy of baseline service packet processing time, the 
baseline service packet processing time needs to be updated regularly. Therefore, it is 
necessary to set a system timer, periodically simulate the processing of forwarded packets, and
periodically obtain the processing time of the baseline service (IPV4) packets to use more 
accurate values in the calculation of the next cycle.
      

      In order to facilitate the understanding of this technical solution, this section describes the 
specific implementation of the technical solution in combination with specific service 
functions. The definition symbols used in the text are explained here:

Table 1.  Symbol Description

Symbol Description
Fwdi Identifier of the forwarding process i, used to identify multiple forwarding processes.

The value of i is greater than 0 and less than the number of vCPUs occupied by the
virtual machine (VM)

Tcpu Crystal clock of server physical CPU
Tstd,i Baseline packet processing time. Here, the IPV4 packet is used as the baseline packet to

obtain the processing time. i is the number of forwarding processes
Tload One vCPU usage calculation cycle
Tcyc Running timer period
Numtotal,i The total number of baseline packets that can be processed in a vCPU usage calculation

period. i is the number of forwarding processes
βv4 IPV4 service weight value. Since IPV4 is a baseline service, the weight value is 1



βipsec Weight of the ipsec service compared to the IPV4 baseline packet processing time
βnat Weight of the NAT service compared to the IPV4 baseline packet processing time
Counterv4,i Baseline IPV4 packet statistics of the forwarding process Fwdi during a vCPU usage

calculation period. i is the number of forwarding processes
Counteripsec

,i

Statistics  of  ipsec  service  packets  of  the  forwarding  process  Fwd i during  a  vCPU
occupancy calculation period. i is the number of forwarding processes

Counternat,i Statistics  of  nat  service  packets  of  the  forwarding  process  Fwd i during  a  vCPU
occupancy calculation period. i is the number of forwarding processes

Counterstd,i Number  of  packets  in  the  forwarding  process  Fwdi after  a  baseline  in  a  vCPU
occupancy calculation period obtained after weighting various service packets. i is the
number of forwarding processes

Loadi vCPU percentage occupancy, the maximum i is the number of vCPUs occupied by the
VM

      The calculation method for the real occupancy rate of vCPUs in an infinite loop includes 
the acquisition of the physical CPU crystal clock, the acquisition of baseline packet processing
time, the acquisition of the total number of baseline packets that can be processed by the 
vCPU occupancy calculation cycle, the acquisition of the weight relationship between various 
services and the baseline packets, obtain statistics of various service packets processed during 
the vCPU occupancy calculation cycle. As shown in Fig 5:
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Fig. 5. Calculation of initial state occupancy

      The specific implementation steps are as follows:
      After the VM is powered on, the occupancy calculation module obtains the crystal clock 
Tcpu of the physical CPU of the general server where the VM is located as the reference clock 
of the forwarding process Fwdi.
      The occupancy calculation module uses Tcpu as the reference clock and records the start 
time T1. At the same time, it instructs the simulator to trigger the IPV4 baseline packet to the 
forwarding process Fwdi for processing. After the processing of the forwarding process is 
complete, record the time T2 to obtain the baseline packet processing time Tstd,i = T2-T1.
      Divide a vCPU occupancy calculation period by dividing the processing time of a single 
baseline packet to obtain the number of baseline packets that can be processed during the 
calculation period, that is, Numtotal,i=Tload/Tstd,i.
      The weight presetting module presets a weight ratio relationship between processing of 
each service packet and processing time of the baseline packet.



      The forwarding module counts the number of packets processed by each service.
      The occupancy calculation module obtains the weight value of each service packet and the
number of processing each service packet in each calculation cycle. According to the formula 
Counterstd,i = ∑Counter (k )∗¿ β (k )¿  (where k is Different services, such as: ipsec, nat, 
etc.), get the number of baselined packets.
      Divide the number of baselined packets Counterstd,i by the total number of baseline packets 
Numtotal,i that a vCPU occupancy can process in a cycle to get the true vCPU occupancy, ie: 
Loadi=Counterstd,i/Numtotal,i*100%.
      Considering that in a virtualized environment, the server's physical CPU, CACHE, and 
other hardware resources are shared and used, the processing time of baseline packets may 
change under different traffic processing situations, so the timer device needs to be enabled 
during the running state Calculate the baseline packet processing time periodically to obtain a 
more accurate total number of baseline packets that can be processed in the vCPU usage 
calculation period. As shown in Fig 6:
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Fig. 6. Calculation of operating occupancy

      In the running state, the crystal clock Tcpu of the server's physical CPU is used as the 
reference clock, the system timer is started, and the timer period is set to Tcyc. The timer 
expires, triggers a message, and dynamically adjusts the processing time of the baseline 
packet. By periodically adjusting the baseline value, it can reflect more real processing power 
according to the usage of physical resources, making the calculated vCPU usage more 
accurate.
      Through the above measurement method, a more accurate vCPU occupancy situation can 
be obtained in real time. Compared with the 100% displayed by the operating system vCPU 
monitoring tool, the vCPU occupancy rate described in this article can dynamically and 
accurately display the real-time vCPU occupancy situation. Fig 7 is a graph of the vCPU 
occupancy curve when the vCPU is running different services with the same throughput, using
the operating system's own monitoring tools and using this solution's measurement method. 



The general server configuration used in this article is as follows: Intel XEN Gold 5118 
processors (12 cores each, 2.3GHz) * 2, 128G DDR4 Memory and an Intel X520 10GbE PCIe
dual port network interface card. The software uses DPDK 18.11 version, combined with 
software code to achieve service functions of IPV4, NAT and IPSEC. Use Spirent TestCenter 
tester to directly connect with server's X520 network interface card to send and receive 
packets. The figure shows the vCPU usage of different services (IPV4, NAT and IPSEC) at 
the same throughput.

Fig. 7. Comparison of vCPU utilization

4   Conclusion

      This article proposes a method for calculating the real vCPU occupancy when the 100% 
occupancy of the VM's forwarding process is displayed, and the baseline service packet 
processing time is obtained by timing the simulated packet processing. According to different 
service statistics and corresponding the weight value normalizes the service flow model during
the calculation period of the occupancy rate, so as to obtain the real vCPU usage. In addition, 
considering the impact of hardware resource sharing usage, a method of periodically updating 
the processing time value of the baseline service packet is adopted to achieve the purpose of 
truly reflecting the vCPU usage. Combining alarms, statistics, and graphical displays allows 
operations and maintenance personnel to easily and intuitively detect changes in forwarding 
throughput and schedule capacity expansion in a timely manner.
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