

*Cooresponding author: Hua Lu. {luhua@gdcni.cn}. Guangdong Communications & Networks Institute.

A large capacity programmable packet

forwarding device

1st Qinshu Chen1, 2nd Hua Lu1*, 3rd Fusheng Zhu1, 4th Hui Li2

{chenqinshu@gdcni.cn1, luhua@gdcni.cn2, zhufusheng@gdcni.cn3}

Guangdong Communications&Networks Institute1

Abstract. In the 5G/B5G era, the need of various new services for network

bandwidth, delay and cost is far different, so various emerging services may

have their own connective protocols according to their own special applications,

which requires the core exchange equipment in the network to support pro-

grammability. However, neither using network processor to realize packets

forwarding nor using fixed pipeline to realize packets forwarding can not meet

the needs of 5G/B5G new applications. In this paper, a new architecture of

switching chip is proposed. By using programmable packets parser, program-

mable packet process unit and programmable packet editer, the requirements of

5G/B5G new applications’ rapid deployment, large capacity, low delay and low

energy consumption are met.

Keywords: programmable packet parser, programmable packet processor, pro-

grammable packet editer

1 Introduction

In 5G/B5G era, with the rise of new services such as automatic driving, telemedicine

and virtual reality, various emerging services may define their own communication

protocols according to their own special applications due to the distinct demands of

various new services for network bandwidth, delay and cost, requiring the core

equipment in the network to support programmability. The programmability of ser-

vices depends on that of switching chip, making it necessary to have programmable

packet parser, programmable packet process and programmable editing function in

the switching chip of the switching equipment. At present, the implementation of

switching chip either uses network processor to make packets forwarded or uses fixed

pipeline to make packets forwarded. Although making packets forwarded by using

network processor supports software programming according to the needs of services,

it leads to large search delay and inability to support large bandwidth, can not reach

the level of T bps switching capacity and not meet the requirements of 5G/B5G high-

capacity & low delay due to the multi-core time-sharing reuse of the same piece of

RAM; while fixed pipeline forwarding can support the level of T bps switching ca-

pacity, but once the design is completed, it cannot be modified through software pro-

gramming to satisfy the needs of 5G/B5G new applications’ rapid deployments due to

EAI MOBIMEDIA 2020, August 27-28, Harbin, People's Republic of China
Copyright © 2020 EAI
DOI 10.4108/eai.27-8-2020.2294711

mailto:%7bluhua@gdcni.cn%7d
mailto:zhufusheng@gdcni.cn3

2

the need to design in accordance with the networks protocol in advance. These con-

tradictions become more and more serious with the development of 5G/B5G mobile

Internet and Internet of things. In this paper, we study a new programmable switching

architecture and realize programmable packet parser, programmable packet pro-

cessing unit and programmable packet editer to solve the above problems.

2 Programmable packet process flow

programmable
packet parser

m lookup

tables inside

PPU

PPU_1 programmable
packet editer

……

m lookup

tables inside

PPU

PPU_2

m lookup

tables inside

PPU

PPU_n

2n lookup tables outside PPU

Fig. 1. Programeble whitch chip block diagram

The structure of programmable switch chip is shown in 0, which is composed of pro-

grammable packet parser module, several packet processing units and programmable

packet editer module. Firstly, the packets enter the programmable packet parser mod-

ule for analysis, obtaining the structure of the packet, putting the parse results (mainly

packet type, destination MAC address, source MAC address, VLAN, ETH type, DIP,

SIP, IP protocol number etc. The keys carried by the packet in this paper can be user-

defined keys, not limited to the keys described above) into the meta-data of the packet

and send them to the subsequent module PPU (packet process unit) for processing.

The structure of each PPU is the same, as shown in 0. Each PPU takes the corre-

sponding keys from the meta-data and those configured in the lookup table to match.

If matched, the contents of the corresponding entries in the table are taken out and put

into the meta-data of the packet, and then sent to the next PPU for processing. After

processed by PPUs, the meta-data of the packet is sent to the packet editer module for

generating new packet. Finally, forward the packet to the destination port indicated by

the meta-data.

3 Programmable packet parser

The main function of the programmable packet parser is to analyze the packet accord-

ing to the packet parse database configured by users and move the key fields of the

packet to the meta-data. The parse flow is to determine the next node (i.e. the next

state) of the packet according to the current node state in the parse tree and the match-

ing keys extracted from the packet, then jump to a new node in the packet parse tree,

and then to determine the next node (i.e. the next state) in the parse tree according to

3

the state of the new node and the next keys to be matched, and so on to the end node

of the packet parse tree.

To realize the parse process described above, a parse database is required which is

composed of the matching rule table and the action table. The matching rule table in

the parse database needs to support the masked matching function, as can be realized

by the ternary content addressable memory. The matching rule table needs to store the

keywords to be compared and the current status, while the former need to support

masked matching as its length may be less than the width of the matching rule table

and the bits not concerned can be masked. The action table stores the next state, the

address of the key to be extracted from the packet next time and the operation instruc-

tions that are needed to move the keys of the packet header to the meta-data.

The packet parser first obtains one initial state and four initial offset addresses accord-

ing to the input port register, obtaining four corresponding keys from the packet ac-

cording to the latter. After splicing these keys with the initial state looks up to the

matching rule table. If hitting the entry of the matching rule table, it reads the action

table according to the address of the entry, obtaining the next state and the four offset

addresses from the action table in the database. Each key offset can extract one byte

key from the packet header, while data offset and data length, corresponding to each

other one by one, are given in the packet parse database. Data length is two bits, indi-

cating how length can be extracted by data offset which can be one byte, two bytes,

four bytes and six bytes. Once matching can get up to eight valid data offsets and data

lengths, that is to say, up to eight fields can be extracted from the packet and put on

the meta-data. According to the key offset obtained from the matched entry of the

packet parse database, the keyword corresponding to four bytes is extracted from the

packet, after that the next state is obtained from this table, with the corresponding

search result obtained from the packet parse database again, that is, the next state and

the offset addresses of four matched keys. At the same time, the packet parse database

provides up to eight offset addresses and data lengths. According to the offset ad-

dresses and data lengths, up to eight data are extracted from the packet and stored on

the meta-data. Then the process described above is repeated to match the packet parse

database again until the next state is 255. Since the packet parse database can be con-

figured by software, the packet parser can analyze any packet by configuring packet

parse database according to the format of the packet.

4

4 Programmable packet process unit

L
o

o
k

u
p

 co
n

d
itio

n
 d

ecisio
n

K
ey

 g
en

eratio
n

 an
d

 h
ash

 calcu
latio

n

L
o

o
k

u
p

 tab
le resu

lt p
ro

cess
Lookup table control

inside the PPU

Lookup table control

outside the PPU

Lookup table

read/write control

hash table

direct table

hash table

direct table

Programmable packet process unit

Fig. 2. Programmable packet process unit

The whole programmable packet process unit is composed of the lookup table condi-

tion decision module, lookup key generation & hash calculation module, lookup table

read/write control module and lookup table result process module, as shown in 0.

4.1 Lookup condition decision

The conditional decision module of lookup table consists of m lookup table decision

makers, each of which is composed of i j-bit comparators that is able to perform the

judgment of greater than, less than, equal and not equal; each comparator has a con-

trol register which stores the immediate number or the address of the match key in the

packet meta-data and the flag of the match key is an immediate or not. If it is an im-

mediate number, the value of the compared number is stored; if not, it’s the match key

address of the packet meta-data. Simultaneously, the mask of the match key is also

included. Before the comparison operation, the match key first needs to do and opera-

tion with the mask register by bit, then performing the comparison operation. In the

end, the judgment results of i comparators and k key fields from the meta-data accord-

ing to the address indicated by the lookup table adjudicator are combined to search

the TCAM. The m lookup table decision makers can be used independently, each of

which corresponds to a lookup table; on the other hand, multiple lookup table deci-

sion makers can be used jointly to search a lookup table as a decision condition, at

that time the number of lookup tables supported by the PPU becomes smaller yet the

supported lookup table decision conditions are more complex than the single lookup

table decision maker. The flag of whether the lookup table inside the PPU or outside

the PPU and the number of the lookup table to indicate which lookup table to look up

are given before it is read.

5

4.2 Key generation and hash calculation

Each lookup table contains p configuration registers, which are used to indicate how

to generate keywords to search the lookup table. Each register contains a byte of the

corresponding key in the position of the packet meta-data and the bit length of the

byte’s valid bit. In terms of the register, each byte of the match key is extracted from

the meta-data, which extract the bytes that are combined into a temporary lookup

table key according to the register’s order. Finally, the invalid bits inside the

temporary lookup table key are wiped to generate the lookup table key. According to

the configuration, the corresponding hash function is selected to calculate the hash

index. In this paper, the double hash lookup is supported. Thus, for each lookup key,

two different hash functions are used to calculate its hash index simultaneously.

4.3 Lookup table read/write control

PPU lookup table read/write control is to flexibly change the size of each lookup table

by configuring registers according to the work scenario of the switch, so that the

packet forwarding chip can meet the needs of various services in various scenarios as

well as make the best use of RAM resources. This module is divided into the

read/write control of the lookup table inside the PPU and that outside the PPU, but the

two of lookup table read-write control modules are almost the same.

The hash table attribute register includes the depth of the hash table, the byte width of

the hash table, the bit width of the hash table, whether the hash table supports single

hash or double hash, whether the hash table carries the statistical counter pointer or

not and the base address of the statistical counter pointer, whether the hash table car-

ries the flag of the instruction pointer or not and the base address of the instruction

pointer, etc. At the same time, each RAM inside the PPU read/write control module

also contains the attribute register describing the RAM block. The register includes

the logical table number of the RAM, the RAM block’s location in the row and col-

umn of the lookup table and the hash function number support by the RAM block. In

order to reduce the hash conflict, multiple entries are usually stored in a hash index.

When the hash table read/write control logic inside the PPU receives the lookup table

request, it is decoded into the logical table number of the hash table in accordance

with the request source. Each RAM block in the PPU checks its RAM attribute regis-

ter according to the request and the address of lookup table, then checking the logic

number of the request lookup table and the number of configured in RAM block at-

tribute register, judging the address of the lookup table in the RAM block of the

lookup table. In the meantime, the RAM address is generated according to lookup

table address and the RAM is read, after which the data is put into the result register

according to the logical table column number in the attribute register of RAM block.

The hash_mux_result is divided in light of the table byte width configuration in the

attribute register of the hash table, finally obtaining multiple hash_result data. The

6

hash table supports a hash index to contain 8 entries in general, causing

hash_mux_result to split 8 hash_result data of the same byte width in the end. The

width of partitions and the number of data to be partitioned are all configured by

software. Then the match key, whose width is configured by the hash table attribute

register, is taken out from the hash_result as well as compared with the hash table. If

match, the final result of the hash table is taken out according to the property register

configuration of the hash table, including the instruction pointer offset and the statis-

tics count offset. Afterwards, the instruction pointer offset and the instruction pointer

base address configured in the attribute register of the table are added to send to the

lookup table result processing module as the instruction pointer. At last, the offset of

the statistics count and the base address of the statistics count in the attribute register

of the lookup table are added to generate the statistics count pointer, after which initi-

ate the request of searching the statistics count lookup table.

4.4 Lookup table result process

The lookup table result process module is mainly based on the processing results of

the previous PPU or the packet parser module and the results of this lookup table to

merge and generate a new meta-data, transferring to the next PPU or programmable

packet editer module. The lookup table process module generates an instruction data-

base, each entry of which contains u ALU (arithmetic logical unit) instructions. Each

instruction can perform the following actions:

─ Move the lookup table result data to the meta-data

─ Move the data on the meta-data to other locations of the meta-data

─ Perform logical operation, including operation and, or, not, exclusive-OR

─ Perform arithmetic operation, add and subtract, but not multiply or divide

─ Perform shift operations including left shift and right shift

─ Set the immediate number to the meta-data

5 Programmable packet editer

The programmable packet editer module uses the results of the PPU process to extract

the meta-data from the key field and merge them into a new packet header, then tak-

ing out the payload from the packet buffer, splicing the new packet header and the

payload to a new packet. The principle of the programmable packet editer is that the

sequence of protocol header key fields of a packet is sequential and fixed, for exam-

ple, a UDP packet must be Ethernet L2 header + IPv4 header + UDP header + pay-

load; a TCP packet must be Ethernet L2 header + IPv4 header + TCP header + pay-

load, while the packet of Ethernet L2 header + UDP header + IPv4 header + payload

will not occur. Therefore, we only need to build a most complete protocol header as

well as define the location where each protocol header key fields exist in the meta-

data as a packet editing database. During packet editing, we can take out each byte

from the meta-data according to the location indicated by the packet editing database

and then splice it to form a new packet header.

javascript:void(0);

7

Fig. 3. the meta-data send to packet editer by PPU

Fig. 4. packet editing database

Fig. 5. the new edited packet header

In order to better describe the above packet editing flow, this paper presents the L2

packet editing process. The first line of 0 is the meta-data content sent by the previous

PPU, while the second line describes the address of each byte on the meta-data, which

does not exist in reality, just for the convenience of description. On the meta-data, the

0 to 5 bytes store the SA (MAC source address) of the packet which is 48 bits and 6

bytes in total. The highest byte of SA is S5 which is stored in the position 5 of the

meta-data, with the second highest byte S4 stored in the position 4 of that, the other

bytes are stored as shown in 0, which is not described in this paper. In 0, the orange

field is SA field, 6 bytes; the green field is DA field, 6 bytes; the yellow field is

Ethernet type field, 2 bytes; the blue field is VLAN tag field, 4 bytes, including 16

bits VLAN tag protocol field, 3 bits priority COS field, 1 bit CF field and 12 bits

VLAN ID field.

The packet editing database stores the position information of the corresponding field

of the packet in the meta-data, as shown in 0. The first is the DA field of the packet,

which has 6 bytes in total. There lies the location of the packet in the meta-data, with

the next one of the SA field in the meta-data, the third one of the VLAN field in the

meta-data and the last one of the Ethernet type field in the meta-data. During packet

editing, the corresponding fields are taken out from the meta-data according to the

address stored in the packet editing database, spliced into packets. For example, when

editing a packet, the highest byte of DA is taken from the packet editing database at

the address 45 of the meta-data, using which to take the corresponding content D5

from the meta-data, placed at the position of the first byte of the packet. Then the

position 44 of the next byte of DA is taken from the packet editing database, from

which of the meta-data takes the content D4, spliced after the D5. Similar is the other

fields until a new packet header is assembled finally as in 0. Afterwards, a new data

packet composed of the original payload is spliced with a new packet header, for-

warded to the output port indicated by the meta-data.

8

6 Summary

In this paper, a large capacity programmable packet forwarding scheme is proposed to

solve the problem that the current network processor cannot meet the requirements of

low latency and large capacity exchange as well as to avoid the problem that the fixed

pipeline forwarding cannot meet that of the rapid deployment of new services. The

forwarding behavior can be changed according to the needs of the services by soft-

ware programming, which can meet the needs of 5G/B5G new services rapid deploy-

ment, large capacity, low latency and low energy consumption.

Acknowledgement. This work was supported by the National Key Research and

Development Program of China under Grant (2019YFB1804400).

References

1. Evans, Dave. The Internet of Things How the Next Evolution of the Internet Is Changing

Everything. CISCO white paper (2011).

2. Liotou, E.; Tseliou, G.; Samdanis, K.; Tsolkas, D.; Adelantado, F.; Verikoukis, C., Multi-

tenancy for Virtualized Network Functions, in Quality of Multimedia Experience

(QoMEX), 2015 Seventh International Workshop on. pp.1-2, May 2015.

3. S. Scott-Hayward, G. OCallaghan, and S. Sezer, SSDN security: A survey, in Proceedings

of the IEEE SDN for Future Networks and Services. pp.1-7, 2013.

4. O. Flauzac, C. Gonzalez, and F. Nolot SDN Based Architecture for Clustered WSN. Inno-

vative Mobile and Internet Services in Ubiquitous Computing (IMIS), 9th International

Conference on, Blumenau, 2015, pp. 342-347.

5. El-Mougy, Amr; Ibnkahla, Mohamed; Hegazy, Lobna, Software-defined wireless network

architectures for the Internet-of-Things, in Local Computer Networks Conference Work-

shops (LCN Workshops), pp.804-811, Oct. 2015.

