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Abstract. Due to the excellent feature learning and representation capabilities of deep 

learning, the method based on deep learning for mobile phone screen defect detection is 

gradually being applied to industrial detection. Nowadays, the cross-entropy loss 

commonly used in deep learning only focuses on the differences between different classes 

with less intra-class differences. It leads to poor discriminantive ability of the model when 

the similarity between training samples is high. The contrastive loss reduces the intra-class 

variations and can distinguish between similar objects from different classes. Given the 

above analysis, we propose a Siamese network for mobile phone screen defect detection 

(SMSDD) using combined contrastive loss and cross-entropy loss, thereby enhancing the 

discriminative ability of model. Numerical results show that SMSDD achieves comparable 

performance. 

Keywords: Defect Detection, Deep Learning, Cross-entropy Loss, Contrastive Loss, 

Siamese Network. 

1   Introduction 

Nowadays, mobile phones have become an indispensable part of daily life. The transparent 

glass screen of the mobile phone is the main window of human-machine interaction. If there are 

defects on the phone screen, it will affect the user experience directly. Therefore, to satisfy the 

high-quality and high-resolution requirements of the phone screen, screen defect detection is 

necessary.  

Till now, the methods of mobile phone screen detection mainly rely on manual detection 

or traditional image processing. Traditional manual detection has shortcomings such as low 

speed, low accuracy and inconsistent detection standards, etc. Therefore, it can not adapt to the 

current industrial detection requirements [1]. Although methods based on image processing are 

faster, more reliable, and more accurate than manual detection, the feature extraction capability 

is unstable. Due to influences of illumination, camera noise, screen texture, etc., these methods 

may result in inaccurate detection results [2]. 

With the deepening of the research on Convolutional Neural Network (CNN), the method 

based on CNN has achieved superior results on various computer vision tasks [3-5],[8]. And 

methods based on CNN for mobile phone screen defect detection have become a good solution 
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[2],[6],[7]. The loss function is an important part for CNN. On one hand, it controls the ultimate 

goal of network optimization. On the other hand, it determines the learning direction of the 

network. The cross-entropy loss [9] is used to classify the images to a certain class generally. It 

mainly penalizes the inter-class loss, and there is no analysis of intra-class differences. In the 

screen defect detection, the area containing the defect accounts for a little proportion of the 

screen, mainly less than 0.1%. This leads to the similarity of some samples in defective and non-

defective classes is high. Meanwhile, as shown in Figure 1, the defects have large differences 

in shape and small appearance similarity. So, such variations within the defects could 

overwhelm the variations within class differences and make screen defect detection challenging. 

This requires the model to consider the intra-class compactness while ensuring the inter-class 

separability. For the purpose, the contrastive loss [10] which mainly concentrates on reducing 

intra-class differences can meet the demand in the screen defect detection. So, we add the 

contrastive loss as a part of loss function of the network. 

 

   
 

   

Fig. 1. Six different types of screen defects. They are various in area, shape, pixel value,etc. 

In this paper, the mobile phone screen defect detection is transformed into binary classi-

fication, which only contains no-defective images and defective images. A Siamese network is 

proposed for mobile phone screen defect detection (SMSDD), which is supervised by the 

improved loss function that combines the cross-entropy loss with contrastive loss. Extensive 

experiments are conducted to prove the effectiveness of the proposed method on Mobile-Screen-

Defect dataset. 

The rest of this paper is organized as follows. Section 2 reviews the related work. In Section 

3, details of the proposed SMSDD and the improved loss function are presented. In Section 4, 

the implementation details in model training are presented. The numerical results are provided 

in Section 5. Finally, Section 6 concludes the paper. 



 

 

 

 

2   Related Work 

2.1   Traditional Image Processing For Screen Defect Detection 

 

Kim [11] et al. proposed a method that detected defects by reducing the threshold level of 

gray unevenness, which can detect most types of defects other than line defects. Lee and Yoo 

[12] et al. used the background subtraction method, with a two-dimensional curve to estimate 

the image background, to detect mura. With Fourier transform to eliminate the background 

interference of defects, Tsai and Tseng [14] et al. utilized a simple method of threshold 

processing to complete the image segmentation. In short, traditional image processing methods 

has high time complexity and weak robustness. 
 

2.2   Convolutional Neural Network For Classification 

 

With the rapid development of deep learning, many works for large-scale image classi-

fication have been proposed [13]. Krizhevsky [3] et al. introduced deep CNN into image 

classification for the first time. Simonyan and Zisserman proposed a very deep CNN in [15], 

and the performance was significantly improved by increasing the depth and using small convo-

lutional filters of size 3×3. The loss function commonly used in the classification system is the 

cross-entropy loss [9], which mainly penalizes the inter-class loss. However, defective and no-

defective mobile phone screen samples have similar features. The variations within class 

differences are not enough obvious , where the result of classification is easy to be disturbed. 

So, only using the cross-entropy loss can not classify samples accurately. Therefore, it is not a 

wise choice to use a general image classification system for the mobile phone screen defect 

detection. 

 

 

Fig. 2. The framework of SMSDD. 

 



 

 

 

 

2.3   Contrastive Loss For CNN 

 

The contrastive loss [10] is mainly used in Siamese framework. It can effectively reduce 

the intra-class variations by pulling feature vectors from the same instance together. Based on 

the contrastive loss, Yi Sun [16] et al. increased the inter-personal variations by drawing features 

extracted from different identities apart, while reduced the intra-personal variations by pulling 

features extracted from the same identity together in face recognition task. S. Chopra [17] et al. 

enhanced the robustness of the network to the nonlinear geometric transformation of the data 

by controlling the "semantic" distance between the paired data. Defect samples of mobile phone 

screen usually have great differences in area, pixel value, etc. Intra-class differences have great 

impact on classification [18] and we need to consider the intra-class compactness. In this case, 

the contrastive loss is helpful to enhance the classification ability of the model for the mobile 

phone screen defect detection. 

3   The Proposed SMSDD Scheme 

In this section, details of the proposed SMSDD are firstly described. Then, a brief intro-

duction about contrastive loss and cross-entropy loss is given. Finally, We visualize the effects 

of the improved loss function.  

 

3.1   Framework 

 

The framework of SMSDD is depicted in Figure 2. The proposed network consists of two 

branches, and they share the same structure and weight. As shown in Figure 2, the backbone of 

Siamese Network is VGG16 [13] without fully connected (FC) layer. Samples a and b stand for 

input pair-data to update the Siamese network and the size is 230×110×3. The class label is 

considered to be positive if there are no defects in the screen:   

 

𝑦 = {
0, 𝑛𝑜 − 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒
1, 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒

                                                (1) 

 

The pair label is determined by whether a and b belong to the same class: 

 

𝑌 = {
1, 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠

−1, 𝑜𝑡ℎ𝑒𝑟
                                                (2) 

 

The loss function of the network is shown on the right side of  Figure 2. For fully connected 

layer, it has two kinds of outputs, corresponding to the defective or no-defective image. The 

output of fully connected layer is used to calculate the cross-entropy loss. Under the supervision 

of the pair label, the outputs of Siamese Network are used to calculate the contrastive loss. 

Finally, the sum of the cross-entropy loss and contrastive loss is used to propagate gradients for 

updating the network parameters.  
 

3.2   Loss Function  

 



 

 

 

 

Cross-entropy Loss. Cross entropy loss is mainly used for classification tasks. In the screen 

defect detection task, there are two classes: no-defective and defective images. The corres-

ponding cross-entropy loss is: 

 

𝐿1 = −
1

𝑁
∑ [𝑦(𝑖) log 𝑦̂(𝑖) + (1 − 𝑦(𝑖)) log(1 − 𝑦̂(𝑖))]𝑁

𝑖=1                      (3) 

 

where 𝑦̂ is the score of a single exemplar-candidate pair and 𝑦 is the class label. N represnets 

the total number of samples in the training set.  

The cross-entropy loss mainly focuses on increasing the margin among candidates from 

different classes. Namely, there is no consideration about the intra-class variations, where the 

prediction result of the model is greatly reduced. 

 

Contrastive Loss. We want the feature representations of defections are close enough for 

positive pairs, and far away at least by m for negative pairs, where m is a hyper parameter, which 

means that we only consider paired data belonging to different classes with Euclidean distance 

less than m. Therefore, we employ the contrastive loss: 

 

𝐿2 =
1

2𝑁
∑ 𝑌𝐷𝑊

2𝑁
𝑘=1 + (1 − 𝑌)max (𝑚 − 𝐷𝑊 , 0)2                            (4) 

 

Where 

 

𝐷𝑊(𝑋1, 𝑋2) = ‖𝑿𝟏 − 𝑿𝟐‖2 = (∑ (𝑿𝟏
𝒊 − 𝑿𝟐

𝒊 )2𝑃
𝑖=1 )

1

2                            (5) 

 

𝐷𝑊 is the Euclidean distance between the sample feature 𝑿𝟏 and 𝑿𝟐, where P is the eigenvector 

dimension. The variable 𝑌 stands for the pair label. When 𝑌 = 1, the two candidate samples (𝑿𝟏, 

𝑿𝟐) are from the same class, and the loss function in equation (4) becomes equation (6): 

 

𝐿𝑆 =
1

2𝑁
∑ 𝑌𝐷𝑤

2𝑁
𝑘=1                                                        (6) 

 

So, if the Euclidean distance between the two samples in the feature space is large, the loss will 

be large. This means that the current model does not meet the requirement of intra-class 

compactness and needs to continue training. Otherwise, when  𝑌 = 0, the loss function is : 

 

𝐿𝐷 = (1 − 𝑌)max (𝑚 − 𝐷𝑊)2                                             (7) 

 

With the decrease of Euclidean distance 𝐷𝑊, the loss will be larger, which meets the requirement 

of inter-class separability. 

 

3.3   Combined Loss  

 

By integrating the contrastive loss into cross-entropy loss, a new loss function to supervise 

the SNMSDD is: 

 

𝐿 = 𝐿1 + 𝛽𝐿2 .                                    (8) 

 



 

 

 

 

In equation (8), the hyperparameter 𝛽 is a weight to balance the effect between the cross-entropy 

loss and contrastive loss. 

 

 
(a)                                                                         (b) 

Fig. 3. Visualization of effects of the original and improved loss function. 

Figure 3 visualizes effects of the original and improved loss function. For the sample C 

(black), although it belongs to class B (red), it has some same characteristics as class A (green). 

If we use the original loss function, its position in feature space is close to class A, which makes 

it difficult to classify. In Figure 3(b), the improved loss function is used to control the distance 

between A and B in a certain range, which draws the sample C away from class A, making the 

model easy to distinguish similar samples. 

4   Implementation Details 

The proposed algorithm SMSDD is implemented in python on a Dell R7300 server with an 

NVidia 1080Ti GPU. The experiment is performed on Linux with a processor of Intel (R) Xeon 

(R) CPU E5-2620 v3 @ 2.40GHz and 21G RAM. The learning rate for model training is 0.01 

in all epochs.  

5   Experiments 

5.1   Dataset and Preprocessing 

 

Dataset. Screen images are taken by industrial cameras mounted on the production line as 

experimental data, and each image will be read and marked by experienced workers. We 

collected 1200 images, including 168 images of defective products and 1032 images of no-

defective products. 

 

Preprocessing. Due to the extensive black background in collected images, most of black 

border areas will be extracted during the feature extraction process, and the features of the 

mobile phone screen will be ignored. To avoid the influence of the background in the training, 



 

 

 

 

the Hough transform [19] is used to find the edge points and the perspective transform is used 

to correct the region of interest (RoI) of screens. After the preprocessing, 80% of images are 

used as the training set for model training, 10% are used as the validation set, and the remaining 

10% are used as the test set. 

 

 

Fig. 4. The process of getting RoI. 

Table 1.  The loss function of different models. 

Methods Loss Function Hyper-parameter 
SMSDD-A  Cross-entropy Loss+ 𝛽 𝛽 = 00 
SMSDD-B  Cross-entropy Loss + 𝛽 Contrastive Loss 𝛽 = 0.1 
SMSDD-C  Cross-entropy Loss + 𝛽 Contrastive Loss 𝛽 = 0.01 
SMSDD-D  Cross-entropy Loss + 𝛽 Contrastive Loss 𝛽 = 0.001 
SMSDD-E Cross-entropy Loss + 𝛽 Contrastive Loss 𝛽 = 0.0001 

 

 

5.2   Evaluation 

 

To evaluate the performance of the proposed model, five contrastive experiments are 

carried out, as shown in Table 1.  
 

Loss Evaluation. The comparison of training loss of different models are shown in Figure 5. 

SMSDD-A only use the cross-entropy loss to update the network parameters. Because it only 

penalizes the inter-class loss and has no consideration about the intra-class variations, the 

training result of SMSDD-A is inferior. Finally, the loss only converges to 0.23. 

 

When 𝛽 = 0.1, the cross-entropy loss plays a small role in model updating. This makes SMSDD-

B unable to increase the margin among candidates from different classes correctly. According 

to the experimental result, SMSDD-B is the worst. Due to the appropriate values of 𝛽, SMSDD-

C and SMSDD-D have a quick convergence speed and the final loss is low. They also perform 

well in validation and test sets, which can meet industry standards. Because 𝛽 in SMSDD-E is 

small, the contrastive loss has less effect on the training process. Hence, the result of SMSDD-

E is worse than the results of SMSDD-C and SMSDD-D, but better than the result of SMSDD-

A. 

 

Accuracy Evaluation. The results of accuracy based on different loss functions are in Table 2. 

Without the bells and whistles, our proposed SMSDD outperforms the original algorithm on 

validation and test sets in accuracy. Comparing to the model using only cross-entropy loss 



 

 

 

 

(SMSDD-A), the SMSDD-C has made gains about 11% on validation set and 10% on test set 

in accuracy as the best choice of hyper-parameter 𝛽, respectively. This is due to the benefit of 

the contrastive loss, which is added to the loss function for updating the network parameters. 

 

 

Fig. 5. Comparison of training loss of different models. 

Table 2.  Accuracy of different models on valication and test sets. 

Methods Valication Set(%) Test Set(%) 
SMSDD-A  85 83 
SMSDD-B  79 74 
SMSDD-C  96 93 
SMSDD-D  95 91 
SMSDD-E 91 88 

 

6   Conclusion 

In this paper, we introduce deep learning into mobile phone screen defect detection. 

Besides, a new loss function that combines the cross-entropy loss with the contrastive loss is 

proposed. The new loss considers the intra-class compactness and inter-class separability. 

Without the bells and whistles, the proposed algorithm outperforms the method supervised by 



 

 

 

 

cross-entropy loss. In the future work, we plan to introduce the new loss function into multi-

classification tasks. 
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