
Clustering-Based Edge Compression Method with

Application to Electromagnetic Object Recognition

Ziyan Yan1, Qibin Zheng2, Yun Lin3, Qingjiang Shi4
{1831577@tongji.edu.cn1, zhengqb_2018@tongji.edu.cn2, linyun@hrbeu.edu.cn3}

School of Software Engineering, Tongji University, Shanghai, 201804, China1,2,4

School of Information and Communication Engineering, Harbin Engineering University, Harbin,

150001, China3

Abstract. Collaborative intelligence has attracted more and more attention. By properly

portioning deep neural networks (DNN) and distributing the DNN calculation to the edge

and cloud, we could reduce the prediction delay and power consumption to meet the

actual application requirements. Toward this direction, this paper proposes an edge

compression method based on clustering to address the issue of high data communication

cost and time delay between the edge and cloud. Specifically, by using K-means

clustering algorithm, this method compresses the output layer of the edge DNN, reducing

the amount of transmission data and thus the delay and energy consumption. Based on

the compression-based edge-cloud collaboration paradigm, we propose a distributed

inference scheme for electromagnetic object recognition. The simulation results show

that the proposed method can greatly reduce communication cost while maintaining the

prediction performance.

Keywords: deep learning, object detection, edge compression, clustering.

1 Introduction

Deep learning technology has been widely used in the field of image / video object

detection and recognition, and achieved good prediction results [1][2] since 2012. Traditional

DNN-based prediction methods are generally performed in two ways: transmitting the original

data to the cloud for prediction, or directly do the prediction on the edge device. However, the

former brings great pressure on the communication bandwidth, which will result in serious

delay, while in the latter the prediction capability can be constrained by the device

performance and power consumption.

1.1 Collaborative intelligence

Considering the problems and limitations of the above two methods, a "collaborative

intelligence" method [3] was proposed in related research works, which can be used to

optimize the delay and energy consumption of prediction tasks. This work first studies the

significant differences in computing time and output data size of each network layer of

AlexNet [4], as shown in Figure 1. It can be seen that in computing time, fc6 and fc7 of full

connection layer are significantly more than those of other layers, while pool1~pool5 of

pooling layer can significantly reduce the data size, and the size after pool5 layer is smaller

EAI MOBIMEDIA 2020, August 27-28, Harbin, People's Republic of China
Copyright © 2020 EAI
DOI 10.4108/eai.27-8-2020.2294473

than the original input. In addition, this work also compares the total delay when a prediction

task adopts pure cloud mode (only in the cloud center) and pure edge device mode (only in the

edge device). The results show that the communication time accounts for more than 94.1% of

the total time in pure cloud mode, and the computing time in pure edge device mode is much

longer than that in pure cloud mode.

Fig. 1. Calculation time and output data size of each layer of AlexNet [3].

Based on the above results, as shown in Figure 2, collaborative intelligence divides the

neural network into two parts, so as to share the computing to the edge device and cloud

center. This method has two main advantages: 1) the edge device only needs to upload the

output data of the hidden layer of the neural network, so that when the output of the hidden

layer is less than the original data, it can greatly reduce the traffic; 2) selectively put the heavy

calculation in the cloud center, reducing the calculation of the edge device. Through the idea

of neural network partition, collaborative intelligence integrates the advantages of pure cloud

mode and pure edge device mode, so as to achieve more outstanding performance indicators.

Fig. 2. Three ways to perform prediction tasks [3].

However, the cooperative intelligence [3] does not consider the compression operation of

the edge transmission data, which can result in an increase in the network communication

delay (also energy consumption) caused by the output of the hidden layer of the neural

network when the output of the hidden layer is larger than the original data. Therefore, it can

be expected that DNN-based collaborative intelligence calls for some methods to achieve

good accuracy but with less overhead.

1.2 Edge compression

Edge compression refers to the use of data compression method to compress the output of

edge partition neural network on the basis of collaborative intelligence, so as to effectively

reduce the traffic, communication delay and energy consumption.

The authors in [5] researched the output data characteristics of CNN's first convolution

layer, chose to use 8 bits to quantize the floating-point number of each unit of the output data,

effectively reducing the number of bits of the transmitted data, and then use the lossless image

coding technology PNG to compress the quantized data. The experimental results show that

the average compression rate of the method is 28.57%, and the performance improvement in

delay and energy consumption is 4.9 times and 4.6 times respectively. The work in [6] studies

the impact of lossless compression / lossy compression on the hidden layer, and conducts

experiments based on the object detection task of the yolo9000 model [7]. Experimental

results show that the influence of quantization combined with lossless compression on object

detection accuracy can be ignored, while lossy compression can get higher compression rate,

but it also affects detection accuracy. The detection accuracy can be effectively improved by

using compression enhanced training method. The authors in [8] investigate the difference

between deep feature data and natural image data, and propose a simple and effective near

lossless deep feature compressor. Compared with HEVCIntra, the bit rate of this method is

reduced by 5%, which is much lower than other commonly used image codecs. In [9], a

computing architecture based on collaborative intelligence is designed. The architecture

introduces a unit, which is composed of a separate convolution layer. It can reduce the

dimension of hidden layer output of CNN dividing points, so as to achieve the compression

effect. Based on resnet-50 model [10], the experimental results show that the performance of

this method in terms of delay and energy consumption is improved by 53 times and 68 times

respectively.

1.3 Contribution of this paper

Based on the above research, this paper studies the edge compression of CNN model, and

proposes a cluster-based edge compression method (CECM). This method can use clustering

algorithm to compress the traffic, and then reduce the delay and energy consumption during

the transmission process. In addition, we customize this method with a particular application

to the electromagnetic object recognition, and the experiment shows that the method can

effectively reduce the transmission traffic and energy consumption on the premise that the

accuracy of the original neural network is almost not significantly deteriorated.

In the following content of this paper, Chapter 2 describes the detailed steps of edge

compression method based on clustering. Chapter 3 describes the application scenario of the

method in electromagnetic object recognition. Chapter 4 evaluates and verifies the

performance of the method through simulation experiments. Finally, Chapter 5 concludes this

paper.

2 Edge compression method based on clustering

As previously mentioned, the neural network can be divided into two parts, which are

deployed separately on the cloud and edge devices, named cloud DNN and edge DNN for

easy of exposition. The forward calculation of the DNN is accomplished by relaying the

output of the edge DNN to the cloud followed by the rest forward calculation of the cloud NN.

This method can take advantage of the cloud and the edge device. However, it may incur large

communication overhead if the output of the edge DNN has high dimension. Hence, we

should properly design the interface between the edge and cloud and special attention should

be paid to how to downsize the amount of data transmission. Obviously, if the data transmitted

by the edge is considered to be compressed, even if the output data of the hidden layer of the

neural network is larger than the original data, it can effectively reduce the traffic and the

delay. Thus, our method is proposed to reduce the amount of data transmission in the

communication process by edge compression based on clustering. We perform K-means

clustering on the output of the edge DNN, and let the edge send the clustering results to the

cloud, so that the amount of data during the communication process can be greatly reduced.

The detailed steps of Cluster-based Edge Compression Method (CECM) are shown as follows:

Step1. Firstly, a high-precision deep neural network model is trained, and divided into two sub

neural networks 𝑁e and 𝑁c according to the network layer, where we deploy 𝑁e in the edge

device and 𝑁c in the cloud center.

Step2. After the edge device processes the input data through 𝑁e , it generates the m-

dimensional output vector 𝒗e = [𝑥1, 𝑥2, … , 𝑥𝑚]𝑇, where 𝑥𝑖(𝑖 = 1,2, … , 𝑚) are floating-point

number. We apply K-means clustering [11] to the set {𝑥i|𝑖 = 1,2, … , 𝑚} which all elements

𝑥𝑖(𝑖 = 1,2, … , 𝑚) from the output vector 𝒗e compose the collection, generate 𝑘 clusters 𝑆 =
{𝑆1, 𝑆2, … , 𝑆𝑘}(1 ≤ 𝑘 ≤ 𝑚) and obtain the k-dimensional vector 𝒗1 = [𝜇1, 𝜇2, … , 𝜇𝑘]𝑇

composed of the center points 𝜇𝑗(𝑗 = 1,2, … , 𝑘) from each cluster, where

 𝜇𝑗 =
1

|𝑆𝑗|
∑ 𝑦𝑦 ∈ 𝑆𝑗

, 𝑗 = 1,2, … , 𝑘 . (1)

Where |𝑆𝑗| is the number of elements in the cluster 𝑆𝑗, 𝑦 is the element of cluster 𝑆𝑗. Then,

each cluster is labeled with a different label 1～𝑘, so that the output vector of edge device 𝒗e

can be mapped to m-dimension label vector 𝒗2 = [𝑙1, 𝑙2, … , 𝑙𝑚]𝑇, Where

 𝑙𝑖 = argmin
𝑗

‖𝑥𝑖 − 𝜇𝑗‖ , 𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑘 . (2)

It can be seen from (2) that 𝑙𝑖 ∈ {1,2, … , 𝑘}, we encode 1～𝑘 with binary, thus ⌈𝑙𝑜𝑔2𝑘⌉

bits are needed at most to represent 𝑙𝑖 . Then the transmission capacity can be reduced

compared with the floating-point form of direct transmission.

Step3. The edge device transmits the vector 𝒗1 composed of cluster center points and m-

dimension label vector 𝒗2 to the cloud center.

Step4. After the cloud center receives the vectors 𝒗1 and 𝒗2, replace the label in the vector 𝒗2

with the center point coordinate in the vector 𝒗1 to get the m-dimension vector 𝒗c =
 [𝜇1

′, 𝜇2
′, … , 𝜇𝑚

′]𝑇, which is the input of the cloud center sub neural network, Where

𝜇𝑖
′ = 𝜇𝑙𝑖

, 𝑖 = 1,2, … , 𝑚 . (3)

The cloud center will process according to the input, and finally get the corresponding

recognition results.

Step5. Repeat step 4 for 𝑝 times to get the average performance (recognition speed and power

consumption) of the current overall depth neural network model, 𝑝 ϵ [3, 20]. Then adjust the

partition point of the neural network and 𝑘, and repeat steps 1 to 4 𝑡 times (𝑡 ϵ [50, 150]),

finally select the deep neural network model with the best performance.

Figure 3 shows the network structure schematic diagram of the distributed neural

network. In Figure 3, the content of the red box indicates that the output vector of the

specified layer of neural network is clustered (the number of clusters 𝑘 is 3) to obtain the

vector 𝒗1 = (0.3, 1.5, 2.7) which is composed of three cluster center points, then we use the

center point to approximate the original output vector as the input of the next layer, so as to

reduce the amount of data in the communication process.

Fig. 3. Clustering and approximate representation of hidden layer output.

3 Application in electromagnetic object recognition

In the era of information-based war, with the development of new electronic and

information technology, the electromagnetic object (such as airplane, warship, etc.) often

carries many kinds of electronic equipment. However, due to their characteristics of stealth

and high speed, these kinds of electromagnetic objects make the recognition system unable to

easily and quickly recognize them and react in time. Such situation greatly increases the risk

of attack. Therefore, it is required that the recognition of electromagnetic object not only

needs to distinguish accurately but also needs to distinguish quickly, so as to make timely

defense and attack the target object effectively.

As shown in Figure 4, we give an example of the workflow of using this CECM method

to identify electromagnetic objects in the hypothetical battlefield. Firstly, the reconnaissance

equipment (edge equipment) is used as the acquisition node to collect the signal from the

electromagnetic object. After collection, the data is processed preliminarily and the

intermediate results are output through the neural network deployed on the edge device. Then

the edge devices compress the intermediate results by K-meaning clustering, and foward the

compressed data to the cloud center through a communication link. After receiving the data

from the edge node, the cloud center decompresses it, and takes the decompressed content as

the input of the remaining neural network. Then the final recognition result can be obtained

after some processing.

signal

Acquisition node

data

Reconnaissance equipment

 Center

Cluster

ing

transfo

rmatio

n

Inverse

transformat

ion of

clustering

transmission

Fig. 4. Schematic diagram of distributed identification of electromagnetic object.

4 Experiment section

In this section, some simulations are carried out to validate our proposed method by

focusing on a communication modulation recognition task. Note that modulation classification

can be viewed as a part of object recognition task. The used dataset and the simulation setup is

firstly introduced, followed by some simulation results.

4.1 Dataset and Simulation Setup

RadioML2016.10a [12] is a synthetic dataset generated by GNU radio software, which

consists of 11 modulation modes with different SNR (8 digital modulation and 3 analog

modulation). The dataset can be used for modulation pattern recognition. We divide the

dataset into two parts, 80% of which is the training set and 20% of which is the test set. The

specific information is shown in Table 1:

Table 1. Dataset Description

Parameter Value

Total number of samples 220000

Number of training set samples 176000

Number of test set samples 4400

Feature dimension (2,128)

Category (modulation mode) 11

Modulation mode value 8PSK, AM-DSB, AM-SSB, BPSK,

CPFSK, GFSK, PAM4, QAM16,

QAM64, QPSK, WBFM

Number of Signal to Noise Ratio (SNR) 20

SNR Value -20, -18, -16, -14, -12, -10, -8, -6, -4, -

2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18

We use convolutional neural network VT-CNN2 [13] as a performance baseline. At the

same time, on the basis of VT-CNN2, the proposed method CECM is obtained by clustering

compression. Next, we compare and verify the performance of the two methods by

experiments.

4.2 Prediction Accuracy

As shown in Figure 5, we compare VT-CNN2 with CECM, and draw the prediction

accuracy curve of each cluster when 𝑘 is 2~10. Among them, dotted curve and solid curve

represent the prediction accuracy of VT-CNN2 and CECM under different Signal to Noise

Ratio (SNR) respectively. It can be seen from the Figure 5 that when SNR increases, the

accuracy of VT-CNN2 gradually increases, and the accuracy changes insignificantly after

SNR ≥ 0, maintaining at 70%~75%; in general, CECM keeps the similar change trend with

VT-CNN2; with the increase of 𝑘, the two curves gradually coincide, and the accuracy loss

between CECM and VT-CNN2 decreases. When 𝑘 is greater than 2, the change of recognition

accuracy is almost stable.

Fig. 5. Prediction accuracy comparison between CECM and VT-CNN2.

Figure 6 compares the confusion matrix of VT-CNN2, CECM (𝑘 = 2) and CECM (𝑘 =

10). In diagram, the vertical coordinate in the Figure 6 represents the real category of test

samples, and the horizontal coordinate represents the category of predicted results of test

samples. The element in row 𝑖 and column 𝑗 of confusion matrix indicates the proportion of

samples of class 𝑖 predicted as class 𝑗 in all samples of class 𝑖. The larger 𝑘 is, the higher

similarity the two methods have.

Fig. 6. Confusion matrix of VT-CNN2, CECM (𝑘 = 2) and CECM (𝑘 = 10).

It can be seen from the above experiments that, when the total number of classes 𝑘

increases, CECM has recognition performance close to VT-CNN2. Particularly, when 𝑘 is

greater than 2, their performance is almost identical.

4.3 Compression ratio

Now let us look at the compression ratio of these two methods. From the specific

implementation steps in Chapter 2, it can be seen that the dimensions of the output vector 𝒗e

of the edge device and the label vector 𝒗𝟐 after clustering conversion are both 𝑚 . The

dimensions of the center vector 𝒗𝟏 after clustering conversion are 𝑘. It can be concluded that

without cluster conversion, the data transmission between the edge device and the cloud center

in the original model is: 𝑚 ∙ 𝐵, where 𝐵 denotes the number of data bits occupied by a floating

nuber. While after clustering transformation in our scheme, the amount of data transmission

is: 𝑘 ∙ 𝐵 + 𝑚⌈𝑙𝑜𝑔2𝑘⌉. Therefore, the compression ratio of CECM method is:

2logdata transmission in our scheme

data transmission without compression

k B m k

m B

 +   
=



To be specific, let us consider the case when 𝐵 =32 and 𝑚 =256, and outline the

compression ratio for 𝑘=2~10 in Table 2.

Table 2. 𝐵=32, 𝑚=256, the data compression ratio when 𝑘 is 2~10.

Cluster number 𝑘 Compression ratio

2 3.91%

3 7.42%

4 7.81%

5 11.33%

6 11.72%

7 12.11%

8 12.50%

9 16.02%

10 16.41%

4.4 Tradeoff between accuracy and compression

As shown in Figure 7, we can see that, with the increase of cluster number 𝑘 , the

recognition accuracy increases, but the compression ratio will increase accordingly.

Particularly, when 𝑘 = 4, we obtain the best tradeoff between accuracy and compression.

5 Conclusion

Referring to the idea of collaborative intelligence and edge compression, this paper

proposes an edge compression method based on clustering, which can reduce the amount of

transmission data. The experimental results show that this method can greatly reduce the

communication overhead while maintaining the prediction performance. In the future, we will

consider a possible extension of this method to the case of multiple edge nodes.

Fig. 7. The maximum precision loss and compression ratio changes with number of cluster 𝑘.

Acknowledgments. This work was supported in part by the National Key Research and

Development Project under grant 2017YFE0119300, the NSFC under Grants 61671411, and

by the Fundamental Research Funds for the Central Universities under grant 22120180113.

References

[1] X, Zhou. D, Wang. and P, Krahenb.: Objects as points. arXiv preprint

arXiv:1904.07850(2019)

[2] S, Kanimozhi, G, Gayathri, T, Mala.: Multiple Real-time object identification using Single shot

Multi-Box detection. International Conference on Computational Intelligence in Data Science

(ICCIDS) (2019)

[3] Kang, Y, Hauswald, J. Gao, C. et al.: Neurosurgeon: Collaborative Intelligence Between the

Cloud and Mobile Edge. Acm Sigplan Notices. 52(4), pp. 615-629 (2017)
[4] Krizhevsky, A. Sutskever, I. Hinton, G, E.: Imagenet classification with deep convolutional

neural networks. Advances in neural information processing systems. pp. 1097-1105 (2012)

[5] Eshratifar, A, E. Abrishami, M, S. Pedram, M.: JointDNN: an efficient training and inference

engine for intelligent mobile cloud computing services. arXiv preprint arXiv:1801.08618 (2018)

[6] Choi, H. Bajić, I, V.: Deep feature compression for collaborative object detection. 2018 25th

IEEE International Conference on Image Processing (ICIP). IEEE. pp. 3743-3747 (2018)

[7] Redmon, J. Farhadi, A.: YOLO9000: better, faster, stronger. Proceedings of the IEEE conference

on computer vision and pattern recognition. pp. 7263-7271 (2017)
[8] Choi, H. Bajić, I, V.: Near-lossless deep feature compression for collaborative intelligence. 2018

IEEE 20th International Workshop on Multimedia Signal Processing (MMSP). IEEE. pp. 1-6 (2018)

[9] Eshratifar, A, E. Esmaili, A. Pedram, M.: Towards collaborative intelligence friendly

architectures for deep learning. 20th International Symposium on Quality Electronic Design (ISQED).

IEEE. pp. 14-19 (2019)
[10] He, K. Zhang, X. Ren, S. et al.: Deep residual learning for image recognition. Proceedings of the

IEEE conference on computer vision and pattern recognition. pp. 770-778 (2016)

[11] k-means clustering. https://en.wikipedia.org/wiki/K-means_clustering.

[12] O'shea, T, J.: West N. Radio machine learning dataset generation with gnu radio. Proceedings of

the GNU Radio Conference. 1(1) (2016)

[13] O’Shea, T, J. Corgan, J. Clancy, T, C.: Convolutional radio modulation recognition networks.

Inte-rnational conference on engineering applications of neural networks. Springer, Cham. pp. 213-

226 (2016)

