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Abstract. Collaborative intelligence has attracted more and more attention. By properly 

portioning deep neural networks (DNN) and distributing the DNN calculation to the edge 

and cloud, we could reduce the prediction delay and power consumption to meet the 

actual application requirements. Toward this direction, this paper proposes an edge 

compression method based on clustering to address the issue of high data communication 

cost and time delay between the edge and cloud. Specifically, by using K-means 

clustering algorithm, this method compresses the output layer of the edge DNN, reducing 

the amount of transmission data and thus the delay and energy consumption. Based on 

the compression-based edge-cloud collaboration paradigm, we propose a distributed 

inference scheme for electromagnetic object recognition. The simulation results show 

that the proposed method can greatly reduce communication cost while maintaining the 

prediction performance. 

Keywords: deep learning, object detection, edge compression, clustering. 

1   Introduction 

Deep learning technology has been widely used in the field of image / video object 

detection and recognition, and achieved good prediction results [1][2] since 2012. Traditional 

DNN-based prediction methods are generally performed in two ways: transmitting the original 

data to the cloud for prediction, or directly do the prediction on the edge device. However, the 

former brings great pressure on the communication bandwidth, which will result in serious 

delay, while in the latter the prediction capability can be constrained by the device 

performance and power consumption. 

 

1.1   Collaborative intelligence 

 

Considering the problems and limitations of the above two methods, a "collaborative 

intelligence" method [3] was proposed in related research works, which can be used to 

optimize the delay and energy consumption of prediction tasks. This work first studies the 

significant differences in computing time and output data size of each network layer of 

AlexNet [4], as shown in Figure 1. It can be seen that in computing time, fc6 and fc7 of full 

connection layer are significantly more than those of other layers, while pool1~pool5 of 

pooling layer can significantly reduce the data size, and the size after pool5 layer is smaller 
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than the original input. In addition, this work also compares the total delay when a prediction 

task adopts pure cloud mode (only in the cloud center) and pure edge device mode (only in the 

edge device). The results show that the communication time accounts for more than 94.1% of 

the total time in pure cloud mode, and the computing time in pure edge device mode is much 

longer than that in pure cloud mode. 

 

Fig. 1. Calculation time and output data size of each layer of AlexNet [3]. 

Based on the above results, as shown in Figure 2, collaborative intelligence divides the 

neural network into two parts, so as to share the computing to the edge device and cloud 

center. This method has two main advantages: 1) the edge device only needs to upload the 

output data of the hidden layer of the neural network, so that when the output of the hidden 

layer is less than the original data, it can greatly reduce the traffic; 2) selectively put the heavy 

calculation in the cloud center, reducing the calculation of the edge device. Through the idea 

of neural network partition, collaborative intelligence integrates the advantages of pure cloud 

mode and pure edge device mode, so as to achieve more outstanding performance indicators. 

 

Fig. 2. Three ways to perform prediction tasks [3]. 

However, the cooperative intelligence [3] does not consider the compression operation of 

the edge transmission data, which can result in an increase in the network communication 

delay (also energy consumption) caused by the output of the hidden layer of the neural 

network when the output of the hidden layer is larger than the original data. Therefore, it can 

be expected that DNN-based collaborative intelligence calls for some methods to achieve 

good accuracy but with less overhead. 

 

1.2   Edge compression 

 

Edge compression refers to the use of data compression method to compress the output of 

edge partition neural network on the basis of collaborative intelligence, so as to effectively 

reduce the traffic, communication delay and energy consumption. 



 

 

 

 

The authors in [5] researched the output data characteristics of CNN's first convolution 

layer, chose to use 8 bits to quantize the floating-point number of each unit of the output data, 

effectively reducing the number of bits of the transmitted data, and then use the lossless image 

coding technology PNG to compress the quantized data. The experimental results show that 

the average compression rate of the method is 28.57%, and the performance improvement in 

delay and energy consumption is 4.9 times and 4.6 times respectively. The work in [6] studies 

the impact of lossless compression / lossy compression on the hidden layer, and conducts 

experiments based on the object detection task of the yolo9000 model [7]. Experimental 

results show that the influence of quantization combined with lossless compression on object 

detection accuracy can be ignored, while lossy compression can get higher compression rate, 

but it also affects detection accuracy. The detection accuracy can be effectively improved by 

using compression enhanced training method. The authors in [8] investigate the difference 

between deep feature data and natural image data, and propose a simple and effective near 

lossless deep feature compressor. Compared with HEVCIntra, the bit rate of this method is 

reduced by 5%, which is much lower than other commonly used image codecs. In [9], a 

computing architecture based on collaborative intelligence is designed. The architecture 

introduces a unit, which is composed of a separate convolution layer. It can reduce the 

dimension of hidden layer output of CNN dividing points, so as to achieve the compression 

effect. Based on resnet-50 model [10], the experimental results show that the performance of 

this method in terms of delay and energy consumption is improved by 53 times and 68 times 

respectively. 

 

1.3   Contribution of this paper 

 

Based on the above research, this paper studies the edge compression of CNN model, and 

proposes a cluster-based edge compression method (CECM). This method can use clustering 

algorithm to compress the traffic, and then reduce the delay and energy consumption during 

the transmission process. In addition, we customize this method with a particular application 

to the electromagnetic object recognition, and the experiment shows that the method can 

effectively reduce the transmission traffic and energy consumption on the premise that the 

accuracy of the original neural network is almost not significantly deteriorated. 

In the following content of this paper, Chapter 2 describes the detailed steps of edge 

compression method based on clustering. Chapter 3 describes the application scenario of the 

method in electromagnetic object recognition. Chapter 4 evaluates and verifies the 

performance of the method through simulation experiments. Finally, Chapter 5 concludes this 

paper. 

2   Edge compression method based on clustering 

As previously mentioned, the neural network can be divided into two parts, which are 

deployed separately on the cloud and edge devices, named cloud DNN and edge DNN for 

easy of exposition. The forward calculation of the DNN is accomplished by relaying the 

output of the edge DNN to the cloud followed by the rest forward calculation of the cloud NN. 

This method can take advantage of the cloud and the edge device. However, it may incur large 

communication overhead if the output of the edge DNN has high dimension. Hence, we 

should properly design the interface between the edge and cloud and special attention should 



 

 

 

 

be paid to how to downsize the amount of data transmission. Obviously, if the data transmitted 

by the edge is considered to be compressed, even if the output data of the hidden layer of the 

neural network is larger than the original data, it can effectively reduce the traffic and the 

delay. Thus, our method is proposed to reduce the amount of data transmission in the 

communication process by edge compression based on clustering. We perform K-means 

clustering on the output of the edge DNN, and let the edge send the clustering results to the 

cloud, so that the amount of data during the communication process can be greatly reduced. 

The detailed steps of Cluster-based Edge Compression Method (CECM) are shown as follows: 

Step1. Firstly, a high-precision deep neural network model is trained, and divided into two sub 

neural networks 𝑁e and 𝑁c according to the network layer, where we deploy 𝑁e in the edge 

device and 𝑁c in the cloud center. 

Step2. After the edge device processes the input data through 𝑁e , it generates the m-

dimensional output vector 𝒗e =  [𝑥1, 𝑥2, … , 𝑥𝑚]𝑇, where 𝑥𝑖(𝑖 = 1,2, … , 𝑚) are floating-point 

number. We apply K-means clustering [11] to the set {𝑥i|𝑖 = 1,2, … , 𝑚} which all elements 

𝑥𝑖(𝑖 = 1,2, … , 𝑚) from the output vector 𝒗e compose the collection, generate 𝑘 clusters 𝑆 =
{𝑆1, 𝑆2, … , 𝑆𝑘}(1 ≤ 𝑘 ≤ 𝑚)  and obtain the k-dimensional vector 𝒗1 = [𝜇1, 𝜇2, … , 𝜇𝑘]𝑇 

composed of the center points 𝜇𝑗(𝑗 = 1,2, … , 𝑘) from each cluster, where 

 

                                                   𝜇𝑗 =  
1

|𝑆𝑗|
∑ 𝑦𝑦 ∈ 𝑆𝑗

,    𝑗 = 1,2, … , 𝑘 .      (1) 

 

Where |𝑆𝑗| is the number of elements in the cluster 𝑆𝑗, 𝑦 is the element of cluster 𝑆𝑗. Then, 

each cluster is labeled with a different label 1～𝑘, so that the output vector of edge device 𝒗e 

can be mapped to m-dimension label vector 𝒗2 =  [𝑙1, 𝑙2, … , 𝑙𝑚]𝑇, Where 

 

                            𝑙𝑖 =  argmin
𝑗

‖𝑥𝑖 − 𝜇𝑗‖ ,     𝑖 = 1,2, … , 𝑚,   𝑗 = 1,2, … , 𝑘 .      (2) 

 

It can be seen from (2) that 𝑙𝑖 ∈  {1,2, … , 𝑘}, we encode 1～𝑘 with binary, thus ⌈𝑙𝑜𝑔2𝑘⌉ 

bits are needed at most to represent 𝑙𝑖 . Then the transmission capacity can be reduced 

compared with the floating-point form of direct transmission. 

Step3. The edge device transmits the vector 𝒗1  composed of cluster center points and m-

dimension label vector 𝒗2 to the cloud center. 

Step4. After the cloud center receives the vectors 𝒗1 and 𝒗2, replace the label in the vector 𝒗2 

with the center point coordinate in the vector 𝒗1  to get the m-dimension vector 𝒗c =
 [𝜇1

′, 𝜇2
′, … , 𝜇𝑚

′]𝑇, which is the input of the cloud center sub neural network, Where 

 

𝜇𝑖
′ =  𝜇𝑙𝑖

,     𝑖 = 1,2, … , 𝑚 .       (3) 

 

The cloud center will process according to the input, and finally get the corresponding 

recognition results. 

Step5. Repeat step 4 for 𝑝 times to get the average performance (recognition speed and power 

consumption) of the current overall depth neural network model, 𝑝 ϵ [3, 20]. Then adjust the 

partition point of the neural network and 𝑘, and repeat steps 1 to 4 𝑡 times (𝑡 ϵ [50, 150]), 

finally select the deep neural network model with the best performance. 



 

 

 

 

Figure 3 shows the network structure schematic diagram of the distributed neural 

network. In Figure 3, the content of the red box indicates that the output vector of the 

specified layer of neural network is clustered (the number of clusters 𝑘 is 3) to obtain the 

vector 𝒗1 = (0.3, 1.5, 2.7) which is composed of three cluster center points, then we use the 

center point to approximate the original output vector as the input of the next layer, so as to 

reduce the amount of data in the communication process. 

 

Fig. 3. Clustering and approximate representation of hidden layer output. 

3   Application in electromagnetic object recognition 

In the era of information-based war, with the development of new electronic and 

information technology, the electromagnetic object (such as airplane, warship, etc.) often 

carries many kinds of electronic equipment. However, due to their characteristics of stealth 

and high speed, these kinds of electromagnetic objects make the recognition system unable to 

easily and quickly recognize them and react in time. Such situation greatly increases the risk 

of attack. Therefore, it is required that the recognition of electromagnetic object not only 

needs to distinguish accurately but also needs to distinguish quickly, so as to make timely 

defense and attack the target object effectively. 



 

 

 

 

As shown in Figure 4, we give an example of the workflow of using this CECM method 

to identify electromagnetic objects in the hypothetical battlefield. Firstly, the reconnaissance 

equipment (edge equipment) is used as the acquisition node to collect the signal from the 

electromagnetic object. After collection, the data is processed preliminarily and the 

intermediate results are output through the neural network deployed on the edge device. Then 

the edge devices compress the intermediate results by K-meaning clustering, and foward the 

compressed data to the cloud center through a communication link. After receiving the  data 

from the edge node, the cloud center decompresses it, and takes the decompressed content as 

the input of the remaining neural network. Then the final recognition result can be obtained 

after some processing. 
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Fig. 4. Schematic diagram of distributed identification of electromagnetic object. 

4   Experiment section 

In this section, some simulations are carried out to validate our proposed method by 

focusing on a communication modulation recognition task. Note that modulation classification 

can be viewed as a part of object recognition task. The used dataset and the simulation setup is 

firstly introduced, followed by some simulation results. 

 

4.1   Dataset and Simulation Setup 

 

RadioML2016.10a [12] is a synthetic dataset generated by GNU radio software, which 

consists of 11 modulation modes with different SNR (8 digital modulation and 3 analog 

modulation). The dataset can be used for modulation pattern recognition. We divide the 

dataset into two parts, 80% of which is the training set and 20% of which is the test set. The 

specific information is shown in Table 1: 

Table 1.  Dataset Description 

Parameter Value 

Total number of samples 220000 

Number of training set samples 176000 

Number of test set samples 4400 

Feature dimension (2,128) 



 

 

 

 

Category (modulation mode) 11 

Modulation mode value 8PSK, AM-DSB, AM-SSB, BPSK, 

CPFSK, GFSK, PAM4, QAM16, 

QAM64, QPSK, WBFM 

Number of Signal to Noise Ratio (SNR) 20 

SNR Value -20, -18, -16, -14, -12, -10, -8, -6, -4, -

2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 

 

 

We use convolutional neural network VT-CNN2 [13] as a performance baseline. At the 

same time, on the basis of VT-CNN2, the proposed method CECM is obtained by clustering 

compression. Next, we compare and verify the performance of the two methods by 

experiments. 

 

4.2   Prediction Accuracy  

 

As shown in Figure 5, we compare VT-CNN2 with CECM, and draw the prediction 

accuracy curve of each cluster when 𝑘 is 2~10. Among them, dotted curve and solid curve 

represent the prediction accuracy of VT-CNN2 and CECM under different Signal to Noise 

Ratio (SNR) respectively. It can be seen from the Figure 5 that when SNR increases, the 

accuracy of VT-CNN2 gradually increases, and the accuracy changes insignificantly after 

SNR ≥ 0, maintaining at 70%~75%; in general, CECM keeps the similar change trend with 

VT-CNN2; with the increase of 𝑘, the two curves gradually coincide, and the accuracy loss 

between CECM and VT-CNN2 decreases. When 𝑘 is greater than 2, the change of recognition 

accuracy is almost stable.  

 



 

 

 

 

Fig. 5. Prediction accuracy comparison between CECM and VT-CNN2. 

Figure 6 compares the confusion matrix of VT-CNN2, CECM (𝑘 = 2) and CECM (𝑘 = 

10). In diagram, the vertical coordinate in the Figure 6 represents the real category of test 

samples, and the horizontal coordinate represents the category of predicted results of test 

samples. The element in row 𝑖 and column 𝑗 of confusion matrix indicates the proportion of 

samples of class 𝑖 predicted as class 𝑗 in all samples of class 𝑖. The larger 𝑘 is, the higher 

similarity the two methods have. 

 

 

Fig. 6. Confusion matrix of VT-CNN2, CECM (𝑘 = 2) and CECM (𝑘 = 10). 

It can be seen from the above experiments that, when the total number of classes 𝑘 

increases, CECM has recognition performance close to VT-CNN2. Particularly, when 𝑘 is 

greater than 2, their performance is almost identical. 

 



 

 

 

 

4.3   Compression ratio  

 

Now let us look at the compression ratio of these two methods. From the specific 

implementation steps in Chapter 2, it can be seen that the dimensions of the output vector 𝒗e 

of the edge device and the label vector 𝒗𝟐  after clustering conversion are both 𝑚 . The 

dimensions of the center vector 𝒗𝟏 after clustering conversion are 𝑘. It can be concluded that 

without cluster conversion, the data transmission between the edge device and the cloud center 

in the original model is: 𝑚 ∙ 𝐵, where 𝐵 denotes the number of data bits occupied by a floating 

nuber. While after clustering transformation in our scheme, the amount of data transmission 

is: 𝑘 ∙ 𝐵 + 𝑚⌈𝑙𝑜𝑔2𝑘⌉. Therefore, the compression ratio of CECM method is: 

 

2logdata transmission in our scheme

data transmission without compression

k B m k

m B

 +   
=


 

 
To be specific, let us consider the case when 𝐵 =32 and 𝑚 =256, and outline the 

compression ratio for 𝑘=2~10 in Table 2.  

Table 2. 𝐵=32, 𝑚=256, the data compression ratio when 𝑘 is 2~10. 

Cluster number 𝑘 Compression ratio 

2 3.91% 

3 7.42% 

4 7.81% 

5 11.33% 

6 11.72% 

7 12.11% 

8 12.50% 

9 16.02% 

10 16.41% 

 

 

4.4   Tradeoff between accuracy and compression 

 

As shown in Figure 7, we can see that, with the increase of cluster number 𝑘 , the 

recognition accuracy increases, but the compression ratio will increase accordingly. 

Particularly, when 𝑘 = 4, we obtain the best tradeoff between accuracy and compression.  

5   Conclusion 

Referring to the idea of collaborative intelligence and edge compression, this paper 

proposes an edge compression method based on clustering, which can reduce the amount of 

transmission data. The experimental results show that this method can greatly reduce the 

communication overhead while maintaining the prediction performance. In the future, we will 

consider a possible extension of this method to the case of multiple edge nodes. 



 

 

 

 

 

 

Fig. 7. The maximum precision loss and compression ratio changes with number of cluster 𝑘. 
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