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Abstract. Collaborative computing among vehicles on the road has been regarded as 

a promising application for connected and intelligent vehicles as new computing and 

communication technologies emerge. Instead of using cloud computing services, a vehicle 

can complete computing-intensive tasks by making use of neighboring vehicles' idle 

computing resources and meanwhile, pay for this service to the assisting vehicles to 

increase their incentive to participate in such collaborative computing tasks. In 

collaborative computing among vehicles, how to balance the profits of both sides need to 

be investigated. What's more, the reliability of transactions is also a concerning problem. 

In this paper, we first introduce a collaborative computing scenario and propose a two-

layer blockchain architecture to enhance the reliability of transactions. Then, we propose 

a coalition formation game-based collaborative computing algorithm to efficiently achieve 

effective computing coalition formation in a distributed manner. Simulation results show 

that the proposed algorithm can significantly improve the vehicles' utilities as well as the 

task performance. 
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1   Introduction 

With the rapid development of computing and communication technologies, vehicles 

become more intelligent and are expected to support a rich and varied onboard applications, 

such as real-time navigation and vehicular entertainment. On the one hand, vehicles can get a 

precise and broad perception of their driving environment by the growing links with neighboring 

vehicles (vehicle-to-vehicle (V2V) links) or roadside units (vehicle-to-infrastructure (V2I) 

links). On the other hand, vehicles equipped with a more powerful on board computing unit 

(OBU) can perform independent computation better than before. In addition, a recent report 

shows that the global number of connected vehicles is increasing rapidly, and more than 286 

million connected vehicles will be added globally during the 2019-2025 period [1]. These trends 

reflect the growing intelligence and complexity of vehicles. 

Although the vehicles become more capable of computing, some emerging vehicular 

applications, such as augmented reality (AR) and virtual reality (VR), require completing a large 

amount of computations in a relatively short time, which cannot be supported by current 

computing ability of a single vehicle. One promising solution to this problem is to deliver the 

computation-intensive task from the vehicle (called task requesting vehicle) to other objects 
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with higher computing ability through the network to achieve higher performance. The target 

objects can be a cloud center [2], [3]. The cloud center has strong computing ability and can 

effectively reduce the computing overhead of requesting vehicles, but the long distance to a far-

away center will also cause an extra delay. Another kind of target object is the roadside unit 

(RSU) or base station along with edge server which can complete the computation near to 

requesting vehicles [4], [5]. 

Different from the above two cases, a new solution tries to make use of idle resources of 

other vehicles to complete the task. That is, the vehicles around the requesting vehicle accept 

the task together and perform the computation in a collaborative computing way [6]-[10]. In [7], 

a learning-based task offloading framework was proposed using the multi-armed bandit (MAB) 

theory, which enables vehicles to learn the potential task offloading performance of its 

neighboring vehicles with excessive computing resources and minimizes the average offloading 

delay. In [8], a vehicular cloud network architecture was proposed to offload the computational 

burden of a centralized cloud by assigning more tasks to vehicular clouds formed near traffic 

lights. While [7], [8] both only considered the task performance (eg. latency, cost) on behalf of 

the requesting vehicle, [9], [10] further considered the utilization of neighboring vehicles. An 

optimal computation resource allocation scheme was proposed in [9] to maximize the total long-

term expected reward of the overall vehicles. In [10], a novel computation offloading 

marketplace was established in vehicular networks, where a Vickrey–Clarke–Groves based 

reverse auction mechanism was exploited, and a unilateral-matching-based algorithm was 

proposed to implement polynomial computational complexity. 

However, these literature work only consider one side’s interest, lacking in making a 

tradeoff between task performance and utility of neighboring vehicles. What’s more, the 

increasing connectivity and decentralization of vehicular networks pose new challenges to the 

reliability of transactions when vehicles make deals with each other for tasks. It can be possible 

risky to make deal with strange vehicles. Blockchain is a promising technology to guarantee 

transaction reliability among multiple agents in a decentralized manner. To overcome the above 

challenges, we adopt the blockchain technology to create a reliable transaction mechanism for 

collaborative computing process. 

The main contribution of this paper is to propose a two-layer vehicular blockchain 

architecture, which enables the neighboring vehicles to store their transaction records in both 

temporary and permanent manners to enhance the transaction reliability. What’s more, to 

balance both sides’ interests, we further employ the coalition formation game to model such 

a collaborative computing process and propose a distributed computing coalition formation 

algorithm of the vehicles that have the incentive to participate in collaborative computing. 

Simulations results verify the efficiency of our proposed scheme compared with other baselines 

in terms of utility and computing performance. 

The rest of this paper is organized as follows: Section 2 presents the system model. In 

Section 3, we introduce the coalition formation game concepts and then provide the proposed 

algorithm. Section 4 presents the simulation results. Finally, the conclusion is drawn in Section 

5. 

2   System model 

2.1   System architecture  

 



 

 

 

 

As shown in Figure 1, the system architecture consists of the vehicular layer and the edge 

layer. The vehicular layer contains vehicles along the road. These vehicles equipped with OBU 

can perform specific computations and communicate with their neighboring vehicles through 

V2V communication links. The edge layer contains two types of nodes that are placed at the 

edge of the network compared to the cloud center: roadside units (RSUs) and base stations. The 

edge nodes have the stronger computing power and more storage resources than the vehicles. 

They communicate with the vehicles in the vehicular layer through V2I links, which can transfer 

and store the data generated during vehicle driving and interaction. 

 

 

Fig.1. System architecture. 

 

Since the vehicles also have computing capability, it is a feasible and efficient mechanism 

to complete a large computing task through collaborative computing among multiple vehicles. 

Therefore, the vehicles in the vehicular layer are further divided into two types in terms of 

different roles: requesting vehicles and assisting vehicles. The requesting vehicles issue 

computing tasks, whereas the assisting vehicles form coalitions to complete computing tasks in 

a cooperative manner. To ensure the reliability of transactions, a small scale blockchain network 

will be established by the formed vehicle coalition to record transaction data of the collaborative 

computing process. The data recorded on the blockchain include the payment of the requested 



 

 

 

 

task, the vehicle execution records of computing results, and the transactions of payment 

allocation. 

After collaborative computing is completed, the vehicle group is dissolved, and the 

generated blockchain data is uploaded to the edge layer. Nodes at the edge layer also establish 

a blockchain network to permanently store the transactions. 

Another class of data recorded in the permanent blockchain is the trust value of vehicles. 

Trust value reflects the credit conditions of vehicles during a certain period and changes based 

on vehicles’ activities over time. To enhance the reliability, requesting vehicles can set a trust 

value threshold for their tasks, which makes assisting vehicles ignore the ones with low trust 

value during computing coalition formation. 

 

2.2   Computing model  

 

In this paper, we consider a collaborative computing scenario in vehicular networks, where 

there is a requesting vehicle (denoted as 𝑣0) on the road, and 𝑁 nearby vehicles around 𝑣0 in its 

communication range, denoted as the set 𝒩 = {𝑣1, 𝑣2, . . . , 𝑣𝑁} . All these vehicles can 

communicate through V2V links. When 𝑣0  needs to complete a computing task 𝑇𝑎𝑠𝑘𝑣0
, 𝑣0 

sends the request message to the vehicles in the set 𝒩. The content of the request message is 

represented as {𝐴𝑣0
, 𝑇𝑣0

, 𝑅𝑣0
} , where 𝐴𝑣0

 is the computing amount of 𝑇𝑎𝑠𝑘𝑣0
, 𝑇𝑣0

 is the 

completion time limit of 𝑇𝑎𝑠𝑘𝑣0
, and 𝑅𝑣0

 is the reward payment for the completion of the task. 

It is assumed that due to the limitations of 𝐴𝑣0
 and 𝑇𝑣0

, a single vehicle in 𝒩 usually cannot 

complete the whole task alone. To complete the task in time, the minimum computing power 

(denoted as 𝑥0) is: 

 

 𝑥0 =
𝐴𝑣0

𝑇𝑣0
 . (1) 

 

After receiving the message, each vehicle in 𝒩 starts to find nearby vehicles to form the 

coalition for completing the task 𝑇𝑎𝑠𝑘𝑣0
 in a collaborative manner. Let 𝑆 ⊂ 𝒩 be a coalition 

consisting of |𝑆| vehicles. Assume the vehicle 𝑣𝑖 ∈ 𝒩 has the computing power 𝑥𝑖, and the total 

computing power of vehicles in 𝑆 is given by 𝑥𝑆: 

 

 𝑥𝑆 = ∑ 𝑥𝑖𝑣𝑖∈𝑆  . (2) 
 

In order to complete the task in a shorter time, the task payment 𝑅𝑣0
 is designed as a 

function of 𝑥𝑆: 

 

 𝑅𝑣0
=  {

     𝑏 ∙  𝑅0    𝑥𝑆 > 𝑏 ∙  𝑥0

     
𝑥𝑆

𝑥0
∙  𝑅0    𝑥𝑆 ≤ 𝑏 ∙  𝑥0

 .  (3) 

 

where 𝑅0 is the given payment when 𝑆 spends 𝑇𝑣0
 to complete the task (that is, 𝑥𝑆 = 𝑥0). When 

𝑥𝑆 > 𝑥0, the payment keeps increasing until reaching the maximum payment 𝑏 ⋅ 𝑅0. To earn a 

considerable profit, the vehicles in 𝒩 will select suitable partners to form the coalition. The 

profit measurement and the method of selecting will be discussed further in section III. 

Denoted 𝑃 = {𝑆1, 𝑆2, . . . , 𝑆𝑘} is the set consisting of several disjoint coalitions formed by 

the vehicles in 𝒩. 𝑣0 will select the appropriate coalition (or coalitions) from 𝑃 and delegate 



 

 

 

 

the task to it. The selected coalition starts the collaborative computing and records related data 

in the temporary blockchain. When the computing task is completed, the selected coalition will 

allocate the payment 𝑅𝑣0
 to the member vehicles through the blockchain network. The selected 

coalition uploads the data on the temporary blockchain to the permanent blockchain network at 

the edge layer for preservation periodically or before dissolution. 

3   Computing coalition formation algorithm 

To realize efficient coalition formation in a distributed manner, we employ the coalition 

formation game[11] to obtain an effective solution to the above problems, which can not only 

meet the computing requirements of 𝑣0 , but also encourage the vehicles to participate in 

collaborative computing and gain a considerable profit. 

 

3.1   Coalition game concept 

 

Definition 1: Transferable utility v(S). 

𝑢(𝑆): 𝑢(𝑆) is the revenue of the coalition 𝑆 in the game. It represents the reward the whole 

coalition will get by forming this coalition. 

𝑐(𝑆): 𝑐(𝑆) is the cost of the coalition 𝑆 in the game. Coalition formation game theory considers 

the presence of cost in the game. In such an assumption, the coalition will cause some kind of 

cost during the forming operation, e.g., the cost of exchanging information between members. 

𝑣(𝑆): 𝑣(𝑆) is the difference between the revenue and the cost of a coalition which is: 𝑣(𝑆) =
𝑢(𝑆) − 𝑐(𝑆). 𝑣(𝑆) is a real value that can be divided in any manner between the coalition 

members. We will define v(S) for the collaborative computing scenario in section III-B. 

Definition 2: Coalition formation game for the vehicular collaborative computing problem. A 

coalition formation game for the vehicular collaborative computing problem is defined by the 

pair (𝒩, 𝑣) which involves a set of assisting vehicles, denoted by 𝒩 = {1, . . . , 𝑁} who seek to 

form cooperative computing coalitions to compute the tasks. And 𝑣 or 𝑣(𝑆) is the profit of the 

coalition 𝑆. 

Definition 3: A coalition formation game (𝒩, 𝑣) with transferable utility is superadditive if for 

any two disjoint coalitions 𝑆1, 𝑆2 ⊂ 𝒩, 𝑣(𝑆1 ∪ 𝑆2) ≥ 𝑣(𝑆1) + 𝑣(𝑆2). 

Theorem 1: The coalition formation game for the collaborative computing scenario is not 

superadditive. 

Proof: According to the definition of 𝑣(𝑆) in section III-B, if the game is superadditive, then 

the coalition 𝒩  containing all the vehicles will obtain the maximum transferable utility. 

However, due to the second cost item 𝑐2(𝑆) defined in section III-B are growing at second-order 

of coalition size which is faster than the revenue 𝑢(𝑆), so the transferable utility will decrease 

when coalition size surpasses a certain value (the value won’t be big and are reachable in our 

simulation). 

Definition 4: Coalition partition. A partition is defined as the set 𝑃 : = {𝑆1, . . . , 𝑆𝑘}, where 𝑆𝑘 ⊆

𝒩 are mutually disjoint coalitions and ⋃ 𝑆𝑖
𝑘
𝑖=1 = 𝒩. 

Definition 5: Preference order. For any vehicle 𝑣𝑖 ∈ 𝒩, we define preference order ⊳𝑖 as a 

kind of comparison relation, where 𝐵 ⊳𝑖 𝐴 means that 𝑣𝑖 prefers to join coalition 𝐵 instead of 

coalition 𝐴. We use the preference order as follow: 

 



 

 

 

 

 𝐵 ⊳
𝑖

𝐴 ⇔ 𝑥𝐵′ > 𝑥𝐴  and 𝑣(𝐵′) ≥ 𝑣(𝐵) . (4) 

 

where 𝐵′ = 𝐵 ∪ {𝑣𝑖}. This definition means vehicle 𝑣𝑖  prefers to join coalition 𝐵 by leaving 

coalition 𝐴 when the new computing power of 𝐵 will be larger than the origin computing power 

of 𝐴, meanwhile the utility of 𝐵 is not decreasing. 

 

Definition 6: Switch rule. We introduce the simple switch rule as the basic operation of our 

algorithm as follow [12]: 

Switch: 

 
𝐴, 𝐵 → 𝐴 ∖ {𝑣𝑖}, 𝐵 ∪ {𝑣𝑖},

 𝑤ℎ𝑒𝑟𝑒 𝐴 ⊆ 𝒩, 𝐵 ⊆ 𝒩 ∪ ∅, 𝐵 ≠ 𝐴, 𝑣𝑖 ∈ 𝐴,  𝐵 ⊳
𝑖

𝐴 . (5) 

 

Definition 7: Payoff scheme. The coalition 𝑆 needs to divide the utility 𝑣(𝑆) for its members, 

and every vehicle 𝑣𝑖 get its payoff 𝜙𝑖. We use the following division scheme: 

 

 𝜙𝑖 =
𝑥𝑖

𝑥𝑆
⋅ 𝑣(𝑆) . (6) 

 

Definition 8: Partition convergence. A partition 𝑃 is considered convergence if for any 𝐴 ∈
𝑃, 𝐵 ∈ 𝑃 ∪ ∅ and 𝐵 ≠ 𝐴, no 𝑣𝑖 ∈ 𝐴 satisfying 𝐵 ⊳𝑖 𝐴 exists. 

 

3.2   Transferable utility of the computing coalition 

 

In this section, we design the transferable utility mentioned in section III-A for coalition 

formation game of collaborative computing. 

The revenue for forming coalition 𝑆 is defined as 𝑅𝑣0
, that is: 

 

 𝑢(𝑆) = 𝑅𝑣0
 . (7) 

 

In addition to getting paid, 𝑆 also generates some overhead, including computing cost and 

communication cost. The computing cost is defined as: 

 

 𝑐1(𝑆) = ∑ 𝑥𝑖𝑣𝑖∈𝑆 ∗ 𝑇𝑆 ∗ 𝑝𝑖   (8) 
 

where 𝑇𝑆 is the real computing time of 𝑆 which is defined as: 

 

 𝑇𝑆 =  {     

𝐴𝑣0

𝑥𝑆
     𝑖𝑓 𝑥𝑆 > 𝑥0

𝑇𝑣0
      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (9) 

 

and 𝑝𝑖  is the unit computing cost of vehicle 𝑣𝑖 (such as the power consumption per unit time of 

CPU). 

In the process of forming a coalition, vehicles need to transfer messages directly or by using 

blockchain, which brings communication overhead. The amount of the communication 

overhead is related to the size of the coalition and the distance among the vehicles. It is 

represented by 𝑐2(𝑆) and 𝑐3(𝑆), respectively: 

 



 

 

 

 

 𝑐2(𝑆) = 𝛼 ⋅ |𝑆|2  (10) 
 

where 𝛼 is a weight factor and |𝑆| is the size of the coalition 𝑆. 

 

 𝑐3(𝑆) = 𝛽 ⋅ 𝑚𝑎𝑥
𝑣𝑖,𝑣𝑗∈𝑆

𝑑(𝑣𝑖 , 𝑣𝑗)  (11) 

 

where 𝛽 is a weight factor, and 𝑑(𝑣𝑖 , 𝑣𝑗) is the distance between 𝑣𝑖 and 𝑣𝑗 in coalition 𝑆. 

From the above formulas (7) - (11), the utility of the coalition is obtained: 

 

 𝑣(𝑆) = 𝑢(𝑆) − 𝑐1(𝑆) − 𝑐2(𝑆) − 𝑐3(𝑆) . (12) 
 

Due to 𝑐2(𝑆) and 𝑐3(𝑆) increasing when the coalition expands, forming a grand coalition 

may not be the solution with maximum 𝑣(𝑆), and the vehicles in 𝒩 will form several disjoint 

coalitions instead. 

 

3.3   Coalition formation algorithm 

 

Instead of using an optimal centric algorithm, we adopt a distributed algorithm that consists 

of two phases as shown in Table 1. During the first phase, the vehicles perform switch 

operations in a random way and form coalitions until no more switch operation can happen, and 

then the partition 𝑃  reaches a convergence. In the second phase, 𝑣0  selects the appropriate 

coalition (or coalitions) from 𝑃. In most cases, the coalition with maximum computing power 

will be chosen to execute the task to minimize the latency. However, sometimes no coalition in 

𝑃 can provide computing power more than 𝑥0, then 𝑣0 will choose more coalitions to guarantee 

the sum of computing power to be greater than the required threshold 𝑥0. In such a case, 𝑣0 

needs to divide the whole task into several subtasks and deliver them to different coalitions. 

Compared with the no-task-division case, 𝑣0 has to coordinate and mix together the work of 

more coalitions which may bring extra cost and increase the risk for damaging the performance 

of the task. In the task-division case, the reward for each coalition is calculated with a punishing 

factor: 

 

 𝑅𝑣0,𝑆𝑖
′ =

𝑥𝑆𝑖

∑ 𝑥𝑆𝑘𝑆𝑘∈𝐹
⋅ 𝑅𝑣0,𝑆𝑖  . (13) 

      

where 𝑅𝑣0,𝑆𝑖
 is the origin reward of coalition 𝑆𝑖 according to (3). The punishing factor considers 

the contribution of 𝑆𝑖 to the set 𝐹. After completing the task, the coalition divides its utility to 

the vehicles within as described in Definition 7. 

4   Simulation results 

In our conducted simulations, vehicle 𝑣0 is placed at the center of a 100 m × 10 m road, 

and the other vehicles are placed randomly on the road. The number of assisting vehicles 𝑁 

varies from 5 to 15 in the experiment. For each value of 𝑁, we run the simulation for 150 times 

and take the average of the results (utility or computing power described below) as the final 

value. The other simulation parameters are listed in Table 2. 



 

 

 

 

Table 1.  Coalition formation algorithm. 

Initialize the vehicles are non-cooperative. The partition of the network is 𝑃 =
{𝑣1, 𝑣2, . . . , 𝑣𝑁}. 
 

Phase I - coalition formation: 

1 repeat 

2 randomly select coalition 𝐴, 𝐵 and 𝑣𝑖, where 𝐴 ∈ 𝑃, 𝐵 ∈ 𝑃 ∪ ∅, 

3 𝐵 ≠ 𝐴, 𝑣𝑖 ∈ 𝐴. 

4 if 𝐵 ⊳𝑖 𝐴 then 

5 𝑃 = 𝑃 ∖ {𝐴, 𝐵} ∪ {𝐴 ∖ {𝑖}, 𝐵 ∪ {𝑖}}. 

6 until 𝑃 reach convergence. 

7 suppose now 𝑃 = {𝐴1, 𝐴2, . . . , 𝐴𝐾}. 

 

Phase II - coalition selection: 

8 ∅ → 𝐹. 

9 sort 𝑃 and get 𝑃 = {𝐵1, 𝐵2, . . . , 𝐵𝐾}, where 𝑥𝐵𝑖
> 𝑥𝐵𝑗

 if 𝑖 < 𝑗. 

10 if 𝑥𝐵1
> 𝑥0 then 

11 {𝐵1} → 𝐹. 

12 else 

13 find k where ∑ 𝑥𝑆𝑖

𝑘
𝑖=1 >= 𝑥0 and ∑ 𝑥𝑆𝑖

𝑘−1
𝑖=1 < 𝑥0. 

14 {𝐵1, . . . , 𝐵𝑘} → 𝐹. 

15 𝑣0 delegate 𝑇𝑎𝑠𝑘𝑣0
 to 𝐹. 

16 𝐹 completes the task and divide the utility. 

 

 

Table 2.  Simulation parameters. 

Parameters Values 

Task Computing Amount 𝐴𝑣0
 100 unit 

Basic Reward 𝑅𝑣0
 200 unit 

Maximum Reward Ratio 𝑏 1.65 

Minimum Task Computing Power 𝑥0 192 unit 

Cost Weight for Coalition Size 𝛼 3 

Cost Weight for Vehicles' Distance 𝛽 6 

Computing Power of Assisting Vehicle 𝑥𝑖 generated randomly 

between 48-80 unit 

Unit Computing Cost 𝑝𝑖 generated randomly 

between 0.1-0.15 unit 

 

We will compare our coalition formation game-based algorithm (denoted as CF) with two 

baseline schemes as follows: 

1) Maximum utility scheme (MU). This scheme searches the coalition with maximum utility 

by using the exhaustive method. However when the number of vehicles is relatively small (𝑁 =
5 or 6), the coalition with maximum utility can’t provide computing power more than 𝑣0 which 

is similar to our proposed scheme. At this time, 𝑣0 also selects more coalitions beside the one 

before to fulfill the requirement. 



 

 

 

 

2) Nearest selection scheme (NS). This scheme sorts the vehicles by the distance to 𝑣0 and 

selects the nearest ones whose total computing power is more than 𝑥0. To improve the utility, it 

will keep adding new vehicles in the selection until the utility of the coalition begins to decrease. 

 

 

Fig.2. A snapshot example of coalition formation. 

 

Figure 2 shows a snapshot of a network with 10 assisting vehicles. By using the coalition 

formation game-based algorithm, the vehicles form three coalitions in this example. The utility 

and computing power are shown in Table 3. 𝑣0  will select coalition 3 because it has the 

maximum computing power and satisfies the requirement of 𝑥0. 

 

Table 3.  Coalition parameter result. 

 Coalition 1 Coalition 2 Coalition 3 

Utility 103.80 109.68 101.37 

Computing Power 216.14 173.39 218.25 

 

Figure 3 compares the utilities of the selected coalition(s) generated by three different 

schemes. From Figure 3, we can find that the utility obtained by CF is very close to the one by 

MU, which indicates that CF can guarantee the assisting vehicles getting well paid from the task. 

Moreover, we can also see that NS performs much worse than CF and MU. This is because NS 

forms the coalition in a greedy manner to get enough computing power which includes “join 

operation” only and does not include “leave operation”. 

 

In Figure 4, the computing power of the three schemes are compared. We can find that the 

computing power of CF and MU are close when 𝑁 varies from 5 to 10, and then CF begins to 

perform better than MU. This is because when 𝑁 is relatively small, CF often finds the optimal 

coalition with the maximum utility which is the same as MU, and sometimes MU even gets 

better results by exhaust search (both the utility and computing power are higher) which reduces 

the difference between CF and MU. But As 𝑁 keeps growing, CF can perform better by seeking 

greater computing power at an acceptable cost of utility. It indicates that CF can reach better or 

at least the same task performance compared with MU. And we also have that NS performs 

better than CF and MU when 𝑁 is 5 or 6. This is because NS tries to gather enough computing 



 

 

 

 

power without considering utility at first, and may form the larger coalition which is hard for 

CF and MU when 𝑁 is relatively small. 

 

 

Fig.3. The utility of selected coalition(s). 

 

Fig.4. The computing power of selected coalition(s). 

 



 

 

 

 

5   Conclusions 

In this paper, we constructed a two-layer blockchain architecture suitable for reliable 

collaborative computing among vehicles. We proposed a coalition formation game-based 

algorithm to seek the appropriate vehicles for collaborative computing, so as to make a tradeoff 

between task performance and system utility of vehicles. Simulation results show that our 

algorithm reaches a good performance close to the exhaustive search method. 

 

Acknowledgments. This work is supported in part by the National Key Research and 

Development Project under Grant 2017YFE0119300, 2019YFB2102300 and 

2019YFB2102301, in part by the National Natural Science Foundation of China under Grant 

61936014 and 61901302, in part by the Scientific Research Project of Shanghai Science and 

Technology Committee under Grant 19511103302, in part by the open research fund from 

Shandong Provincial Key Laboratory of Wireless Communication Technologies (No. 

SDKLWCT-2019-02), and in part by the Fundamental Research Funds for the Central 

Universities (China).  

 

References 

[1] Madhok, A.: Global connected car revenues to grow five-fold by 2025. 

https://www.counterpointresearch.com/connected-car-revenues-grow-five-fold-2025 (2019) 

[2] Ashok, A.; Steenkiste, P.; Bai, F.: Adaptive cloud offloading for vehicular applications. Vehicular 

Networking Conference IEEE. pp. 1-8 (2016) 

[3] Matzakos, P.; H ärri, J.; Villeforceix, B.; et al.: An ipv6 architecture for cloud-to-vehicle smart 

mobility services over heterogeneous vehicular networks. International Conference on Connected 

Vehicles and Expo (ICCVE), pp. 767–772 (2014) 

[4] Wang, J.; Feng, D.; Zhang, S.; et al.: Computation offloading for mobile edge computing enabled 

vehicular networks. IEEE Access. vol. 7, pp. 62624-62632 (2019) 

[5] Zhao, J.; Li, Q.; Gong, Y.; et al.: Computation offloading and resource allocation for cloud assisted 

mobile edge computing in vehicular networks. IEEE Transactions on Vehicular Technology. vol. 68, 

no. 8, pp. 7944-7956 (2019) 

[6] Whaiduzzaman, M.; Sookhak, M.; Gani, A.; et al.: A survey on vehicular cloud computing. Journal 

of Network and Computer applications. vol. 40, pp. 325-344 (2014) 

[7] Sun, Y.; Guo, X.; Zhou, S.; et al.: Learning-based task offloading for vehicular cloud computing 

systems. IEEE International Conference on Communications (ICC). pp. 1–7 (2018) 

[8] Alahmadi, A. A.; Lawey, A. Q.; El-Gorashi, T. E. H.; et al.: Distributed processing in vehicular 

cloud networks. International Conference on the Network of the Future (NOF). pp. 22–26 (2017) 

[9] Zheng, K.; Meng, H.; Chatzimisios, P.; et al.: An SMDP-Based Resource Allocation in Vehicular 

Cloud Computing Systems. IEEE Transactions on Industrial Electronics. vol. 62, no. 12, pp. 7920-

7928 (2015) 

[10] Liwang, M.; Dai, S.; Gao, Z.; et al.: A truthful reverse-auction mechanism for computation 

offloading in cloud-enabled vehicular network. IEEE Internet of Things Journal. vol. 6, no. 3, pp. 4214-

4227 (2019) 

[11] Saad, W.; Han, Z.; Debbah, M.; et al.: Coalitional game theory for communication networks. 

IEEE Signal Processing Magazine. vol. 26, no. 5, pp. 77-97 (2009) 

[12] Zhao, N.; Wu, H.; Chen, Y.: Coalition game-based computation resource allocation for wireless 

blockchain networks. IEEE Internet of Things Journal. vol. 6, no. 5, pp. 8507-8518 (2019) 


	Word 书签
	introduction
	OLE_LINK19
	OLE_LINK20
	公式3
	us
	cs
	vs
	公式7
	公式11
	Computing_Power_of_Selected_Coalition(s)
	Utility_of_Selected_Coalition(s)
	ref-8251215
	refs
	ref-7835966
	ref-8489932
	ref-connected-car-revenues-grow
	ref-7297654
	ref-5230848
	OLE_LINK11
	ref-8422661
	ref-8712145
	ref-whaiduzzaman2014survey
	ref-8745530
	ref-7277060


