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Abstract. Collaborative decision-making (CDM) in vehicular networks can greatly 
improve the driving efficiency of vehicles. However, vehicle clusters often have serious 
security threats. To solve this issue, we propose a blockchain-based collaborative decision-
making (BCDM) model, which is divided into two parts: the architecture level and the 
algorithm level. At the architectural level, we employ blockchain into vehicular networks 
and propose a layered blockchain network architecture (LBNA) that not only eases the data 
calculation and storage pressure of vehicular networks, but also further guarantees the 
security of the system. At the algorithm level, a BCDM algorithm combining direct trust 
and indirect trust is provided to determine the occurrence of traffic events and identify false 
messages. Simulation results reveal that the proposed system is effective and feasible in 
processing and storing trust information in vehicular networks. 

Keywords: Blockchain, collaborative decision-making, vehicular networks, data cre-
dibility. 

1   Introduction 

In the field of vehicular networks, the development of communication technology among 
vehicles has achieved great results. In an increasingly complex road environment, vehicular 
networks need to face a variety of traffic events [1], [2]. The Traffic Incident Management 
Handbook [3] defines an event as “any non-recurring event that causes a reduction of roadway 
capacity or an abnormal increase in demand.” The 2000 Highway Capacity [4] defines an event 
as being “any occurrence on a roadway that impedes normal traffic flow.” In order to take safe 
and efficient driving actions according to different traffic events, cooperative decision-making 
(CDM) is regarded as a promising solution for connected and intelligent vehicles in vehicular 
networks. In the process of CDM, there are many security threats such as in-vehicle sensor 
recognition errors and malicious vehicles’ false information pouring. In the case of limited 
hardware, software, and energy resources of vehicular networks, enhancing vehicle safety and 
proposing effective solutions to potential safety hazards are major challenges [5].  

At the level of the event discrimination algorithm, Ahmad et al. [6] summarized several 
trust models (TMs) applicable to vehicular networks, which can be divided into three categories: 
Entity-oriented Trust Models (ETM), Data-oriented Trust Models (DTM), and Hybrid Trust 
Models (HTM). Kerrache et al. [7] proposed an opportunistic alert dissemination mechanism 
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based on trust relationships between vehicles. Chen et al. [8] proposed a security scheme for 
evidence combination in CDM. This scheme can combine the direct trust value from local data 
with the indirect trust value from neighboring vehicles to obtain traffic incident decision results. 
Li et al. [9] proposed an Attack-Resistant Trust (ART) management scheme. This scheme can 
detect malicious attacks, evaluate the credibility of data and mobile nodes in vehicular networks.  

However, with the development of information technology, algorithm-level security 
solutions are no longer sufficient to ensure the reliability and robustness of vehicular networks. 
Therefore, we propose to exploit blockchain to adjust and optimize the vehicular network 
architecture [10]. The blockchain has inherent characteristics such as fault tolerance, trans-
parency, tamper resistance, and traceability. Based on this, Kang et al. [11], [12] proposed that 
blockchain technology can ensure secure data sharing in vehicular edge computing and 
networks (VECONs). What’s more, blockchain-enabled Internet of Vehicles (BIoV) can 
enhance soft security performance through miner selection and block verification. Ali et al. [13] 
proposed a multi-tier blockchain network architecture, which has good horizontal extensibility. 
Yang et al. [14] proposed a Blockchain-based Traffic Event Validation (BTEV) framework, 
which collects traffic data by roadside units (RSUs), and vehicles can use these data to verify 
the occurrence of traffic incidents. Yang et al. [15] proposed a decentralized management 
system for vehicular networks based on blockchain technology. In this system, vehicles can use 
Bayesian inference models to verify messages received from neighboring vehicles. Besides, 
each vehicle that sends a message will get a corresponding trust value, and these values will be 
stored in the blockchain network formed by RSUs.  

Therefore, in this paper, we propose a Blockchain-based Collaborative Decision-Making 
(BCDM) model applied to vehicular networks. At the network level, the BCDM model includes 
an innovative layered blockchain network architecture (LBNA), which can protect the system’s 
security while avoiding on-board memory and computing resources that are occupied by 
blockchain data. At the algorithm level, we further propose a BCDM algorithm for vehicle 
clusters based on hierarchical events. The algorithm has the functions of event determination, 
malicious node identification, and reputation rating, which can be perfectly integrated with the 
blockchain network architecture.  

The remainder of this paper is organized as follows. Section 2 describes the system model 
of BCDM. In Section 3, we propose a BCDM algorithm combining direct trust, indirect trust, 
and reputation rating. The numerical results and conclusions are drawn in Section 4 and Section 
5, respectively.  

2   System model 

2.1   Network architecture model 
 

As illustrated in Figure 1, the LBNA is divided into two layers, namely the center-layer 
and the edge-layer.  

The edge-layer includes multiple groups of temporary blockchain networks (TBN), and 
each group is composed of vehicles in the same traffic environment. Because the vehicle itself 
has inherent characteristics such as high mobility, relatively small on-board memory, and 
relatively low on-board computing power, the TBN will not exist for a long time. Before the 
TBN disintegrates, its last miner node will upload the necessary data for the entire chain to the 
center-layer.  



 

 
 
 
 

The center-layer is a permanent blockchain network (PBN), which is composed of RSUs, 
base stations, and databases in a large geographical area. These nodes have stronger computing 
and data storage capabilities, which can process and save massive data from edge-layer in order 
to query historical records or trace information sources when necessary. In addition, the PBN 
will perform statistics and analysis on the historical quality of messages broadcast by each 
vehicle, and thereby identify malicious vehicles. Identified malicious vehicles will be notified 
online for criticism and punished by prohibiting them from broadcasting messages.  

 

 
Fig. 1. The layered blockchain network architecture (LBNA) in vehicular networks. 

 
2.2   Event model 
 

While driving, vehicles often face a variety of complex traffic events, such as road 
construction, road congestion, or different types of traffic accidents. These traffic events make 
up the collection: 𝐸𝑣𝑒𝑛𝑡 = {𝐸!, 𝐸", . . . , 𝐸# , . . . }. In this paper, it is assumed that traffic events 
have been pre-classified, and each type of traffic event is divided into different levels. Each 
level is independent of each other and all levels together constitute a complete set representing 
the corresponding event. For example, road congestion can be divided into five levels: (I) roads 
are clear, (II) lightly congested, (III) moderately congested, (IV) severely congested, and (V) 
impassable.  



 

 
 
 
 

In addition, the BCDM model will set a corresponding prior probability for each level of a 
specific event based on empirical statistics on traffic big data: 𝑃𝑟𝑖𝑜𝑟𝑖 = {𝑝𝑟!, 𝑝𝑟", . . . , 𝑝𝑟$}. 
Where, 𝑃𝑟! represents the prior probability of level (I) in 𝐸#, 𝜔 represents the total number of 
levels included in 𝐸#.  

During the driving process, the surrounding environment will be detected by on-board 
sensors. Once a specific traffic event is observed, the event will be evaluated according to the 
preset event levels, and a cooperative awareness message (CAM) will be generated based on 
this assessment result. Each CAM will contain the identity of the sender, the generation time, 
and a level recommendation for a certain traffic event. It will be broadcast to other vehicles in 
the same TBN.  
 
2.3   Test model 
 

All the CAMs received by a vehicle 𝑉% constitute a set 𝐶𝐴𝑀 = {𝑐𝑎𝑚!, . . . , 𝑐𝑎𝑚# , . . . }. This 
set may contain false contents from malicious vehicles or untrusted vehicles. Malicious vehicles 
are vehicles that intentionally broadcast false CAMs, whereas untrusted vehicles are vehicles 
that accidentally broadcast an error CAM because they are far away from where the event 
occurred. In the hypothesis of our paper, only a few of benign vehicles become untrusted due to 
occasional errors. Among them, 𝑐𝑎𝑚# = {𝑐𝑎𝑚#

!, . . . , 𝑐𝑎𝑚#
& , . . . } refers to the set of all CAMs 

related to 𝐸# received by 𝑉%. 𝑐𝑎𝑚#
& in the set denotes the CAM that 𝑉& broadcasts to 𝑉% about 

𝐸#. 
Each vehicle in the TBN will infer and judge the true situation of events based on two 

principles of direct confidence 𝑇'()  and indirect confidence 𝑇(*' . The calculation of 𝑇'()  is 
based on the trustworthiness of CAMs received by the vehicle. The calculation of 𝑇(*' is based 
on the historical reputation records of the vehicle that issued the CAM. The historical reputation 
record is the quality judgment of all CAMs that the vehicle has ever issued. The vehicle 
receiving the message, 𝑉%, will calculate the comprehensive trust 𝑇+,% for the broadcast vehicle 
𝑉& based on 𝑇'() and 𝑇(*'. 

In the end, 𝑉% uses Dempster-Shafer theory (DST) to fuse all comprehensive trusts about 
𝐸# , and obtains the event’s final discrimination result, 𝑇-(*./ . Meanwhile, 𝑉%  will give a 
reputation score to the broadcast vehicle 𝑉& based on 𝑇-(*./. If 𝑇-(*./ proves the CAM is false, 
the corresponding vehicle 𝑉& is given a negative reputation score (−1). This reputation score 
will affect the vehicle’s 𝑇(*'  and further affect the determination of whether the vehicle is 
malicious. 

3   The proposed algorithms 

3.1   The BCDM algorithm 
 
Step 1 Direct trust. The vehicle’s direct trust 𝑇'() is an assessment of the reliability of vehicles’ 
broadcast CAMs. 

The closer the vehicle is to the event, the more reliable the information it detects. Therefore, 
the distance trust of a certain CAM is defined as follows: 

 
	 𝑑#& = 𝑒01∙/!

"
+ 𝛽	 (1)	



 

 
 
 
 

where 𝑑#& is the distance trust of 𝑐𝑎𝑚#
& sent by vehicle 𝑉&. 𝑙#& is the distance between 𝑉& and the 

event location. 𝛼 and 𝛽 are two present parameters, which respectively control the change rate 
and lower bound of the distance trust. 

Suppose that the total number of CAMs received by 𝑉% for a certain event 𝐸# is 𝑁, that is, 
vehicle 𝑉% has a distance trust set for 𝐸#: 

 
𝑇𝑜𝑡 = D𝑑#!, 𝑑#", … , 𝑑#3F	. (2) 
 

In the set 𝑇𝑜𝑡, there are 𝑀 CAMs of the same level as 𝑐𝑎𝑚#
& about 𝐸#, which will form a subset: 

 
𝑆𝑢𝑏 = K𝑑#

(!), 𝑑#
("), … , 𝑑#

(6)L	. (3) 
 
Each element in the set 𝑆𝑢𝑏 also belongs to the set 𝑇𝑜𝑡. 

Therefore, the direct trust of the CAM about 𝐸#, which received by 𝑉% from 𝑉& is defined 
as follows: 

 

𝑇'() =
∑ 𝑑#

(()6
(7!

𝑀 	. (4) 

 
Step 2 Indirect trust. The vehicle’s indirect trust 𝑇(*' is calculated based on its own historical 
reputation. 

The historical reputation 𝑇&
8#  is the accuracy of all the CAMs 𝑉&  has broadcast when it 

joined the TBN for the 𝑖 − 𝑡ℎ time. 
 

𝑇&
8# =

𝑅𝑒𝑙𝑖𝑎𝑏𝑙𝑒&
8#

𝑅𝑒𝑙𝑖𝑎𝑏𝑙𝑒&
8# +𝑈𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒&

8#
	 (5) 

 
where 𝑅𝑒𝑙𝑖𝑎𝑏𝑙𝑒&

8# is the number of reliable CAMs that 𝑉& have been broadcasted in its 𝑖 − 𝑡ℎ 
TBN, while 𝑈𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒&

8# is the number of unreliable CAMs. 
In order to ensure the reasonableness of the historical reputation evaluation of vehicles, we 

will focus on examining the performance of CAMs when vehicles join in the TBN this or the 
penultimate time. Therefore, the weighted aggregation method is used to calculate the indirect 
trust of 𝑉&: 

 

𝑇(*' =

⎩
⎪⎪
⎨

⎪⎪
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∑ 𝑇&
8#90"

(7!
𝐻 − 2 \ + 𝑇&

8$%&

𝜎 + 1 , 𝑛𝑢𝑚 ≤ 𝛿

𝜎 ⋅ Z
∑ 𝑇&

8#90!
(7!
𝐻 − 1 \ + 𝑇&

8$

𝜎 + 1 , 𝑛𝑢𝑚 > 𝛿

	 (6) 

 
where 𝐻 is the total number of times 𝑉& has added to the TBN, 𝑇&

8$ is the historical reputation 
of 𝑉& joining in TBN this time, 𝑛𝑢𝑚 is the number of times 𝑉& broadcasted in the current TBN, 



 

 
 
 
 

𝛿 is a positive integer parameter which denotes the threshold for switching formulas, 𝜎 is the 
factor between 0 and 1 which denotes the weight given to the previous TBN’s historical 
reputation. 
 
Step 3 Comprehensive trust. Based on the step 1∼2, the comprehensive trust of the CAM from 
𝑉& to 𝑉% is: 
 

𝑇+,% = 𝛾 ⋅ 𝑇'() + 𝜂 ⋅ 𝑇(*' 	, 	𝛾 + 𝜂 = 1	 (7) 
 
where 𝛾 and 𝜂 are the weights of 𝑇'() and 𝑇(*', respectively. 
 
Step 4 Final trust. In this work, Dempster-Shafer theory (DST) is able to fuse 𝑇+,% of multiple 
vehicles on the event 𝐸# , and even if there are non-true discrimination results among them, 
accurate final judgment can be obtained. In DST, the recognition frame 𝛺 of 𝐸# is composed of 
all its levels: 
 

𝛺 = {𝑟!, 𝑟", … , 𝑟: , … 𝑟$}	 (8) 
 
where 𝑟! indicates that the level of 𝐸# is (I), and 𝜔 indicates the total number of levels in 𝐸#. 

When 𝑉%  receives the CAMs sent by any other vehicle about 𝐸# , it can calculate the 
corresponding comprehensive trust and obtain the set {𝑇+,%! , . . . , 𝑇+,%3 }. Based on this set, the 
basic probability assignment (BPA) for each level in 𝛺 can be completely obtained. 

Here are the examples: suppose that 𝑉& judges 𝐸# as level 𝑟:, and 𝑉% gets the corresponding 
𝑇+,%& (𝑟:) = 𝑚&(𝑥). According to the prior probability set 𝑃𝑟𝑖𝑜𝑟𝑖 = {𝑝𝑟!, 𝑝𝑟", . . . , 𝑝𝑟$}, other 
levels of BPA in 𝛺 can be calculated: 

 

𝑚&(𝑦) =
𝑝𝑟; ⋅ [1 − 𝑚&(𝑥)]

1 − 𝑝𝑟:
						𝑟; ∈ 𝑃𝑟𝑖𝑜𝑟𝑖, 𝑦 ≠ 𝑥	. (9) 

 
In DST, the probability is replaced by an uncertainty interval bounded by belief (𝑏𝑒𝑙) and 

plausibility (𝑝𝑙). 𝑏𝑒𝑙 is the lower bound of this interval and represents the supporting evidence. 
𝑝𝑙  is the upper bound of this interval and represents non-denied evidence. Trust interval 
[𝑏𝑒𝑙(𝑟:), 𝑝𝑙(𝑟:)]  represents the value range of 𝑇-(*./ , while 𝑝𝑙(𝑟:) − 𝑏𝑒𝑙(𝑟:)  represents the 
uncertainty of the judgement about 𝑟:. When 𝑝𝑙(𝑟:) − 𝑏𝑒𝑙(𝑟:) = 0, it means that the degree of 
trust in the judgement about 𝑟: is completely determined. 

The belief function and plausibility function with regard to the level 𝑟: of 𝐸# obtained by 
𝑉% are calculated as follows: 

 
𝑏𝑒𝑙(𝑟:) = o 𝑚𝑎𝑠𝑠(𝑟<)

)'∈)(

	 (10) 

and 
 

𝑝𝑙(𝑟:) = o 𝑚𝑎𝑠𝑠(𝑟:)
)'∩)(?∅

= 1 − 𝑏𝑒𝑙(𝑟‾:)	. (11) 



 

 
 
 
 

Here 𝑟< are all the basic elements that compose the level 𝑟:. Since levels of 𝐸# in our hypothesis 
are single-element propositions and mutually exclusive, we have the following formulas: 
 

𝑏𝑒𝑙(𝑟:) = 𝑝𝑙(𝑟:) = 𝑚𝑎𝑠𝑠(𝑟:)						∀𝑟: ⊆ 𝛺	. (12) 
 

𝑚𝑎𝑠𝑠(𝑟:) = ⊕ 𝑚*
3

*7!
(𝑟:)	. (13) 

 
Here 𝑚𝑎𝑠𝑠(𝑟:) denotes the fusion of discrimination results about 𝑟: for a total of 𝑁 broadcast 
vehicles. We can combine these discrimination results by applying the Dempster’s rule, which 
is defined as follows: 
 

𝑚!(𝑟:) ⊕𝑚"(𝑟:) =
∑ 𝑚!(𝑅.).,8:C)∩C*7)( ⋅ 𝑚"(𝑅8)

1 − ∑ 𝑚!(𝑅.).,8:C)∩C*7∅ ⋅ 𝑚"(𝑅8)
	 . (14) 

 
The final result of a particular level 𝑟: about 𝐸# is: 
 

𝑇-(*./(𝑟:) = 𝑏𝑒𝑙(𝑟:) = 𝑝𝑙(𝑟:)	. (15) 
 
3.2   Distributed consensus algorithm 
 

Vehicle clusters store data in the BCDM process through a TBN. As a decentralized system, 
the TBN needs to choose an appropriate consensus mechanism to ensure that all vehicles can 
follow the established protocol rules. We choose to adopt the proof-of-stake (PoS) miner 
election method. Compared with proof-of-work (PoW), PoS is more suitable for applications in 
the field of vehicular networks, it can greatly shorten the time to reach consensus in each block, 
and does not require energy consumption for mining [16], [17]. In PoS protocols, instead of 
computational power resources, miners are selected based on their stakes: 

 
𝑃( =

𝑠(
∑ 𝑠#3
#7!

	 . (16) 

 
In our research, the weight of a vehicle 𝑠( is the number of false CAMs it receives. In this 

way, most false CAMs and related data can be stored in TBN promptly, thereby ensuring the 
rapid identification of malicious nodes. 

Considering the scalability of the entire architecture model, the PBN will use the PoW 
algorithm to be publicly deployed in a permissionless manner so that TBN in the edge layer can 
upload data freely. 
 
3.3   Identification and punishment mechanism of malicious vehicles 
 

The BCDM model will identify and punish malicious vehicles based on the data stored in 
the blockchain. The specific execution rule is to calculate the proportion of false CAMs to the 
total CAMs broadcasted by each vehicle in the current TBN. If the proportion of false CAMs 
exceeds the threshold 𝑇ℎ𝑟! , the corresponding vehicle will be warned by broadcast. If the 
proportion of false CAMs exceeds the threshold 𝑇ℎ𝑟"  (𝑇ℎ𝑟" > 𝑇ℎ𝑟!) , the corresponding 
vehicle will be punished by banning broadcast CAMs. 



 

 
 
 
 

4   Simulation results 

In order to evaluate the efficiency of the proposed BCDM model, we conduct the 
simulations based on MATLAB. The configurations of key parameters are listed in Table 1. We 
classify all vehicles into three categories: trusted, untrusted, and malicious vehicles. Malicious 
vehicles are vehicles that intentionally broadcast false CAMs. Untrusted vehicles are vehicles 
that accidentally broadcast an error CAM because they are far away from where the event 
occurred. In order to simulate a real traffic scene, a certain percentage (broadcast ratio) of 
random vehicles will detect traffic events and broadcast them during each iteration. The number 
of iterations is 150 in the simulation. 

Experimental strategies in the simulations: In the simulations, we evaluate the performance 
of the BCDM model by event discrimination accuracy, Precision (𝑃) and Recall (𝑅). 

Table 1.  Simulation parameters. 

Parameters Settings 
𝜔 4 
𝑃𝑟𝑖𝑜𝑟𝑖 𝑝𝑟! = 𝑝𝑟" = 𝑝𝑟D = 𝑝𝑟E = 0.25 
𝑁 50 
trusted to untrusted vehicle ratio 8:1 
broadcast ratio 0.6 
𝛼 0.015 
𝛽 0.0723 
𝜎 0.7 

 
4.1   Event discrimination accuracy 
 

We compare our accuracy performance with Yang et al. [15], in which they calculated the 
credibility of the vehicle broadcast message through Bayesian Inference (BI) to determine 
whether the event occurred. Figure 2 shows the impact of malicious vehicles on accuracy. 

From Figure 2, we can see that as the proportion of malicious vehicles gradually increases, 
the accuracy of our BCDM algorithm is always higher than the scheme in [15], and when the 
proportion of malicious vehicles is less than 55%, the BCDM algorithm can keep the 
discrimination accuracy as 100%. 

 
4.2   Precision and Recall 

 
We use Precision and Recall as evaluation parameters, which are widely used in the CDM 

scenario. 
In this paper, 𝑃 and its 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 are defined as follows: 
 

𝑃 =
𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠	𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑤𝑟𝑜𝑛𝑔	𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡	𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	
(17) 

 

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =
𝑟𝑒𝑎𝑙	𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠	𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

𝑟𝑒𝑎𝑙	𝑤𝑟𝑜𝑛𝑔	𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡	𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠	
(18) 



 

 
 
 
 

where 𝑤𝑟𝑜𝑛𝑔	𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡	𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 means malicious vehicles and untrusted vehicles. Figure 3 
shows the impact of malicious vehicles on Precision. When the proportion of malicious vehicles 
is 65% or less, the Precision of BCDM exactly matches the 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. 

 
 

Fig. 2. The impact of malicious vehicles on Accuracy.  
 
 

 
 

Fig. 3. The impact of malicious vehicles on Precision.  
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In this paper, 𝑅 is defined as follows: 
 

𝑅 =
𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠	𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝑟𝑒𝑎𝑙	𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠	𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 	 . (19) 

 
Figure 4 shows the impact of malicious vehicles on Recall with different proportions of 

𝑇'(). In 𝑇+,%, the more malicious vehicles in TBN leads to the smaller proportion of 𝑇'() and 
the better Recall performance. However, 𝑇'() can measure the trustworthiness of CAM itself 
and play an indispensable role in the BCDM model when there are fewer malicious vehicles. 
Therefore, the proportion of 𝑇'() in 𝑇+,% cannot be too small in practical applications. 

 

 

 
 

Fig. 4. The impact of malicious vehicles on Recall. 

5   Conclusions 

In this paper, we proposed a BCDM model. With this model, vehicles can collect CAMs in 
the same TBN, and process the information according to both direct and indirect trust. The 
BCDM model will discriminate events based on the processing results and score each vehicle’s 
reputation. These results and scores will be stored in the TBN at the edge layer and uploaded to 
the PBN before it disintegrates. Architecture analysis and simulation results show that our 
proposed model has better decision-making performance, and also makes practical contributions 
to the innovation of cooperaive vehicular network architecture. 
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