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Abstract. Based on the reasonable equivalent assumption of communication events, using 

the Hawkes process to model the information interaction in wireless communication 

networks is an emerging direction in the field of non-cooperative topology inference. At 

present, topology inference algorithms based on the Hawkes process mainly use a fixed 

sample size for inference, considering only its reliability, but not regarding its 

effectiveness. In this paper, we consider introducing a sample size as a new performance 

indicator. For small sample size scenarios in wireless networks, a kind of fast topology 

inference algorithm is proposed, which uniformly represents parameters belonging to 

different dimensions, and thoroughly mines topological information from different batches 

to increase the speed and effectiveness of inference. Experimental simulations show that 

compared with the existing algorithm, our algorithm has better performance in small 

sample size scenarios. 
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1   Introduction 

With the widespread application of wireless networks, the importance of intelligent 

analysis of network behaviors is becoming increasingly prominent. In the analysis of networks 

behaviors, learning and reasoning about the connectivity of unknown networks is a fundamental 

problem [1]. Through topology inference, we can mine the connection relationships between 

nodes to achieve the visual network's topology, and further improve our knowledge of the 

observed networks. For wireless networks management, topology inference can provide 

information support for managers to troubleshoot and enhance network security and robustness. 

For monitoring uncooperative wireless networks, especially in the field of electronic warfare, 

topology inference can help us identify and combat key nodes and critical links in enemy 

networks. Further, we can mine intelligence from topological information, infer the enemy's 

combat intentions, and realize the information superiority on the battlefield.  But whether it is 

the topology inference for our network or the enemy networks, this requires timeliness, and we 

need to get the topology of the observed networks as quickly as possible. These observations 

motivate us to research fast topology inference in the framework of wireless networks. 

The existing research on topology inference can be divided into two categories: cooperative 

topology inference and non-cooperative topology inference. Cooperative topology inference 

refers to the fact that sensor nodes are part of the perceived network and can reason out the 

topology of the network through message exchange within the network. Non-cooperative 
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topology inference refers to the fact that sensor nodes do not belong to the perceived network, 

and can reason out the topology of the network just only through passive detection of the 

network. 

With the development of wireless networks, in recent years, researches on non-cooperative 

topology inference are receiving more and more attention [2]. Based on a reasonable equivalent 

assumption for communication events: the receiving nodes will act accordingly when they 

receive the signal from the sending nodes, using the Hawkes process to model the information 

interaction in wireless communication networks is an emerging direction in the field of non-

cooperative topology inference. The Hawkes process is widely used in financial transactions, 

social network analysis, bioinformatics and many other fields [3]. In the field of communication, 

[4] models the information transmission process as the Hawkes process based on reasonable 

assumptions of communication equivalence. Based on [4], [5] further proposes a method named 

Low Cost Paths for Acyclic Graphs (LCPAG) to discover event chains.Then, [6] considers the 

wireless channel, develops a physical model for external topology awareness, and proposes a 

wireless channel-oriented topology sensing method based on the Hawkes process. However, the 

above works still have limitations: firstly, the fixed sample size is used for inference, only 

considering the reliability of the algorithm, without its effectiveness; secondly, there is a lack 

of research on small sample size scenarios in wireless networks, so it is necessary to improve 

the use efficiency of sample size. Thirdly, the choice of the global threshold will greatly affect 

the reasoning effect, and there are problems in selection in practical application. 

Therefore, in view of the above problems, this paper reconsiders topology inference 

algorithm based on Hawkes process by considering both reliability and effectiveness. The main 

contributions of this paper are summarized as follows: 

-   Considering the effectiveness of the topological inference algorithm, the sample size is 

introduced, and a new performance index for the topological inference algorithm is proposed. 

-    Based on the idea of sequential detection, we propose a fast topology inference algorithm 

that uniformly represents parameters belonging to different dimensions and fully mines the 

topological information obtained from inference between different batches to improve the speed 

and effectiveness of inference. 

-  Through experimental simulations, we prove that the proposed algorithm has better 

performance in small sample size scenarios compared with existing algorithms. 

The rest of this paper is organized as follows. Section 2 introduces the system model. In 

Section 3, the fast topology inference algorithm based on Hawkes process for wireless channels 

is proposed. Then, in Section 4, we present simulation results that demonstrate the advantages 

of the algorithm in small sample size scenarios. In addition, Section 5 presents conclusions and 

future prospects. 

 

2   System  Model 

 

2.1   Single-node Sensing Model  

 

As shown in Figure 1, this paper considers a single-node sensing model. The target 

wireless network V is a wireless communication network of Unmanned Aerial Vehicles (UAVS), 

where the sensor S has the ability of signal sensing and topology inference. 



 

 

 

 

 
Fig. 1. Single-node sensing mode 

 

 

 
Fig. 2. Working frame of sensor S 

 

The working frame of the sensor S is shown in Figure 2. It means that there are N sample 

slots in a sensing interval and the data in a sensing interval is used for once topology inference. 

Once a sensing is over, the sensor will make inferences based on all existing data. If it meets the 

requirements, stop perception, otherwise continue until the inference effect reaches the 

requirements or the maximum number of perceptions is reached. 

To simplify the problem, we make assumptions [6]: the transmission channel in the target 

wireless network V is the ideal channel, and the sensing channel outside the network is the 

AWGN channel, and the sensor S as an external observer has only two kinds of information 

available: the node transmitting signal (called the event sequence) and the time at which the 

signal was transmitted (called the time sequence). 

For this model, our goal is to use the sensed event sequence and time sequence to reason 

about the topology of the target wireless network. 



 

 

 

 

 

2.2   Mathematical Model of Information Interaction  

 

The Hawkes process is a point process that has autoregressive dependence on past events, 

where the intensity of an event at any time is a function of the most recent event in the process. 

From this, we can discover the causality or correlation between events through the Hawkes 

process. In the field of wireless communications, it is natural that information exchange is 

performed by each node by transmitting signals. Now we will emit the signal as an event. Then, 

we can assume that when there is information interaction between two nodes, events on one 

node are likely to cause a response on the other node. Through such equivalent assumptions, we 

can model communication events between nodes as Hawkes processes, and then infer the 

topology of the communication network by solving key parameters. 

For an event, given the time when the event occurred in the past 
kt , then the intensity of 

the occurrence of the event at the moment t  is 
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where the parameter ( ) 0t   represents the basic intensity of the occurrence of the event; the 

parameter 0A  represents the degree of self-motivation of the event, that is, how much the 

event occurs at the moment 
kt  has an impact on the event occurs at the moment t ; the kernel 

function ( )t represents a time relationship between the corresponding events, which is a  

known, causal, non-negative, and integrable function. Under normal circumstances, we believe 

that the basic basis of an event does not change with time, that is, the probability of a new event 

occurring at any time is certain, so the formula (1) can become                                         
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In a wireless communication network, for a node, the event of transmitting a signal is not 

only related to its own behavior, but also related to the behavior of other corresponding nodes.  

The one-dimensional Hawkes model can be easily extended to a process that contains multiple 

subprocesses. At this time, the intensity of the occurrence of a subprocess is not only affected 

by its own behavior, but also by the behavior of other subprocesses. Then, we can use the 

multidimensional Hawkes process to model the communication process in a wireless network, 

that is, a node transmitting a signal in the network can be see as a subprocess. Further, for a 

process with N subprocesses, according to the formula (2), the occurrence intensity of the ith 

subprocess is 
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where Kj  represents the set of events in the jth subprocess; i  represents the basic intensity of 

the ith subprocess, we also think that it does not change with time; Aij represents the degree of 

response of the ith subprocess to the jth subprocess, and Aij=0 represents the occurrence of the jth 



 

 

 

 

subprocess has no effect on the ith subprocess; and the larger Aij>0 becomes, the more likely the 

ith subprocess would occur because of the jth subprocess. But it should be noted that Aij is not a 

probability value. In addition, we can call A adjacency matrix. 

3   Fast topology inference in wireless networks 

 

3.1   Determination of Hawkes Process Parameters 

 

For the topology inference,the most critical thing is to get the parameters Aij and i , which 

we can use to infer whether there is a communication relationship between the two nodes. In 

many cases, the parameters are unknown, so we need to reason about the parameters based on 

the observations within a certain period, that is, time sequences and event sequences, to estimate 

the parameters. Naturally, we choose the maximum likelihood estimation method to determine 

the parameters. Then, in [0, ]t T , the negative likelihood function of the ith sub-process is 
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The maximum likelihood estimation method requires us to minimize this convex function 

to estimate the parameters Aij and i .From [5], we choose to use quasi-Newton method for 

iterative solution. The data required for the solution of ( ),i i ijL A  is only derived from the 

independent data set related to the ith subprocess, so the parameter estimate of each subprocess 

is independent. Therefore, in [0, ]t T , the negative likelihood function of a process 

containing N subprocesses is 
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3.2   Fast topology inference 

 

The solution of the maximum likelihood estimate for each node depends only on an 

independent subset of the data associated with it. That is, the data set used for the solution of 

( 1, 2,...., )ijA j N=  is the same and is independent of the data set used for the solution of 

( , 1,2,...., )kjA k i j N = . Therefore, ( 1, 2,...., )ijA j N=  of different nodes are not 

numerically comparable, so it is more reasonable to perform optimization individually rather 

than global optimization. For a node, the closer Aij is to 0, the weaker the connection with 

another node is, and vice versa. Based on this premise, the traditional binary hypothesis is: 
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where H0 represents there is no connection between the node i and the node j, and H1 represents 

connection exists between the two nodes. In this case, it is more challenging to select the global 

threshold. This paper is based on the idea of expanding the tendency by accumulation, for a 

fixed node, and put forward a unified statistic for the same batch: 
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where 
k

ijA  indicates the communication intensity value obtained from the sample size of the 

node i in the kth batch, and 
k

i  indicates the average communication intensity value between 

the node i and other nodes which may have the link with the node i in the kth batch. When 

threshold of the binary hypothesis is set to 0, 
k

ijZ  indicates the tendency of that
k

ijA  obey H0 or 

H1. Then, by accumulation and calculation: 
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this tendency will continue to become apparent while avoiding the limitations of setting global 

thresholds by artificial experience and reducing the need for sample size. 

Since it is impossible to know the actual communication relationship inside the wireless 

network in advance, it isn't very elementary to precisely quantify the performance of the inferred 

topology. For this problem, in the actual operation, we propose to analyze the adjacency matrix 

Ak-1 obtained from the previous batch as the actual adjacency matrix and then compare the 

adjacency matrix obtained from the current batch Ak with Ak-1 to calculate the false alarm and 

missed alarm of the current batch.When the false alarm and missed alarm have little change 

compared with the previous batch, the sampling can be stopped, and the topology obtained by 

reasoning can be given. 

The fast topology inference algorithm is summarized as follows: Algorithm 1. The main 

components of the algorithm are: Hawkes process parameter determination (lines 4-6), the 

unification of parameter values and the accumulation of the expansion tendency (lines 7-8), the 

decision of adjacency matrix (lines 10-16)and determining whether to stop sampling (line 3). 

As for the traditional topology inference algorithm, please refer to the paper [5]. 

Specifically introduce the key functions in Algorithm 1. The objective function in the line 

5-6 is to use the pre-processed data set to estimate the required parameters by the maximum 

likelihood estimation method. It should be emphasized again that the parameter set of each node 

is estimated separately. 
k

i  in the line 7 refers to the mean of all non-zero values in the 

parameter set related to node i in the kth batch. Due to the unified and cumulative processing of 

the parameters, we can fixedly choose 0 as the decision threshold, as shown in lines 10-16. 

 

 

 

 

 

 

 



 

 

 

 

Algorithm 1 Fast topology inference algorithm based on Hawkes process 

Input: The number of nodes in the network, Nnode ; The set of events (the source node ID), 

Enode; The set of slots in which there is a signal sent, Eslot; Number of samples, Nsample; 

Threshold of false alarm probability ratio, ; Threshold of miss alarm probability, ratio,  ; 

Output: Recovered influence matrix, A; 

1: Initialize  ,A 

2: Sort Enode and Eslot ; 

3: for each [1, ]
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9:       end for 

10:     for each , [1, ]
node

i j N  do 

11:           if 0k

ijA   then 

12:              1k

ijA =  

13:           Else if 0k

ijA   then 

14:              0k

ijA =  

15:            end if 

16:     end for 

17:     compare 
1 k kA and A −

 then calculate   k k

f mP and P  

18: end for 

 

4   Performance Evaluation  

 

4.1   Simulation Preparation  

 

This parer considers that the target wireless network has a complex distributed topology, 

as shown in Figure 3. The network has 25 nodes. A fact can be concluded from the topology 
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diagram that there are only 8% node pairs in communication relationship. Because there is no 

actual data, we chose to use MATLAB to simulate the process of signal transmission between 

nodes and sensing of sensor to generate the event sequence and time sequence required for 

inference. It should be noted that, because AWGN is considered in sensor sensing channel, the 

sample data obtained has noise samples, that is, there are random event values and time values. 

This paper mainly considers the small sample size scenario. Set the number of times that 24 

pairs of nodes communicate with each other in 96 in 1 batch, and there are 10 batches in all. 

Other specific simulation parameters are shown in Table 1. 

Table 1.  Simulation Parameters 

Parameters Value 
Distribution range of the network 1km*1km 
Noise spectral density -174dBm/Hz 
Noise bandwidth 10M 
Signal power -5 dBm 
Signal decision threshold 4*10−14W 

 

 

 
Fig. 3. Target wireless network topology in simulation 

 

 

4.2   Simulation Results 

 

In order to facilitate observation and analysis, a total of five batches of samples were taken 

for reasoning. The traditional topology inference algorithm and fast topology inference 

algorithm were used for simulation, and the results are shown in Figure 4. It can be found that, 

under the same sample size, the inference effect of the fast topology inference algorithm is 

significantly better than the traditional topology inference algorithm. In other words, the 

proposed algorithm significantly improves the effectiveness of samples and the speed of 

inference. 

 



 

 

 

 

   
(a)                                                       (b)                                                  (c) 

Fig. 4. Comparison of simulation results based on different algorithms, in which the yellow represents that 

the two nodes are connected and the blue represents that the two nodes are disconnected. The subfigure (a) 

is the true topology; the subfigure (b) is the recovered topology by fast topology inference algorithm; the 

subfigure (c) is the recovered topology by traditional topology inference algorithm. 

 

This paper firstly uses the probability of missed alarm and false alarm to measure the effect 

of topology inference, namely: 

FN FN
FNR

FN TP P
= =

+
                                                        (9) 

and  

( 1)

FP FP
FPR

FP TN N N P
= =

+ − −
.                                         (10) 

Among them, FNR represents the probability of missed alarm and FPR represents the 

probability of false alarm. When there are N nodes in the target wireless network, assuming that 

the total number of links in which there is a communication relationship is P, the total number 

of links in which there is no communication relationship is naturally N(N-1)-P. 

Given the actual topology, the MonteCarlo simulation method is used to calculate the false 

alarm and missed alarm, and the number of repetitions is 1000 times. The results are shown in 

Figure 5. It can be found by comparison that the proposed fast topology inference algorithm is 

significantly superior to traditional topology inference algorithm in both false alarm and missed 

alarm indicators. 

Based on Bayesian criteria, a comprehensive cost function C can be introduced as follow: 
 

10 0 01 1* * * *C C FPR P C FNR P= + ,                                         (11) 
 

where C10 represents the cost of the false alarm, and C01 represents the cost of missed alarm. 

These two parameters generally take 1. And P0 and P1 are the prior probabilities of link and non-

link between nodes in the network. It can be understood that the smaller the cost become, the 

better the inference performance. 

From Figure 6, it can be more intuitively found that in a small sample size scenario, the 

cost of the fast topology inference algorithm is far less than the traditional topology inference 

algorithm, that is, the comprehensive performance of the fast topology inference algorithm is 

greatly improved. 



 

 

 

 

   
(a)                                                                                 (b) 

Fig. 5. Comparison of specific performance of different algorithms, in which the blue represents the 

traditional topology inference algorithm and the yellow represents that the fast topology inference 

algorithm. The subfigure (a) shows the false alarm varies with sample size; the subfigure (b) shows the 

missed alarm varies with sample size. 
 

 
Fig. 6. Comparison of the comprehensive cost of different algorithms, in which the blue represents the 

traditional topology inference algorithm and the yellow represents that the fast topology inference 

algorithm. 

 

 

4.3   Performance analysis 

 

For fast topology inference algorithms, it is necessary to make a balance between inference 

performance and sample size. Therefore, the sample size is introducted to form a new 

comprehensive cost function. Assuming that the sampling is homogeneous, each batch of 



 

 

 

 

samples will consume a same cost, then the total cost function of topology inference after the  

kth batch of samples becomes: 
 

10 0 01 1* * * * { }k k

f mC C P P C P P kcE= + + ,                                (12) 

 

where
k

fP  is the false alarm after the kth inference, 
k

mP  is the missed alarm after the kth  inference, 

and { }E •  represents the average value under the average distribution. Therefore, the optimal 

choice for the sample size is: 
 

10 0 01 1i [nf { }]* * * *
k

k k

f mC P P C P kP cE


+ + .                                (13) 

 

Constraint (13) provides a way to find the fastest topology inference. 
 

5   Summary and Outlook  

 

In this paper, we study the fast topology inference for small sample size scenarios in 

wireless networks. Under the single-node sensing model, by considering both reliability and 

effectiveness, we propose a fast topology inference algorithm based on the Hawkes process, and 

give a sample selection formula for the fastest topology inference. Simulation results show that 

the proposed algorithm outperforms traditional recognition algorithms in small sample size 

scenarios. In the next step, we can conduct research in the framework of distributed sensing and 

further explore the mathematical logic of the fastest topology inference. 
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