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Abstract. Differential constellation trace figure (DCTF) has been demonstrated good 
performance on radio frequency fingerprint (RFF) identification. However, DCTF easily 
blurs at low SNRs. This paper proposes two novel RFF identification methods for zigbee 
devices based on multi-intervals DCTFs. First, a low-complexity motion features 
extraction method is devised based on high-density regions. Besides, an improved 3D-2D 
CNN model is utilized to extract motion features and spatial features. We collected 54 
different ZigBee devices for experiments and classified them by these two methods. The 
experimental results show that compared with using single DCTF, which is generated  by 
a single differential interval, these two methods can effectively improve the identification 
accuracy at different SNR levels. The classification accuracy rate of the 3D-2D CNN 
classifier is over 92% even under the SNR level of 5 dB. 

Keywords: radio frequence fingerprint, differential constellation trace figures, 3D-2D 
CNN, motion features, ZigBee. 

1   Introduction 

The Internet of Things (IoT) combines the networking of various information sensing devices 
to achieve the function of interconnection of people, machines and things at any place and at 
any time. The development of IoT has significantly improved the intelligence of various 
industries. ZigBee is a new type of wireless communication technology. As an important IoT 
device, it has the characteristics of low speed, low power consumption and low cost. It is suitable 
for communication between electronic devices with short transmission distance and low speed 
[1]. However, due to its cost limitation, ZigBee acess authentication is generally based on MAC 
addresses, thus it is easily attacked by rogue devices [2, 3]. 

Radio  frequency  fingerprint (RFF) has been successfully used to identify ZigBee devices  
[4, 5, 6]. Compared with software or protocol layer-based authentication methods, RFF 
identification technology uses the inherent characteristics of the physical layer analog 
transmission circuit hardware, and has the same advantages of anti-spoofing and anti-cloning as 
biological fingerprints. 

Based on data samples, the identification methods of RFF can be divided into transient and 
steady states [7, 8, 9]. DCTF is a new type of image-based identification method [10]. After 
differential processing, it distorts the constellation figure by expanding the characteristics of the 
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fingerprint. It can reflect the characteristics of the device fingerprint through statistical 
information such as the contour and point distribution of DCTF, which can more intuitively 
identify ZigBee devices. 

There are many machine learning methods suitable for RFF identification. But when faced 
with a large number of devices, such as large-scale wireless sensor networks, machine learning 
methods usually cannot achieve a high identification accuracy. As a very effective end-to-end 
learning method, deep learning has also been widely used in the RFF field recently [11, 12, 13]. 
Convolutional neural networks (CNN) is translation invariant and can learn spatial hierarchies 
of patterns [14, 15]. Thanks to their effective learning of complex and abstract visual concepts, 
they are widely used in computer vision. DCTF is an effective method to reflect the RFF of the 
device on the figure in the form of statistical information. The fingerprint features of the device 
can be clearly and prominently displayed on the figures. It is appropriate to identify DCTFs with 
CNN models. A DCTF classification model based on 2D CNN deep learning was proposed in 
[16]. Besides, the effects of parameters such as the size and the number of sample points of 
DCTF on the classification results were explored. The results show that DCTF can be effectively 
used to identify device fingerprints at high SNRs. 

However, DCTF scattered points are directly distributed on a limited image size. Scattered 
points at different timing intervals overlap due to noise, which has a great impact on fingerprint 
characteristics. Compared with the methods based on baseband signal data, single-frame DCTF 
identification method from each ZigBee device tends to perform poorly at low SNR scenarios. 
Hence, an efficient approach for identifying DCTFs at low SNRs is still urgently required. 

In this paper, we use multiple differential intervals to generate multi-frame DCTFs from each 
device, and extract motion features to identify different devices by two different methods. The 
main contributions of this paper are as follows: 
-   We propose two methods for extracting motion features from DCTFs with different 
differential intervals, which can be used for RFF identification. The multi-intervals DCTFs can 
be regarded as a continuous motion process of RFF. In order to verify our methods, we 
conducted a lot of experiments,  and collected up to 54 zigbee devices with a total of 2430 
frames of signals. 
-      We propose a unique method by extracting the high-density regions from DCTFs to generate 
trajectory figures. The generated trajectory figures can be directly used to classify the ZigBee 
devices. The experimental results show that this method have better classification performance 
under 5 dB and 10 dB than DCTF on 2D CNN. 
-     We also propose a 3D-2D fusion model for RFF identification by extracting motion features 
from 10 consecutive intervals DCTFs at the same time through 3D convolution kernels, and 
extracting the spatial features through deeper 2D convolution kernels. Compared with the 
classification method based on DCTF, this model can get a much higher accuracy rate of 92% 
even at 5 dB. 

2   Differential Constellation Trace Figures 

ZigBee uses the 2.4 GHz direct sequence spread spectrum (DSSS) O-QPSK modulation format 
defined by IEEE 802.15.4 [17]. Each byte is divided into two symbols, and each symbol is 4 
bits. Each symbol is mapped to one of 16 pseudo-random sequences, and each sequence has 32 
chips, thus completing the mapping from symbols to chips. In the end, In-phase and quadrautre 
channels both transmit data at a speed of 1 M Chips/s. In order to complete the drawing of the 



 
 
 
 

constellation trace, we use an oversampling rate of 10MHz to collect the data, that is, 10 points 
are used on each half-sine wave, and a total of 40K sampling points are collected as the DCTF 
sample points.  

The signal transmitted by the ZigBee transmitter can be expressed by the following 
expression: 

  

  (1) 

 
Where  and  are the I/Q gain imbalance factor, respectively.  and  are the DC offset 

of I/Q, respectively.  is the carrier frequency of the transmitter. 

After the signal is transmitted, assuming that the channel is ideal, the received signal on the 
receiver is 

  

  (2) 

 
Since the transmitter and receiver have different carrier frequencies , carrier 

frequency offset  can be used as a fingerprint feature. In order to obtain a stable  

differential constellation trace figure, we need to perform the following key steps: 
 After the receiver receives the baseband signal and performs energy normalization, first 

perform the shift operation with shift value of  on the I / Q channel for feature 
highlighting: 
 

  (3) 

 
Since the signal of O-QPSK is a constant envelope, it is in the shape of a circle on the 
constellation figure. After this, it shows a distorted ring shape. This process can enlarge 
the morphological characteristics of the fingerprint, but it will not change the expected 
value of the cluster centers of the signal points. 

 The rotation factor  is a function of time , which will cause the constellation 
figure to change with time and appear as a rotation. By introducing a differential 
processing to compensate this rotation effect, the resulted constellation figure can be 
fixed. 

 
  

  (4) 

 
where  is the sampling interval. 

 After differential processing, the statistical characteristics of I and Q values can be 
reflected in the gray value of each pixel, that is, the higher the frequency of occurrence of 
the same position, the higher the brightness of the position. It is finally presented in the 
form of a heat figure or a gray scale figure. 
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Fig. 1. DCTFs with different differential intervals . 

 
Different differential time intervals  will affect the rotation factor, so that the constellation 

figure has different point position distributions. When , , it is a 

positive real number, and the trajectory points are concentrated on the positive half axis of the 
I-axis. When  gradually increases from 1, the aggregation points on the constellation figure 

gradually spread outward in the form of a distorted ring. Some DCTFs under different  are 
shown in Fig. 1. 

3   RFF Identification Based on motion features 

DCTF under low SNRs will  severely blur due to the influence of noise, resulting in a low 
recognition rate. RFF identification using multi-intervals DCTFs is a very feasible method. 

In Section A, we propose a low-complexity motion features extraction method based on 
high-density region (HDR). 

In Section B, we propose a 3D-2D CNN structure to identify different devices. 
 
3.1   Proposed RFF Identification Based on HDR Method 
 

For the different ZigBee devices , the DCTF can generate 4 centers , . 

The mathematical expectation of the center position value is determined by the fingerprint 
characteristic values and the differential interval [10], which can be expressed as: 

 
  
  (5) 
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Fig. 2. A illstration of RFF identification with HDR method. 

Where  are fingerprint feature values for different cluster center  under different 

devices  and . High-density regions will be formed around the centres. In low SNR 
scenarios, the contour features of DCTF will be destroyed. The high-density area has better 
anti-noise performance due to a large number of points distribution. 

The matrix of DCTF is defined as the statistical results of the signal points in each 

subzone ( ). In order to obtain motion trajectory figures under , we 

set thresholds  to extract high-density regions and set the values of matrix to 255 or 0. 
 

  (6) 

Then we generate  matrices  under . Add these high density 

matrices to get the trajectory matrix . 

 

  (7) 

 
Normalize the maximum and minimum values of the trajectory matrix  to (0, 255) and 

generate a grayscale image of the normalized matrix . 

 

  (8) 

 
For different devices, the generated trajectory figures can be used to identify different 

devices. The process can be found in Fig. 2. The trajectory figures (in RGB) generated by 
different devices are shown in the Fig. 3. 
 
 



 
 
 
 

            
(a) Device1                                   (b) Device2 

 

                            
(c) Device3                                 (d) Device4 

      Fig.3. Generated trajectory figures from  different devices ( ). 

3.2   3D-2D CNN model for RFF Identification 
 
3D-CNN model can  extract motion features from the multi-frame images, it is widely 

used in the field of human action behavior recognition. 3D convnet is well-suited for 
temporal feature learning, while 2D convnet only learn spatial information [18, 19, 
20,21]. 

In order to obtain more accurate classification performance at low SNRs, we use a 2-
layer 3D convolution kernels to extract the motion features between DCTFs of 10 
consecutive differential time intervals , and add a 2-layer 2D 

convolution kernels after the 3D convolution kernels, which is used to extract more 
abstract spatial features. The 3D-2D CNN structure in Fig. 4 is as follows: 
 Input layer: In order to reduce the complexity of the model, we use a 61x61 

grayscale image instead of a color heat map at the input end to classify, that is, the 
size of the input end is 10x61x61x1. 

 3D convolution layer: We use 2 consecutive 3D convolution layers to extract the 
motion track information between multiple frames. The convolution kernel sizes are 
8x3x3x5(8 3x3x5 3D kernels) and 16x3x3x3(16 3x3x3 3D kernels). 

 2D convolution layer: After the output of the second 3D convolution layer, the 
dimensions of the feature maps are reshaped, transformed from (57,57,4,16) to 
(57,57,64), and then sent to the 2D CNN to extract more abstract spatial features. 
The 2D kernels are 32x5x5 (32 5x5 2D kernels) and 64x5x5 (64 5x5 2D kernels). In 
order to reduce the dimension and size of the features, we add a layer of Max 
Pooling (2x2) behind each 2D kernel. 



 
 
 
 

 

Fig. 4. 3D -2D CNN model structure. 

 Fully connected layer: The feature maps finally input to the fully connected layer.  
After flattening, an one-dimensional tensor is formed. After vertical connection, it is 
sent to the fully connected layers consisting of weights and biases. To prevent 
overfitting, we use the dropout strategy and set its value to 0.5. Finally, it is sent to 
the softmax classifier to get the predicted device number. 

  We divide all data sets into a training set and a test set according to 4:1. We choose K-
fold cross-validation to divide all training sets into 5 partitions, one of which is the 
validation set and the remaining four partitions are used for training. When the 
classification result of the validation set is the highest, the network model is selected as 
the best model. Our training chooses cross entropy as the classification loss function, the 
SGD optimizer as the optimizer. The learning rate is 0.01, the batch size is 128. The 
epoch is 200, and the model parameters are total 4,005,890. The process of identification 
with 3D-2D CNN can be seen in Fig. 5. 

4   EXPERIMENTS AND DISCUSSION 

4.1  Experimental System and Processing 
 
To verify our proposed methods (HDR and 3D-2D CNN), we collected 54 Ti CC2530 
ZigBee devices for experiments. USRP N210 is used as the receiving device, and each 
ZigBee collects 45 frames of signals at close range for a total of 2430 frames of signals.  
Due to the good signal acquisition environment, the SNR of the scene is about 30 dB, and 
the influence of multipath is ignored. The collected signal is considered to be an ideal 
signal in the LOS scene. 

On the PC side, we use Matlab 2016a to perform energy normalization preprocessing 
on the collected data. In order to evaluate the classification performance of the model 
under different SNRs, tested from 0-30 dB (AWGN) every 5 dB. Subsequent I/Q shift 
and differential processing operations are performed to finally generate multi-intervals 
DCTFs. 

For the collected 2430 frames, we choose continuous differential intervals to generate 
trajectory figures and multi-frame DCTFs,  then send them to 2D CNN and 3D-2D CNN 
for classification to verify the proposed methods separately. These models were built  
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Fig. 5. RFF identification based on 3D-2D CNN. 

under the Tensorflow 1.14 framework with the python 3 environment. The generation 
and classification process after signal acquisition are all completed on the same 
computer, configured as CPU I7-9700F, 32GB of RAM, GPU RTX 2060s. 

 
4.2  Identification Accuracy with Different  

 
To test the accuracy of RFF recognition based on single-frame DCTF method under 
different SNRs, we collected 54 devices and tested the RFF recognition performance at 
5-20 dB for  is 1-15.  2430 DCTFs are generated for each differential interval. We use 
the generated DCTFs to train and test on  2D CNN model. For SNRs above 20 dB, a 
classification accuracy of more than 98% can be obtained. When SNR is at 10 dB, the 
performance of RFF recognition decreases rapidly. 

 It can be seen from Fig. 6 that the classification performance is low and unstable when 
 is 1-4. This is because when  is small, the point distribution is more clustered, and 

the difference of DCTFs is small. At the same time, when  is higher than 5, the 
classification performance is of slight differences and remains stable above 92%. Below 
10 dB, there is a large difference in classification performance under different . This is 
because the noise destroys the characteristics of DCTF seriously, and the 2D CNN model 
classification cannot obtain stable classification results. 
 
4.3  Comparison of Different Classification Methods 
 
In order to evaluate the performance of different classification methods (3D-2D CNN 
versus HDR versus DCTF) under different SNRs, we divide the SNRs into two levels, 



 
 
 
 

 as the low SNRs, and  as the 

medium-high SNRs.   

 

Fig. 6. Accuracy for DCTF on 2D CNN with different  under different SNRs. 

 

Fig. 7. Accuracy for different methods with different  under different SNRs. 

We select multi-intervals DCTFs with different  as the input of 3D-2D CNN for 

classification under continuous intervals  within 80. For the HDR method, we choose 

the continuous intervals  of 10-15 and 15-20 for verification. The classification results 
are shown in Fig. 8 and the fusion matrices of 3D-2D CNN, HDR, DCTF are shown in 
Fig.8-10. 

At low SNRs, the 3D-2D CNN classification performance is very sensitive to , and 

the classification variation range exceeds 60%. When  is 1-10, the classification 
performance is poor, and the classification accuracy is less than 20% at 0 dB, which is  



 
 
 
 

             
(a) 10dB                                                           (b) 5dB 

 Fig.8. 3D-2D CNN fusion matrices ( ). 

             
(a) 10dB                                                          (b) 5dB 

 Fig.9. HDR on 2D CNN fusion matrices ( ). 

              
(a) 10dB                                                           (b) 5dB 

 Fig.10. DCTF on 2D CNN fusion matrices ( ). 

lower than HDR and DCTF classification methods. When  is small, the points of DCTF 
are too clustered. 

When SNR is between 5 dB and 10 dB, HDR is slightly improved over the DCTF 
method, which proves that motion features have better anti-noise performance at low 
SNRs. 

The classification results of the 3D-2D CNN model is rapidly improved over 5 dB, and 
the performance of most differential intervals is above 90%, and the highest even reaches 



 
 
 
 

95.49%. It is much higher than HDR and DCTF. When SNR reaches 10 dB, all the 3D-
2D models with different  are above 94%, and the highest is 98.03%. 

In the mid-to-high SNRs, when the SNR level is 15 dB, all the models of 3D-2D 
CNNs reach more than 98% except  is 1-10. However, HDR and DCTF also achieved a 

classification accuracy of 92.1% ( ) and 91.79%. When SNR is higher than 
20 dB, all methods achieve a classification accuracy close to 100%. 

4   CONCLUSION 

This paper proposes two RFF identification methods based on continuous multi-intervals 
DCTFs. We first proposed a low-complexity motion features extraction method, and 
successfully used these features for ZigBee device identification. In order to improve the low 
identification rate  under a low SNR level, a multi-intervals DCTFs based on DL RFF 
identification method is proposed. The 3D convolution kernels are used to extract more 
complex multi-frame motion features. Using 2D convolution kernels to extract static spatial 
features, classification accuracy of 92% and 98% were obtained at 5 dB and 10 dB. The 
classification results at low SNRs are significantly improved. In the future, we will consider 
ways to improve the accuracy of RFF identification based on DCTF in a time-varying 
multipath environment. 
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