
Developing a hyperparameter optimization method
for classification of code snippets and questions of
stack overflow: HyperSCC
Muhammed Maruf Öztürk1,∗

1Department of Computer Engineering, Suleyman Demirel University, West Campus, Isparta, 32040, Turkey

Abstract

Although there exist various machine learning and text mining techniques to identify the programming
language of complete code files, multi-label code snippet prediction was not considered by the research
community. This work aims at devising a tuner for multi-label programming language prediction of stack
overflow posts. To that end, a Hyper Source Code Classifier (HyperSCC) is devised along with rule-based
automatic labeling by considering the bottlenecks of multi-label classification. The proposed method is
evaluated on seven multi-label predictors to conduct an extensive analysis. The method is further compared
with the three competitive alternatives in terms of one-label programming language prediction. HyperSCC
outperformed the other methods in terms of the F1 score. Preprocessing results in a high reduction (50%)
of training time when ensemble multi-label predictors are employed. In one-label programming language
prediction, Gradient Boosting Machine (gbm) yields the highest accuracy (0.99) in predicting R posts that have
a lot of distinctive words determining labels. The findings support the hypothesis that multi-label predictors
can be strengthened with sophisticated feature selection and labeling approaches.

Received on 21 March 2022; accepted on 26 May 2022; published on 27 May 2022

Keywords: Multi-label classification, hyperparameter optimization, programming language prediction.

Copyright © 2022 Muhammed Maruf Öztürk, licensed to EAI. This is an open access article distributed under the terms
of the Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium
so long as the original work is properly cited.

doi:10.4108/eai.27-5-2022.174084

1. Introduction
Stack overflow helps software developers to find solu-
tions for a programming problem, thereby including
millions of questions and answers. The less experienced
programmers are most likely to spend time on stack
overflow to enter new questions or review past entries.
Those activities do not only increase the speed of devel-
opment processes but also improve the programming
skills of the programmers.

Platforms like quora or stack overflow provide
questions and answers along with their tags that ease
to find the possible solution. Users are forced to tag
their posts in stack overflow. However, inexperienced
users may sometimes choose the wrong tags while
posting. For instance, the tag "entity-framework" is
generally used for both Java and C#. That tag fits
very well with C#. Hibernate [1] is a mapping tool

∗Corresponding author. Email: muhammedozturk@sdu.edu.tr

that was developed for Java to manipulate objects
as in entity-framework. Therefore, a user should
employ "Hibernate" to tag object-relational functions
in Java rather than "entity-framework". Further, the
tag "google-maps" is preferred when the functions
related to the mapping are frequently invoked in the
applications. However, "google-maps" can not give any
hint to figure out the type of programming language.
Rather, we expect to see more than one tag to determine
exactly what the type of programming language is.
Moderators either flag or downvote those posts to cope
with misleading information. In that case, the following
issues emerge:
1. Wrong tags result in a significant increase in the
workload of moderators.
2. Finding a wrongly tagged post becomes difficult even
though it presents valuable information.

The majority of the studies finding stack overflow
a worthwhile research subject have focused on code
analysis [2–4], user behavior [5–7], and predictive

1

EAI Endorsed Transactions
on Scalable Information Systems Research Article

EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

https://creativecommons.org/licenses/by/4.0/
mailto:<muhammedozturk@sdu.edu.tr>

Muhammed Maruf Öztürk

models [8–13]. Text mining tools [14, 15] and machine
learning (ML) techniques [16–18] are frequently
employed in the assessment of stack overflow posts.
Further, some researchers [19, 20] investigated to what
extent machine learning techniques are beneficial to
run a fast and rigorous experiment. Large-scale analysis
of the vast data requires a hyperparameter tuning
process [21, 22] to obtain reliable results as well.

Integrated Development Environment (IDE) such as
Visual Studio, NetBeans, and Xcode allows practition-
ers to organize and publish their codes. However, those
tools can not predict the language of a given file.
Rather, they recognize the source code by checking
its file extension. This creates a burden for develop-
ers editing file extensions manually. To alleviate that
burden, software language prediction methods have
been developed in various studies [23–25]. However,
previous works mostly use data sets including a large
number of code lines. ML methods developed for those
data sets result in high prediction accuracy since the
number of features extracted from the source codes is
very high. On the other hand, those methods can not
produce promising results when the experimental data
sets include relatively small number of code lines.

As stack overflow posts have small code snippets in
question blocks, sophisticated code snippet prediction
tools are needed. There exist some works [26–28] utiliz-
ing tag and question information to predict program-
ming language. Programming Languages Identification
(PLI) [29] is the unique commercial tool developed
by Algorithmia for predicting programming language
of code snippets. PLI claims a high success in pro-
gramming language prediction (PLP) (>%98 accuracy)
but that record was mostly obtained via GitHub codes
which are larger than code snippets available in stack
overflow.

In this study, multi-label classification of stack
overflow questions is conducted. To that end, a novel
multi-label label generation method is devised along
with a hyperparameter optimization method namely
HyperSCC. The method chooses an optimizer by
comparing the prediction results obtained through
cross-validation on 10% of all training instances. Hence,
the most suitable optimizer is met with multi-label
predictors that help result in a time-saving experiment.

1.1. Motivation
Multi-language coding is common in software develop-
ment [30]. In this context, stack overflow questions may
have multiple language tags. On the other hand, there
is no research on the multi-label classification of code
snippets. Preceding works focused on predicting one
language tag of the stack overflow questions [27, 31]. In
addition to that research gap, there are few researches
[20, 32] that analyze the impact of hyperparameter

tuning of ML methods handling with stack overflow
posts. Hence, disregarding the combination of tuning
methods with ML is the main drawback of the preced-
ing works.

The development of hyperparameter tuning tech-
niques has given rise to more precise predictive models
[33–38]. However, a tuning process should be organized
to conform with experimental data sets [39]. Further,
sometimes hyperparameter optimization is suspended
or resumed depending on the effectiveness of the tuning
process [40]. In this respect, we need new perspectives
to improve source code classification techniques.

To clarify the motivation of the paper, Table 1 is
designed by summarizing the studies that are similar
to our work. Specifically, tag recommendation studies
are mostly tuning-free. It is worthwhile to note that this
study combines hyperparameter tuning and multi-label
prediction.

Apart from preceding works, for multi-label classi-
fication, this study presents HyperSCC that alleviates
computational burden originated from hyperparame-
ter optimization. Revealing which tuning method is
beneficial for programming language prediction helps
researchers find strategies to use ML methods in new
ways. To the best of our knowledge, this research is
the first extensive investigation proposing a tuning
approach for the multi-label classification of stack over-
flow questions.

1.2. Research objectives
This paper defines four research objectives as follows:

Research objective 1 (RO1): Investigate whether
automatic rule-based labeling helps increase the suc-
cess of hyperparameter optimization.
To accomplish this objective, default labels of the posts
are modified with a multi-label label data frame. There-
after, a comparison including seven multi-label predic-
tors is conducted after hyperparameter optimization.
Research objective 2 (RO2): Investigate whether
HyperSCC is beneficial for one-label programming lan-
guage prediction as detected in multi-label prediction.
To accomplish RO2, four state-of-the-art methods
including HyperSCC are evaluated with F1 score
results.
Research objective 3 (RO3): Examine whether prepro-
cessing helps reduce the training time of multi-label
predictors.
For RO3, the training times of multi-label predictors are
compared to an increasing number of instances up to
5000.
Research objective 4 (RO4): Examine which script
language yields the highest accuracy when using grid
search.
For RO4, the accuracy values of eight script languages

2 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

Developing a hyperparameter optimization method for classification of code snippets and questions of stack overflow: HyperSCC

Table 1. Comparison of nine similar approaches using stack overflow posts.

Reference Research question
Hyperparameter
tuning PLP Multi-label

[18]
Reveal general type of questions
on stack overflow No No No

[17]
Explore whether multi-label classifiers
are successful in classifying emotions
in stack overflow

Yes No Yes

[13]
Assess the performance of multi-label
predictors in topic recommendation Yes No Yes

[15]
Characterize common architectural design
relationships between quality attributes and
architectural tactics

No No No

[41]
Reveal complaints developer face while
using stack overflow No No No

[42]
Develops a tag recommendation
framework No No No

[43] Develops a tag recommendation framework No No No

[31]
Designs a classifier to predict programming language
of stack overflow posts Yes Yes No

Our study Designs a tuned multi-label predictors for PLP Yes Yes Yes

are demonstrated in varying boosting iterations of gbm.
Further, eight levels of maximum depth of tree are also
analyzed for those iterations.

1.3. Contribution
The major contributions of the study can be elucidated
as follows:
1. A hyperparameter tuning method, which utilizes
a small part of the training instances to decide the
optimizer, is proposed to set hyperparameters of multi-
label classification.
2. We develop a rule-based multi-label label generation
technique for stack overflow questions.
3. Empirically, to validate the reliability of our
method, extensive experiments, which involve single
and multiple programming language predictions, are
conducted to evaluate and discuss the method.

1.4. Research questions
In this work, four research questions are aimed to be
addressed:
RQ1:What type of multi-label classification
technique to choose for better success in
programming language predictions?
Some multi-label classification techniques produce
results depending on label- or size-specific features.
Those techniques are discussed and evaluated
regarding performance measures in this question.
RQ2: Is HyperSCC superior to the state-of-the-art
methods with respect to one-label programming
language prediction?
In this question, the advantages and disadvantages
of HyperSCC versus the state-of-the-art methods are

assessed. 24 programming languages are involved in
this sub-experiment.

RQ3: To what extent can preprocessing increase
prediction time?
multi-label prediction of programming languages is
an effort-intensive and time-consuming process. This
question aims to check whether preprocessing reduces
training times of the predictors. The preprocessing
entails removal of the instances featuring infrequent
labels (<5), instances without labels, and constant
attributes.
RQ4: Which script language is the most feasible for
one-label programming language prediction?
Script languages include similar words. For instance,
"array" is one of the most detected words in Perl,
PHP, and Lua. It is of great importance to conduct
a rigorous analysis of such languages to enhance the
comprehensiveness of the study. For this reason, script
languages are evaluated both for one-label and multi-
label prediction.

The organization of the rest of the article is as
follows: Section 2 presents background and notions.
The method is described in Section 3. Experimental
configurations are presented in Section 4. The findings
are given in Section 5 to discuss them in several aspects.
Last, the paper is concluded in Section 6.

2. Background
This section describes underlying concept and notions
of the study. To this end, four subsections are devised to
present a general view.

3 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

Muhammed Maruf Öztürk

2.1. Source code classification
The terms ’classification’ and ’identification’ are some-
times used interchangeably in this field. Source code
classification is a challenging issue due to the large
number of features extracted from the text corpus.

Let X = Rm denote m-dimensional input space where
y = 0, 1 is the binary label. Here, the objective is to
predict y by utilizing a function f → X that maps the
input space according to its mathematical assumptions.
If the number of instances is very small compared
with the m, the prediction may not be completed. On
the other hand, m should not be very large to reach
prediction results in a reasonable time. To address
this problem, feature selection is conducted on Rm.
Specifically, X is divided into parts x1,, xt that the
total dimension of these part is equal to m. An fr ← X
function takes X to delete some dimensions. After that,
new dimension can be represented with m

′
that should

meet m > m
′
.

2.2. Multi-label classification
Given an input space X = Rm, where y = y1, y2, ..., yn is
the label set and n is the number of labels. In pro-
gramming language classification, n also represents the
number of programming languages. Unlike one-label
classification, it is necessary to produce multiple out-
puts for each instance. Hence, performance measures
can be extended with hamming-loss, one-error, and
subset-accuracy. Feature reduction may also be a feasi-
ble solution for multi-label classification. More impor-
tantly, infrequent labels should be removed before the
training process. Concretely, n is replaced with n” that
is obtained with a reduction on n. The threshold of that
process depends on the objectives of the established
model. In some cases, manual label generation leads to
the production of unlabeled instances. To remedy that
problem, unlabeled instances are removed. If a feature
has a single value for all the instances, it is also removed
from X.

2.3. Hyperparameter optimization
Let L be a machine learning algorithm where the
parameter and hyperparameter set can be represented
with Lp and Lph, respectively. For a tuning function ft ,
the main purpose is to configure Lph. On the other hand,
Lp is out of scope in that process since the parameters
of a machine learning algorithm change during the
training. For instance, the weights of a neural network
are not tuned since they are determined as constructing
the neural network.

If Lph includes three hyperparameters a, b, c in
which the length differs depending on the type of
hyperparameters. During the tuning process, ft search
a, b, c to find optimal hyperparameter set ai , bj , ck .

Stack overflow
question and
tag data sets

Tuning

Evaluation

...

Term document matrix

Word-level feature
extraction and label

generation

Preprocessing

Get random instances

Nelder -mead
Genetic algorithm

Bayes
Random search

Selection of the
optimization

algorithm Divide rest of the instances Optimization

PredictionEvaluation of
the results

Figure 1. The overview of our approach.

2.4. Problem formulation
Let L1, L2, ..., Lt be a set of learning algorithms in which
tuning methods T1, T2, ..., Tz can be applied to those
algorithms. Each tuning algorithm results in a tuning
time △ along with a performance record P . The main
objective is to reveal optimal tuning time △∗ that is
detected by comparing cost functions produced from∑z

i=1 △i ∗ Pi . First and foremost, Dx, which is a small part
of training set, is taken from X to analyze △ ∗ P . Optimal
cost function is then represented with △o ∗ Po that is
calculated for each L. In that comparison, the number

of instances should be five or higher times Lph.
∏z

i=1
Pi
△i

is the general effect of the chosen tuning methods. In
this context, the aim of tuning process is to maximize

the general effect max(
∏z

i=1
Pi
△i

).

3. HyperSCC
Step 1: Term document matrix generation. HyperSCC
starts by analyzing raw data set to extract term
document matrix [44] as shown in Figure 1. Each
unique word is recognized as a feature in the matrix.
Questions and their titles are converted to documents.
Texts are interpreted as lower style for each post.
After that, punctuation is removed. Numbers and white
spaces are eliminated to finalize the document. If
those processes are completed successfully, the term
document matrix is produced. Word and character
counts are further calculated and added to that matrix
for each post since they are not available in raw posts.

Step 2: Labeling. Existing works [29, 31] only
consider source code language prediction as a binary
classification problem. Contrary to these studies,
we aim to complete multi-label language prediction
for each instance. In labeling, each instance is
processed to yield multi-labels representing 24 different
programming languages: javascript, sql, java, C#,
python, c++, c, php, ruby, swift, objective-c, vb.net,
perl, bash, css, scala, html, and lua, haskell, markdown,

4 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

Developing a hyperparameter optimization method for classification of code snippets and questions of stack overflow: HyperSCC

R, matlab, GO, and kotlin. In the tag data set, each
post may be associated with multiple programming
languages. To establish rule-based labeling, at least two
distinctive words are searched for each programming
language. These words were also extracted in [31].
Further, if a post is tagged with one or more than
one of the programming languages, it is labeled as
tagged. A labeling algorithm, displayed in Algorithm

Algorithm 1 Labeling algorithm
1: Input:TDM(T ermdocument matrix), T ag data set(T agD), threshold
2: Output:Labeling matrix(LM)
3: col ← length(TDM[1,])
4: row← length(TDM[, 1])
5: i, j ← 1
6: initialize(Keywords, y1 : y24)
7: while i<row do
8: while j<col do

9: countKeywords← match(TDM[i, j])
10: j ← j + 1
11: end while
12: ListKeywords← makeList(countKeywords)
13: if ListKeywords > threshold||tagCalculate(T agD[i, 2] == 1) then

14: y ← 1
15: else
16: y ← 0
17: end if
18: i ← i + 1
19: j ← 1
20: end while
21: LM ← data.f rame(y1 : y24)

1, presents further details about the automatic labeling
process. First, the column and row numbers of TDM
are calculated to establish a nested loop structure
(lines 4-5). The distinctive words determined for
programming languages are denoted with Keywords
that are set to zero at the beginning of Algorithm
1 (line 7). y1 : y24 are the lists created for labeling
values of 24 programming languages. countKeywords
is the number of distinctive keywords calculated for
each programming language, thereby searching TDM
(lines 9-11). ListKeywords is generated by converting
distinctive keywords to a list (line 13). The tag data
set is checked to detect whether the analyzed post is
tagged with a specific programming language (line 14).
Here, second column of T agD includes tag information
(T agD[, 2]). If distinctive keywords such as "C#", ".net",
"sql", and "php" are identified one or two times in the
related instance, it is then labeled as 1. Hence, threshold
is either 1 or two, and these values are set depending
on the programming language. Lastly, a data frame
is generated by using labeling lists y1 : y24 to return
labeling feature vectors LM.

Step 3: Preprocessing. Since each word is regarded
as a feature in the posts, feature selection is a must
to complete training in a reasonable period. To that
end, Pearson correlation analysis is chosen to remove
pair-wise correlations. In each step, the correlations are
re-evaluated with a specific cutoff (0.7). Character and
word counts are not involved in the correlation analysis.
The formula of Pearson correlation analysis is given in
Equation 1 where a and b denote the variables. sc(a, b) is

the sample covariance of them and the sample variances
are sv(a) and sv(b). At the end of feature selection,
highly correlated features are removed from the term
document matrix. Last, the data frame converted from
the term document matrix is exposed to a three-phase
process. 1) Infrequent labels, which are less than two,
are disregarded. 2) The instances having no labels are
removed. 3) If a feature has constant value for all the
instances, they are also removed from the data frame.

Rab =
sc(a, b)√
sv(a).sv(b)

(1)

Step 4: Selection of optimization method. Firstly, 10%
of the instances allocated for training are randomly
taken. 80% and 20% of the selected instances are used
for training and validation, respectively. Thereafter, the
results of four optimization methods including Nelder-
mead, Genetic algorithm, Bayes, and Random search
are evaluated for that validation. They are involved in
the experiment due to the following reasons: 1) Nelder-
mead requires fewer optimization iterations [45] than
the equivalent competitive methods. 2) An intensive
data augmentation process is not conducted in Bayesian
hyperparameter optimization [46]. 3) Genetic algorithm
is a robust hyperparameter optimization technique to
reach a well-tuned algorithm to obtain accurate and
high results [47]. 4) If the number of hyperparameters
is not large, Random search could achieve promising
results in a reasonable time [48]. The best method is
selected by comparing the prediction accuracies of the
optimization methods.

Step 5: Optimization and production of results. In
this step, training and testing parts are renewed on the
instances (80%-training, and 20%-testing). The training
instances are divided into 10 folds. 9 folds are employed
for training and one fold is used for the validation.
That process is repeated ten times. For each iteration,
the validation set is changed. Optimal configuration,
which is found by the optimization method decided in
the previous step, of the multi-label predictor is saved.
10-fold cross-validation is repeated for the training
instances by setting optimal configuration of the multi-
label predictors including ensemble of binary relevance
(EBR) [49], random k-labelsets (RAKEL) [50], controlled
label correlation exploitation (CTRL) [51], ensemble of
classifier chain (ECC) [52], ensemble of single label
(ESL) [53], label specific features (LIFT) [54], and meta-
br (MBR) [55]. Last, the testing set is utilized to yield
general prediction results.

4. Experimental settings
4.1. Data sets
We retrieved experimental data sets including three
types of data from two sources: questions and tags data

5 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

Muhammed Maruf Öztürk

sets that are publicly available 1. The question data set
includes 1264216 posts. Since a post of stack overflow
may be tagged with multiple programming languages,
the tag data set has 3750994 instances that are relatively
higher than that of the question data set. Due to the fact
that a concurrent analysis of 20000 instances leads to
a huge computational burden (162 GB) for RAM, 500
instances are processed in each iteration of the whole
experiment. By averaging the results of those parts,
an ultimate output is yielded. The increase in feature
number is very fast for first 500 the instances as shown
in Figure 3. This is because the number of new words
decreases as the number of processed posts increases.

The details of the experimental data sets are given
in Table 2. The term document matrix is generated
by combining "Title" and "Body" of the Questions
data set. The column namely "Sparsity" shows whether
the related feature has "NA" values. Note that some
questions may remain unclosed so that "ClosedDate"
is the sole feature having sparsity. Different from the
questions, the answers of stack overflow have no tag as
shown in Figure 2. Generally, bodies of questions play
an important role in understanding the issue. Questions
having an enriched description therefore get a fast and
clear response.

4.2. Prediction configurations
The proposed method is coded with R [56] that provides
fast computing for machine learning experiments.
To run Nelder-mead, nloptr library [57] is utilized.
A function namely neldermead is run by giving
the initial point along with the upper and lower
bounds of the target hyperparameter. GA function,
which is available in the GA library to run the
genetic algorithm, is executed with the following
configurations: crossover-p: 0.8, mutation-p: 0.1 (p
refers probability), and maximum number of iteration:
100. GA is a function of R package GA library
[58] that consists of several functions for performing
optimizing using genetic algorithms. GA library also
enables us to modify genetic operators and run
them sequentially or in parallel depending on the
experimental design. GA function maximizes a given
fitness function using basic principles of genetic
algorithm. Parameters that are utilized to run Bayes
are as follows: the number of iterations: 50, type of
acquisition function: gaussian process upper confidence
bound, kappa: 2.576, epsilon of expected improvement,
and probability of improvement:0. To perform Random
Search, each target hyperparameter is yielded randomly
for 100 iterations. Thereafter, the parameter yielding
the highest accuracy is determined as the optimal value.

1https://www.kaggle.com/stackoverflow/stacksample

Search spaces of the hyperparameters tuned for
multi-label predictors and their definitions are pre-
sented in Table 3. It is worthwhile to note that the
number of hyperparameters changes depending on the
type of predictors. The machine we employ to run the
experiment has the following technical properties: 32
CPU(s), Intel(R) Xeon(R) CPU E5-2690, 222 GB Ram,
CentOS 7 operating system, and NVIDIA Tesla S870
graphic card. A parallelization is further established
on that machine to shorten the completion time of the
experiment.

To make a quantitative comparison with other state-
of-the-art one-label programming language prediction
methods, Xgboost and Random forest algorithms are
employed. The mean results of those are compared with
those of PLI, SCC [27], SCC++ [31], and DeepSCC [59].
A public key was requested by us to run R script to yield
F1 score results of PLI. The R script devised to execute
PLI is given in 2.

One-label and multi-label predictions have the
same configurations for applying preprocessing and
dividing the data sets to obtain performance measures.
Three hyperparameters of Xgboost, which inherit the
advantages of parallelization in creating decision trees,
are subject to optimization as follows: max.depth
(the depth of the tree): 3-7, eta (control parameter
determining the rate of model learning): 0.001-0.008,
nrounds (number of iterations): 19-80. Random forest
algorithm is exposed to tuning process to set mtry
(number of random variable for each split of the
training): 1-5. gbm is employed to compare one-
label prediction performances of script languages. Four
hyperparameters of gbm are tuned with Grid search
algorithm. The hyperparameters and the search space
are as follows: interaction.depth:1-8, number of trees:
50-100, learning rate:0.1-0.8, minimum number of
observations: 5-20. caret library of R is utilized to run
gbm along with Grid search.

The source codes of HyperSCC were
uploaded to Github, and the URL is
https://github.com/muhammedozturk/HyperSCC/.
To run HyperSCC, detailed explanations are given in
that address. Further, the link of the processed file that
was created after feature extraction is available.

4.3. Performance measures
Five performance measures are employed in the
experiment: F1 score, accuracy, Hamming-loss, Subset-
accuracy, and One-error. However, Hamming-loss [60–
62] is the most common evaluation metric of multi-label
classification. The formulas of the metrics are given
in Equation 2-6, respectively. True positive (TP) is an

2https://github.com/muhammedozturk/HyperSCC/blob/main/PLI.R

6 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

Developing a hyperparameter optimization method for classification of code snippets and questions of stack overflow: HyperSCC

Table 2. Details of the experimental data sets.

Data set Name Description Type Sparsity

Questions

Id a primary and incremental key. integer no
OwnerUserId the number of user who posted the related question. integer no
CreationDate the date showing when the question is created. date time no
ClosedDate the date showing when the question is closed. date time yes
Score a value calculated by (upvotes-downvotes). integer no
Title a descriptive text of questions. text no
Body a detailed explanation of questions. text no

Tags
Id a number determines which question is tagged. integer no
Tag a word labeling questions. text no

1427

587

I want to sort a data frame by multiple columns. For example, with the data frame below I would
like to sort by column 'z' (descending) then by column 'b' (ascending):

dd data.frame b factor

levels ordered

x y

z

dd

b x y z

Hi A

Med D

Hi A

Low C

<- (= (c("Hi", "Med", "Hi", "Low"),

= c("Low", "Med", "Hi"), = TRUE),

= c("A", "D", "A", "C"), = c(8, 3, 9, 9),

= c(1, 1, 1, 2))

1 8 1

2 3 1

3 9 1

4 9 2

r sorting dataframe r-faq

1734
You can use the function directly without resorting to add-on tools -- see this simpler
answer which uses a trick right from the top of the code:

order()

example(order)

R dd with dd order z b

b x y z

Low C

Med D

Hi A

Hi A

> [(, (- ,)),]

4 9 2

2 3 1

1 8 1

3 9 1

1427

587

I want to sort a data frame by multiple columns. For example, with the data frame below I would
like to sort by column 'z' (descending) then by column 'b' (ascending):

dd data.frame b factor

levels ordered

x y

z

dd

b x y z

Hi A

Med D

Hi A

Low C

<- (= (c("Hi", "Med", "Hi", "Low"),

= c("Low", "Med", "Hi"), = TRUE),

= c("A", "D", "A", "C"), = c(8, 3, 9, 9),

= c(1, 1, 1, 2))

1 8 1

2 3 1

3 9 1

4 9 2

r sorting dataframe r-faq

1734
You can use the function directly without resorting to add-on tools -- see this simpler
answer which uses a trick right from the top of the code:

order()

example(order)

R dd with dd order z b

b x y z

Low C

Med D

Hi A

Hi A

> [(, (- ,)),]

4 9 2

2 3 1

1 8 1

3 9 1

Score

Accepted answer

Tags

Question title

Question body

Answer title

Bookmarks

Answer body

Figure 2. A combination of stack overflow question and answer.

Table 3. Details of the hyperparameters of multi-label predictors. Support Vector Machine (SVM) is set to baseline for the all
algorithms.

Method Hyperparameter Description Tuning range

EBR
m the number of binary relevance models 10-50
subsample percentage of training instances 0.1-0.85
att.space percentage of attributes 0.1-1

RAKEL
k the number of labels 3-7
m the number of lael powerset models 5-40

CTRL
m the number of binary relevance models 5-20
validation.size the size of validation set 0.1-0.5
validation.threshold threshold parameter for determining instance label 0.3-0.7

ECC
m the number of classififer chain models 10-50
subsample percentage of training instances 0.1-1
attr.space percentage of attributes 01.-1

ESL
m the number of members 10-50
w the weight of choosing labels 1-5

LIFT ratio shows the number of retained clusters 0-1

MBR
folds the number of folds of internal prediction 1-5
phi correlation coefficient 0-1

7 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

Muhammed Maruf Öztürk

number of questions

n
u

m
b

e
r

o
f

fe
a

tu
re

s

1000 2000 3000 4000 5000

10000

20000

30000

40000

500

Figure 3. Visualization of the increase in detected features.

indicator that shows the number of correctly predicted
positive classes. True negative (TN) is the number
of instances that their classes are negative and are
correctly predicted. False positive (FP) is the number
of wrongly predicted instances that are positive. False
negative (FN) is the number of instances that are
negative but predicted as positive. F1 score utilizes
the elements of the confusion matrix as accuracy
does. Hamming-loss shows the ratio of misclassified
instances. The extended version of accuracy is called
Subset-accuracy that is a harsh metric calculating the
most common label. For n observations, here n.l denotes
the matrix of label set. R denotes real memberships and
P represents predicted memberships. I is the indicator
function that evaluates Ri = Pi where Ri and Pi denote
the indexes of real and predicted membership values
which are being processed at the related iteration.
The ratio of irrelevant labels, which is considered as
confident, is calculated with One-error.

F1 =
T P

T P + 1/2 ∗ (FP + FN)
(2)

Accuracy =
TN + T P

T P + FN + FP + FN
(3)

Hamming − loss =
1

n ∗ l

n∑
i=1

l∑
j=1

(Ri , Pj) (4)

Subset − accuracy =
1
n

n∑
i=1

I ∗ (Ri = Pi) (5)

One − error =
1
n

n∑
i=1

(maxF(xi) < yi) (6)

5. Results
5.1. RQ1: What type of multi-label classification
technique to choose for better success in
programming language predictions?
To compare multi-label predictors with respect to
HyperSCC, three performance measures presented in

Table 4 are produced for each fold of the validations.
Note that one-error decreases as the number of
validation increases. On the other hand, the results
have similar hamming-loss values regardless of the
type of predictors. The accuracy results of the multi-
label predictors are presented in box-plots in Figure
4. We observe that the predictors show similarities in
accuracies as detected in Table 4. Following findings
are confirmed with RQ1: 1) The number of validation
sets is crucial to stabilize prediction errors. 2) A
hyperparameter optimization approach developed for
multi-label classifications creates a similar effect on
both prediction accuracy and errors.

method

a
c
c
u
ra
c
y

EBR RAKEL CTRL ECC ESL LIFT MBR

0.85

0.90

0.95

1.00

Figure 4. Box-plots of accuracy for multi-label predictors.

5.2. RQ2: Is HyperSCC superior to the
state-of-the-art methods with respect to one-label
programming language prediction?
To answer this research question, HyperSCC is
utilized to obtain combined mean results of XGboost
and Random forest. Table 5 reports F1 scores of
the state-of-the-art programming language prediction
methods along with HyperSCC. It is worthwhile to
note that HyperSCC outperformed the others for
15 programming languages. The ineffectiveness of
HyperSCC for the other six programming languages
may have originated from the labeling rules. GO
programming language comprises some common tags
such as "api", "sql-server", and "xml" that also belong to
other types of programming languages. That case may
have led to a dramatic decline in the success of GO
prediction. In spite of a lot of syntax and structural
properties, F1 score of Java is 0.1 greater than that
of C#. The labeling rule of Java has more distinctive
words than C# have. For example, the words "java"
and "jar" are abundant in stack overflow questions. On
the other hand, "instance" is one of the three words
utilized in constructing the labeling rule of C#. In
that case, the training becomes more imbalanced to
learn C# instances. SCC and SC++ are superior to
HyperSCC for those languages. More precisely, the

8 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

Developing a hyperparameter optimization method for classification of code snippets and questions of stack overflow: HyperSCC

Table 4. The results of HyperSCC of multi-label predictors.

Method Measure V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

CTRL [51]
hamming-loss 0,0583 0,0571 0,0576 0,0576 0,0571 0,0583 0,0588 0,0592 0,0569 0,0576
one-error 0,0760 0,0678 0,0657 0,0637 0,0595 0,0575 0,0554 0,0638 0,0679 0,0617
subset-accuracy 0,3758 0,3717 0,3655 0,3676 0,3676 0,3717 0,3676 0,3683 0,3642 0,3704

ECC [52]
hamming-loss 0,0624 0,0584 0,0587 0,0591 0,0599 0,0595 0,0606 0,0609 0,0591 0,0619
one-error 0,0657 0,0637 0,0575 0,0616 0,0554 0,0554 0,0534 0,0597 0,0597 0,0556
subset-accuracy 0,3573 0,3655 0,3593 0,3655 0,3552 0,3676 0,3655 0,3621 0,3704 0,3560

ESL [53]
hamming-loss 0,0584 0,0571 0,0574 0,0576 0,0567 0,0578 0,0590 0,0596 0,0574 0,0579
one-error 0,0657 0,0637 0,0595 0,0616 0,0554 0,0554 0,0534 0,0597 0,0597 0,0556
subset-accuracy 0,3696 0,3717 0,3696 0,3676 0,3676 0,3696 0,3655 0,3704 0,3683 0,3683

LIFT [54]
hamming-loss 0,0584 0,0573 0,0574 0,0574 0,0573 0,0586 0,0589 0,0594 0,0571 0,0580
one-error 0,0678 0,0637 0,0575 0,0616 0,0554 0,0554 0,0534 0,0597 0,0597 0,0576
subset-accuracy 0,3696 0,3676 0,3696 0,3676 0,3676 0,3676 0,3676 0,3663 0,3663 0,3663

MBR [55]
hamming-loss 0,0446 0,0457 0,0455 0,0454 0,0449 0,0447 0,0452 0,0447 0,0442 0,0444
one-error 0,0536 0,0639 0,0557 0,0619 0,0577 0,0537 0,0579 0,0517 0,0496 0,0455
subset-accuracy 0,4763 0,4742 0,4701 0,4742 0,4784 0,4793 0,4752 0,4752 0,4752 0,4752

RAKEL [50]
hamming-loss 0,0578 0,0573 0,0573 0,0578 0,0567 0,0580 0,0590 0,0588 0,0571 0,0578
one-error 0,0657 0,0637 0,0575 0,0637 0,0554 0,0534 0,0534 0,0597 0,0617 0,0576
subset-accuracy 0,3717 0,3696 0,3717 0,3676 0,3655 0,3696 0,3676 0,3683 0,3683 0,3683

EBR [49]
hamming-loss 0,0598 0,0594 0,0573 0,0593 0,0579 0,0598 0,0622 0,0614 0,0583 0,0597
one-error 0,0657 0,0637 0,0575 0,0616 0,0554 0,0554 0,0534 0,0597 0,0597 0,0556
subset-accuracy 0,3696 0,3655 0,3634 0,3573 0,3593 0,3676 0,3593 0,3580 0,3663 0,3601

Table 5. The comparison of F1 score for four methods. The
maximum values for each line are represented with bold text.

language PLI [29] SCC [27] SCC++ [31] HyperSCC DeepSCC [59]
Javascript 0.48 0.78 0.74 0.87 0.82
SQL 0.5 0.65 0.79 0.86 0.81
Java 0.46 0.7 0.76 0.88 0.83
C# 0.51 0.79 0.78 0.78 0.80
Python 0.69 0.88 0.79 0.84 0.81
C++ 0.65 0.51 0.53 0.85 0.82
C 0.56 0.76 0.81 0.87 0.82
PHP 0.62 0.74 0.88 0.86 0.81
Ruby 0.43 0.7 0.72 0.86 0.79
Swift 0.54 0.84 0.89 0.88 0.88
Objective-C 0.77 0.57 0.88 0.88 0.84
Vb.Net 0.6 0.83 0.77 0.89 0.83
Perl 0.69 0.74 0.41 0.89 0.83
Bash 0.67 0.76 0.85 0.69 0.83
CSS 0.3 0.86 0.77 0.88 0.82
Scala 0.72 0.76 0.81 0.81 0.81
HTML 0.35 0.54 0.55 0.88 0.81
Lua 0.5 0.84 0.7 0.87 0.82
Haskell 0.67 0.89 0.78 0.88 0.89
Markdown 0.28 0.76 0.91 0.87 0.81
R 0.72 0.77 0.78 0.88 0.88
Matlab 0.61 0.78 0.79 0.86 0.84
GO 0.49 0.67 0.72 0.74 0.80
Kotlin 0.60 0.75 0.81 0.87 0.83

highest F1 score values of them are not dependent
on the types of programming languages. HyperSCC
performs well on the instances labeled as Vb.net
and Perl. This is because they have more distinctive
words than the other programming languages. For
instance, one of the top features of Perl is cgi which
is hardly detected in the posts related to the other
programming languages. DeepSCC yielded the highest
F1 score for Scala and Haskell. It could not outperform
HyperSCC in the rest of the other types of programming
languages. Note that DeepSCC had an average of
0.87 F1 score. But it was tested on 179.556 instances
[59] which are not greater than that of HyperSCC
(1264216). Therefore, employing large data sets result
in more realistic performance measures. We performed
Wilcoxon Signed-rank Test to check whether there is a
noteworthy difference between paired methods. One of

Table 6. Results of Wilcoxon signed rank test of the comparison
algorithms with respect to accuracy (H0:p>0.05, H1:p<0.05). H0
is denoted with bold-text.

PLI SCC SCC++ HyperSCC DeepSCC

PLI - 0.0002 0.0004 0.0001 0.0003
SCC 0.0002 - 0.5446 0.0002 0.00032

SCC++ 0.0004 0.5446 - 0.0027 0.0037
HyperSCC 0.0001 0.0002 0.0027 - 0.00035
DeepSCC 0.0003 0.00032 0.0037 0.00035 -

the sophisticated types of the t-test is Wilcoxon Signed-
rank Test that is generally applied to validate statistical
differences between two methods. We do not assume
Gaussian distribution among the evaluated methods.
H0 rejects the assumption that the methods yield
statistically different results (p > 0.05). On the other
hand, H1 is accepted if there is a significant difference
between the paired methods (p < 0.05). In Table 6, there
is a conspicuous difference between HyperSCC and the
other methods. However, the statistical test shows that
the results of SCC and SCC++ presented in Figure 4 are
similar. This is because SCC++ is an improved similar
version of SCC.

5.3. RQ3: To what extent can preprocessing increase
prediction time?
Preprocessing is generally required in such an experi-
ment to prepare data in a way that guarantees yielding
performance measures for each instance. Therefore,
exposing data to a preprocessing operation is some-
times crucial. To answer RQ3, a random data set includ-
ing 5000 instances is retrieved from the data corpus,
randomly. A training process is then repeated for the
various number of training sizes as follows: 50, 100,
200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000,
4500, 5000. At each iteration, the training times of the

9 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

Muhammed Maruf Öztürk

multi-label predictors are recorded. Training times can
be compared by analyzing the lines presented in Figures
5a and 5b. Notice that there is not any remarkable
reduction in training times after preprocessing except
for EBR that is the ensemble version of Binary Rele-
vance (BR). In essence, preprocessing should be applied
to the algorithms having high training execution time
as stated in [63]. LIFT associates the training instances
with one of the class labels [54] so that LIFT costs much
more time to complete training. On the other hand,
MBR needs relatively low training time thanks to its fast
decision-making mechanism [55].

Unpreprocessed data

Training size

T
ra

in
in

g
ti
m

e
(s

)

0 1000 2000 3000 4000 5000

0

100

200

300

400

RAKEL

ECC

LIFT

EBR

CTRL

ESL

MBR

(a)
Preprocessed data

Training size

T
ra

in
in

g
ti
m

e
(s

)

0 1000 2000 3000 4000 5000

0

100

200

300

400

EBR

RAKEL

CTRL

ECC

ESL

LIFT

MBR

(b)

Figure 5. a) Training time curves for unpreprocessed data,
b) Training time curves for preprocessed data. Processing is
composed of a multi-stage process given in Section 3-Step 3.

5.4. RQ4: Which script language is the most feasible
for predicting one-label programming language?
One-class programming language prediction is per-
formed with gbm to compare the accuracies obtained
for eight programming languages including Javascript,
Python, PHP, Ruby, Perl, Bash, Lua, and R. Grid search

is one of the most popular hyperparameter optimiza-
tion techniques [64–66] so that we prefer Grid search
to perform a straight evaluation of script languages
by excluding HyperSCC from this sub-experiment. The
details of changing accuracy values are given in Figure
6. The highest accuracy is of the optimal maximum
depth of the tree. In this respect, the optimal depth
of the tree (1) of Perl is quite distinct from all of the
others. R outperformed the other script languages that
it yielded 0.99 of accuracy. The accuracy of Python is
the lowest (0.89) among those which produced accuracy
values higher than 0.9. Fluctuations in the accuracy of
R are vastly clearer than those of the others. Moreover,
optimizing the maximum depth of the tree is easier for
Perl which has a large margin between the optimal (1)
and ordinary hyperparameters (2-3-4-5-6-7-8).

5.5. Discussion and implications

In this section, we discuss to what extent this study
differs from existing works by delving into the results
presented in the previous sections.

Programming language prediction techniques suffer
from various data-centric and experimental drawbacks.
The majority of studies focus either on creating a
feature set from the raw text [27] or the robustness
of machine learning techniques [59, 67]. However,
relying on programming language labels of data sets
without making an in-depth tag analysis may result in
unreliable predictions. The reason is that tagging is a
compulsory operation, especially for posting questions
in stack overflow. The automatic labeling process
presented in Section 3 aims to enhance the reliability
of labels of training data. The results presented in
Table 2 support the hypothesis that a suitable process
made on labeling features has a positive impact on
prediction success. Stack overflow data sets had been
exposed to the machine learning process by using the
same hyperparameter set employed in the previous
studies[68] or utilizing one hyperparameter tuning
technique [69]. Instead, we have conducted a mini-
batch training to decide the tuning approach to be
used in the rest of the experiment. In this way, we
were able to produce high accuracy regardless of
the type of predictors in multi-label programming
language prediction. Apart from preceding studies, the
results of this study assert that performing one-label
programming language prediction on Perl and R yields
higher accuracy than that of other script languages. This
validates that the programming languages including
less distinctive keywords do not respond as well to
labeling and preprocessing processes.

10 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

Developing a hyperparameter optimization method for classification of code snippets and questions of stack overflow: HyperSCC

Boosting Iterations

A
c
c
u
ra

c
y
 (

R
e
p
e
a
te

d
 C

ro
s
s

�

V
a
lid

a
ti
o
n
)

0.911

0.912

0.913

0.914

0.915

50 60 70 80 90 100

Max Tree Depth

1
2

3
4

5
6

7
8

(a) Javascript
Boosting Iterations

A
c
c
u
ra

c
y
 (

R
e
p
e
a
te

d
 C

ro
s
s

�

V
a
lid

a
ti
o
n
)

0.850

0.855

0.860

50 60 70 80 90 100

Max Tree Depth

1
2

3
4

5
6

7
8

(b) Python

Boosting Iterations

A
c
c
u
ra

c
y
 (

R
e
p
e
a
te

d
 C

ro
s
s

�

V
a
lid

a
ti
o
n
)

0.942

0.943

0.944

0.945

50 60 70 80 90 100

Max Tree Depth

1
2

3
4

5
6

7
8

(c) PHP
Boosting Iterations

A
c
c
u
ra

c
y
 (

R
e
p
e
a
te

d
 C

ro
s
s

�

V
a
lid

a
ti
o
n
)

0.9730

0.9735

0.9740

50 60 70 80 90 100

Max Tree Depth

1
2

3
4

5
6

7
8

(d) Ruby

Boosting Iterations

A
c
c
u
ra

c
y
 (

R
e
p
e
a
te

d
 C

ro
s
s

�

V
a
lid

a
ti
o
n
)

0.9855

0.9860

0.9865

0.9870

0.9875

0.9880

50 60 70 80 90 100

Max Tree Depth

1
2

3
4

5
6

7
8

(e) Perl
Boosting Iterations

A
c
c
u
ra

c
y
 (

R
e
p
e
a
te

d
 C

ro
s
s

�

V
a
lid

a
ti
o
n
)

0.909

0.910

0.911

0.912

0.913

50 60 70 80 90 100

Max Tree Depth

1
2

3
4

5
6

7
8

(f) Bash

Boosting Iterations

A
c
c
u
ra

c
y
 (

R
e
p
e
a
te

d
 C

ro
s
s

�

V
a
lid

a
ti
o
n
)

0.964

0.965

0.966

0.967

0.968

50 60 70 80 90 100

Max Tree Depth

1
2

3
4

5
6

7
8

(g) Lua
Boosting Iterations

A
c
c
u
ra

c
y
 (

R
e
p
e
a
te

d
 C

ro
s
s

�

V
a
lid

a
ti
o
n
)

0.9900

0.9902

0.9904

0.9906

50 60 70 80 90 100

Max Tree Depth

1
2

3
4

5
6

7
8

(h) R

Figure 6. Accuracy curves of gbm for various boosting iterations.

11 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

Muhammed Maruf Öztürk

6. Conclusion and Future Remarks

In this work, we proposed a new hyperparameter
optimization technique namely HyperSCC for multi-
label code prediction of stack overflow, where wrong
labeling is addressed by establishing an automatic
multi-labeling process. Compared with the state-of-the-
art source code classification methods, the experimental
steps we present in the paper do not rely on a specific
optimization technique. Instead, the best optimization
technique is chosen by analyzing the performance of a
smaller part of the training data set, thereby executing
HyperSCC. According to the obtained findings; 1) The
success of multi-label source code prediction is not
related to the predictor. 2) For one-label prediction,
HyperSCC is superior to the other three methods
in the F1 score. 3)The time passed for the training
mainly depends on the type of multi-label predictor.
MBR shows significant resistance to the increase of
training time for a large number of training instances.
Further, the effect of data processing in training time is
negligible for the majority of the multi-label predictors.
4) The tuning burden of predicting script languages
can be alleviated via more robust labeling and tagging
approaches.

This paper can be extended with the future agenda
encompassing the following items: 1) Raw posts of
stack overflow create a remarkable computational
burden if each word is recognized as a feature as
performed in the experiment. We rather need to
develop feature selection techniques, thereby regarding
exceptional cases of source code prediction. 2) The
labeling method presented in this work could be
leveraged by establishing a fuzzy rule-based model [70].
3) The effectiveness of HyperSCC may be validated by
comparing with the methods developed for distributed
data optimization [71] and resource allocation issues
[72].

Declarations

Funding Not applicable.
Conflict of interest The authors declare that they

have no confict of interest.
Availability of data and material The data required

to replicate the experiment is presented in Section 5.2.
Code availability The link required to access the

replication packages is presented in Appendix A.
Authors’ contributions Not applicable.
Ethics approval This article dos not contain any

studies with human participants or animals performed
by any of the authors.

Consent to participate Informed consent was
obtained from all individual participants included in
the study.

Consent for publication The authors affirm that
human research participants provided informed con-
sent for publication.

References
[1] Huang, Z., Shao, Z., Fan, G., Yu, H., Yang, K. and Zhou,

Z. (2022) Hbsniff: A static analysis tool for java hibernate
object-relational mapping code smell detection. Science
of Computer Programming 217: 102778.

[2] Nasehi, S.M., Sillito, J., Maurer, F. and Burns, C.

(2012) What makes a good code example?: A study of
programming q&a in stackoverflow. In 2012 28th IEEE
International Conference on Software Maintenance (ICSM)
(IEEE): 25–34.

[3] Linares-Vásquez, M., Bavota, G., Di Penta, M., Oliveto,

R. and Poshyvanyk, D. (2014) How do api changes
trigger stack overflow discussions? a study on the
android sdk. In proceedings of the 22nd International
Conference on Program Comprehension: 83–94.

[4] Abdalkareem, R., Shihab, E. and Rilling, J. (2017) On
code reuse from stackoverflow: An exploratory study on
android apps. Information and Software Technology 88:
148–158.

[5] Yang, J., Tao, K., Bozzon, A. and Houben, G.J. (2014)
Sparrows and owls: Characterisation of expert behaviour
in stackoverflow. In International conference on user
modeling, adaptation, and personalization (Springer): 266–
277.

[6] Ahmed, T. and Srivastava, A. (2017) Understanding and
evaluating the behavior of technical users. a study of
developer interaction at stackoverflow. Human-centric
Computing and Information Sciences 7(1): 1–18.

[7] Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R.

and Lanza, M. (2014) Mining stackoverflow to turn
the ide into a self-confident programming prompter.
In Proceedings of the 11th working conference on mining
software repositories: 102–111.

[8] Baltadzhieva, A. and Chrupała, G. (2015) Predicting
the quality of questions on stackoverflow. In Proceedings
of the international conference recent advances in natural
language processing: 32–40.

[9] Ahasanuzzaman, M., Asaduzzaman, M., Roy, C.K. and
Schneider, K.A. (2018) Classifying stack overflow posts
on api issues. In 2018 IEEE 25th international conference
on software analysis, evolution and reengineering (SANER)
(IEEE): 244–254.

[10] Tóth, L., Nagy, B., Janthó, D., Vidács, L. and Gyimóthy,

T. (2019) Towards an accurate prediction of the question
quality on stack overflow using a deep-learning-based
nlp approach. In ICSOFT: 631–639.

[11] Neshati, M. (2017) On early detection of high voted
Q&A on Stack Overflow. Information Processing & Man-
agement 53(4): 780–798. doi:10.1016/j.ipm.2017.02.005,
URL https://linkinghub.elsevier.com/retrieve/

pii/S0306457316304733.
[12] Amancio, L., Dorneles, C.F. and Dalip, D.H.

(2021) Recency and quality-based ranking
question in CQAs: A Stack Overflow case study.
Information Processing & Management 58(4):
102552. doi:10.1016/j.ipm.2021.102552, URL

12 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

https://doi.org/10.1016/j.ipm.2017.02.005
https://linkinghub.elsevier.com/retrieve/pii/S0306457316304733
https://linkinghub.elsevier.com/retrieve/pii/S0306457316304733
https://doi.org/10.1016/j.ipm.2021.102552

Developing a hyperparameter optimization method for classification of code snippets and questions of stack overflow: HyperSCC

https://linkinghub.elsevier.com/retrieve/pii/

S030645732100056X.
[13] Izadi, M., Heydarnoori, A. and Gousios, G. (2021)

Topic recommendation for software repositories using
multi-label classification algorithms. Empirical Soft-
ware Engineering 26(5): 93. doi:10.1007/s10664-021-
09976-2, URL https://link.springer.com/10.1007/

s10664-021-09976-2.
[14] Joorabchi, A., English, M. and Mahdi, A.E. (2016) Text

mining stackoverflow: An insight into challenges and
subject-related difficulties faced by computer science
learners. Journal of Enterprise Information Management .

[15] Bi, T., Liang, P., Tang, A. and Xia, X. (2021) Mining
Architecture Tactics and Quality Attributes knowledge
in Stack Overflow. Journal of Systems and Software
180: 111005. doi:10.1016/j.jss.2021.111005, URL
https://linkinghub.elsevier.com/retrieve/pii/

S0164121221001023.
[16] Alshangiti, M., Sapkota, H., Murukannaiah, P.K., Liu,

X. and Yu, Q. (2019) Why is developing machine learn-
ing applications challenging? a study on stack overflow
posts. In 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM)
(IEEE): 1–11.

[17] Cabrera-Diego, L.A., Bessis, N. and Korkontzelos, I.

(2020) Classifying emotions in Stack Overflow and JIRA
using a multi-label approach. Knowledge-Based Systems
195: 105633. doi:10.1016/j.knosys.2020.105633, URL
https://linkinghub.elsevier.com/retrieve/pii/

S0950705120300939.
[18] Beyer, S., Macho, C., Di Penta, M. and Pinzger,

M. (2020) What kind of questions do develop-
ers ask on Stack Overflow? A comparison of auto-
mated approaches to classify posts into question cat-
egories. Empirical Software Engineering 25(3): 2258–
2301. doi:10.1007/s10664-019-09758-x, URL http://

link.springer.com/10.1007/s10664-019-09758-x.
[19] Bangash, A.A., Sahar, H., Chowdhury, S., Wong, A.W.,

Hindle, A. and Ali, K. (2019) What do developers
know about machine learning: a study of ml discussions
on stackoverflow. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR) (IEEE):
260–264.

[20] Menzies, T., Majumder, S., Balaji, N., Brey, K. and
Fu, W. (2018) 500+ times faster than deep learning:(a
case study exploring faster methods for text mining
stackoverflow). In 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR) (IEEE):
554–563.

[21] Tellez, E.S., Moctezuma, D., Miranda-Jiménez, S. and
Graff, M. (2018) An automated text categorization
framework based on hyperparameter optimization.
Knowledge-Based Systems 149: 110–123.

[22] Probst, P., Wright, M.N. and Boulesteix, A.L. (2019)
Hyperparameters and tuning strategies for random
forest. Wiley Interdisciplinary Reviews: data mining and
knowledge discovery 9(3): e1301.

[23] Van Dam, J.K. and Zaytsev, V. (2016) Software language
identification with natural language classifiers. In 2016
IEEE 23rd international conference on software analysis,
evolution, and reengineering (SANER) (IEEE), 1: 624–628.

[24] Gilda, S. (2017) Source code classification using neural
networks. In 2017 14th international joint conference on
computer science and software engineering (JCSSE) (IEEE):
1–6.

[25] Barchi, F., Parisi, E., Urgese, G., Ficarra, E. and
Acquaviva, A. (2021) Exploration of convolutional
neural network models for source code classification.
Engineering Applications of Artificial Intelligence 97:
104075.

[26] Baquero, J.F., Camargo, J.E., Restrepo-Calle, F.,
Aponte, J.H. and González, F.A. (2017) Predicting
the programming language: Extracting knowledge
from stack overflow posts. In Colombian Conference on
Computing (Springer): 199–210.

[27] Alreshedy, K., Dharmaretnam, D., German, D.M.,
Srinivasan, V. and Gulliver, T.A. (2018) Scc: auto-
matic classification of code snippets. arXiv preprint
arXiv:1809.07945 .

[28] Singh, P., Chopra, R., Sharma, O. and Singla, R. (2020)
Stackoverflow tag prediction using tag associations and
code analysis. Journal of Discrete Mathematical Sciences
and Cryptography 23(1): 35–43.

[29] Programming language identification tool, https:

//algorithmia.com/algorithms/PetiteProgrammer/

ProgrammingLanguageIdentification. Accessed:
2022-03-10.

[30] Mayer, P., Kirsch, M. and Le, M.A. (2017) On multi-
language software development, cross-language links
and accompanying tools: a survey of professional
software developers. Journal of Software Engineering
Research and Development 5(1): 1. doi:10.1186/s40411-
017-0035-z, URL http://jserd.springeropen.com/

articles/10.1186/s40411-017-0035-z.
[31] Alrashedy, K., Dharmaretnam, D., German, D.M.,

Srinivasan, V. and Gulliver, T.A. (2020) Scc++:
Predicting the programming language of questions
and snippets of stack overflow. Journal of Systems and
Software 162: 110505.

[32] Rosen, C. and Shihab, E. (2016) What are mobile
developers asking about? a large scale study using stack
overflow. Empirical Software Engineering 21(3): 1192–
1223.

[33] Stoddard, J.G., Welsh, J.S. and Hjalmarsson, H. (2017)
Em-based hyperparameter optimization for regularized
volterra kernel estimation. IEEE control systems letters
1(2): 388–393.

[34] Thiede, L.A. and Parlitz, U. (2019) Gradient based
hyperparameter optimization in echo state networks.
Neural Networks 115: 23–29.

[35] Mantovani, R.G., Rossi, A.L., Alcobaca, E., Van-

schoren, J. and de Carvalho, A.C. (2019) A meta-
learning recommender system for hyperparameter tun-
ing: Predicting when tuning improves svm classifiers.
Information Sciences 501: 193–221.

[36] Minku, L.L. (2019) A novel online supervised hyper-
parameter tuning procedure applied to cross-company
software effort estimation. Empirical Software Engineer-
ing 24(5): 3153–3204.

[37] Schratz, P., Muenchow, J., Iturritxa, E., Richter, J. and
Brenning, A. (2019) Hyperparameter tuning and per-
formance assessment of statistical and machine-learning

13 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

https://linkinghub.elsevier.com/retrieve/pii/S030645732100056X
https://linkinghub.elsevier.com/retrieve/pii/S030645732100056X
https://doi.org/10.1007/s10664-021-09976-2
https://doi.org/10.1007/s10664-021-09976-2
https://link.springer.com/10.1007/s10664-021-09976-2
https://link.springer.com/10.1007/s10664-021-09976-2
https://doi.org/10.1016/j.jss.2021.111005
https://linkinghub.elsevier.com/retrieve/pii/S0164121221001023
https://linkinghub.elsevier.com/retrieve/pii/S0164121221001023
https://doi.org/10.1016/j.knosys.2020.105633
https://linkinghub.elsevier.com/retrieve/pii/S0950705120300939
https://linkinghub.elsevier.com/retrieve/pii/S0950705120300939
https://doi.org/10.1007/s10664-019-09758-x
http://link.springer.com/10.1007/s10664-019-09758-x
http://link.springer.com/10.1007/s10664-019-09758-x
 https://algorithmia.com/algorithms/PetiteProgrammer/ProgrammingLanguageIdentification
 https://algorithmia.com/algorithms/PetiteProgrammer/ProgrammingLanguageIdentification
 https://algorithmia.com/algorithms/PetiteProgrammer/ProgrammingLanguageIdentification
https://doi.org/10.1186/s40411-017-0035-z
https://doi.org/10.1186/s40411-017-0035-z
http://jserd.springeropen.com/articles/10.1186/s40411-017-0035-z
http://jserd.springeropen.com/articles/10.1186/s40411-017-0035-z

Muhammed Maruf Öztürk

algorithms using spatial data. Ecological Modelling 406:
109–120.

[38] Osman, H., Ghafari, M. and Nierstrasz, O. (2017)
Hyperparameter optimization to improve bug predic-
tion accuracy. In 2017 IEEE Workshop on Machine Learn-
ing Techniques for Software Quality Evaluation (MaL-
TeSQuE) (IEEE): 33–38.

[39] Agrawal, A., Yang, X., Agrawal, R., Yedida, R.,
Shen, X. and Menzies, T. (2021) Simpler Hyperpa-
rameter Optimization for Software Analytics: Why,
How, When. IEEE Transactions on Software Engineer-
ing : 1–1doi:10.1109/TSE.2021.3073242, URL https://

ieeexplore.ieee.org/document/9405415/.
[40] Tran, N., Schneider, J.G., Weber, I. and Qin, A.K. (2020)

Hyper-parameter optimization in classification: To-do or
not-to-do. Pattern Recognition 103: 107245.

[41] Cummaudo, A., Vasa, R., Barnett, S., Grundy, J.

and Abdelrazek, M. (2020) Interpreting cloud
computer vision pain-points. In Proceedings of
the ACM/IEEE 42nd International Conference on
Software Engineering (New York, NY, USA: ACM):
1584–1596. doi:10.1145/3377811.3380404, URL
https://dl.acm.org/doi/10.1145/3377811.3380404.

[42] Maity, S.K., Panigrahi, A., Ghosh, S., Banerjee, A.,
Goyal, P. and Mukherjee, A. (2019) DeepTagRec: A
Content-cum-User Based Tag Recommendation Frame-
work for Stack Overflow. 125–131. doi:10.1007/978-3-
030-15719-7_16, URL http://link.springer.com/10.

1007/978-3-030-15719-7{_}16.
[43] Wang, H., Wang, B., Li, C., Xu, L., He, J. and Yang, M.

(2019) SOTagRec. In Proceedings of the 2019 4th Interna-
tional Conference on Mathematics and Artificial Intelligence
- ICMAI 2019 (New York, New York, USA: ACM Press):
146–152. doi:10.1145/3325730.3325751, URL http://

dl.acm.org/citation.cfm?doid=3325730.3325751.
[44] Feinerer, I. (2013) Introduction to the tm package text

mining in r. Accessible en ligne: http://cran. r-project.
org/web/packages/tm/vignettes/tm. pdf .

[45] Yoshihiko, O., Shuhei, W. and Masaki, O. (2019)
Accelerating the nelder-mead method with predictive
parallel evaluation. In 6th ICML Workshop on Automated
Machine Learning (AutoML2019).

[46] Klein, A., Falkner, S., Bartels, S., Hennig, P. and
Hutter, F. (2017) Fast Bayesian hyperparameter
optimization on large datasets. Electronic Journal
of Statistics 11(2). doi:10.1214/17-EJS1335SI,
URL https://projecteuclid.org/journals/

electronic-journal-of-statistics/volume-11/

issue-2/Fast-Bayesian-hyperparameter-optimization-on-large-datasets/

10.1214/17-EJS1335SI.full.
[47] Daviran, M., Maghsoudi, A., Ghezelbash, R. and

Pradhan, B. (2021) A new strategy for spatial
predictive mapping of mineral prospectivity:
Automated hyperparameter tuning of random
forest approach. Computers & Geosciences 148:
104688. doi:10.1016/j.cageo.2021.104688, URL
https://linkinghub.elsevier.com/retrieve/pii/

S0098300421000030.
[48] Balaprakash, P., Salim, M., Uram, T.D., Vishwanath,

V. and Wild, S.M. (2018) DeepHyper: Asynchronous
Hyperparameter Search for Deep Neural Networks.

In 2018 IEEE 25th International Conference on
High Performance Computing (HiPC) (IEEE): 42–
51. doi:10.1109/HiPC.2018.00014, URL https:

//ieeexplore.ieee.org/document/8638041/.
[49] Read, J., Pfahringer, B., Holmes, G. and Frank, E.

(2011) Classifier chains for multi-label classification.
Machine Learning 85(3): 333–359. doi:10.1007/s10994-
011-5256-5, URL http://link.springer.com/10.

1007/s10994-011-5256-5.
[50] Tsoumakas, G, K.I.V.I. (2010) Random k-labelsets for

multilabel classification. IEEE transactions on knowledge
and data engineering 23(7): 1079–1089.

[51] Li, Y.K. and Zhang, M.L. (2014) Enhancing binary
relevance for multi-label learning with controlled label
correlations exploitation. In Pacific Rim International
Conference on Artificial Intelligence (Springer): 91–103.

[52] Senge, R., del Coz, J.J. and Hüllermeier, E. (2014) On
the Problem of Error Propagation in Classifier Chains for
Multi-label Classification. 163–170. doi:10.1007/978-3-
319-01595-8_18, URL http://link.springer.com/10.

1007/978-3-319-01595-8{_}18.
[53] Wang, R., Kwong, S., Wang, X. and Jia, Y.

(2021) Active k-labelsets ensemble for multi-
label classification. Pattern Recognition 109:
107583. doi:10.1016/j.patcog.2020.107583, URL
https://linkinghub.elsevier.com/retrieve/pii/

S0031320320303861.
[54] Zhang, M.L. and Wu, L. (2014) Lift: Multi-label learning

with label-specific features. IEEE transactions on pattern
analysis and machine intelligence 37(1): 107–120.

[55] Read, J., Puurula, A. and Bifet, A. (2014) Multi-
label classification with meta-labels. In 2014 IEEE
international conference on data mining (IEEE): 941–946.

[56] Team, R.C. (2000) R language definition. Vienna, Austria:
R foundation for statistical computing .

[57] Ypma, J. (2014) Introduction to nloptr: an r interface to
nlopt. R Package 2.

[58] Scrucca, L. (2013) Ga: a package for genetic algorithms
in r. Journal of Statistical Software 53: 1–37.

[59] Yang, G., Zhou, Y., Yu, C. and Chen, X. (2021)
DeepSCC: Source Code Classification Based on Fine-
Tuned RoBERTa URL http://arxiv.org/abs/2110.

00914. 2110.00914.
[60] Liao, W., Wang, Y., Yin, Y., Zhang, X. and Ma, P. (2020)

Improved sequence generation model for multi-label
classification via cnn and initialized fully connection.
Neurocomputing 382: 188–195.

[61] Nguyen, V.L. and Hullermeier, E. (2020) Reliable mul-
tilabel classification: Prediction with partial abstention.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 34: 5264–5271.

[62] Nazmi, S., Yan, X., Homaifar, A. and Doucette, E. (2020)
Evolving multi-label classification rules by exploiting
high-order label correlations. Neurocomputing 417: 176–
186.

[63] Moyano, J.M., Gibaja, E.L., Cios, K.J. and Ventura, S.

(2018) Review of ensembles of multi-label classifiers:
models, experimental study and prospects. Information
Fusion 44: 33–45.

[64] Bertrand, Q., Klopfenstein, Q., Blondel, M., Vaiter,

S., Gramfort, A. and Salmon, J. (2020) Implicit

14 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

https://doi.org/10.1109/TSE.2021.3073242
https://ieeexplore.ieee.org/document/9405415/
https://ieeexplore.ieee.org/document/9405415/
https://doi.org/10.1145/3377811.3380404
https://dl.acm.org/doi/10.1145/3377811.3380404
https://doi.org/10.1007/978-3-030-15719-7_16
https://doi.org/10.1007/978-3-030-15719-7_16
http://link.springer.com/10.1007/978-3-030-15719-7{_}16
http://link.springer.com/10.1007/978-3-030-15719-7{_}16
https://doi.org/10.1145/3325730.3325751
http://dl.acm.org/citation.cfm?doid=3325730.3325751
http://dl.acm.org/citation.cfm?doid=3325730.3325751
https://doi.org/10.1214/17-EJS1335SI
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-11/issue-2/Fast-Bayesian-hyperparameter-optimization-on-large-datasets/10.1214/17-EJS1335SI.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-11/issue-2/Fast-Bayesian-hyperparameter-optimization-on-large-datasets/10.1214/17-EJS1335SI.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-11/issue-2/Fast-Bayesian-hyperparameter-optimization-on-large-datasets/10.1214/17-EJS1335SI.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-11/issue-2/Fast-Bayesian-hyperparameter-optimization-on-large-datasets/10.1214/17-EJS1335SI.full
https://doi.org/10.1016/j.cageo.2021.104688
https://linkinghub.elsevier.com/retrieve/pii/S0098300421000030
https://linkinghub.elsevier.com/retrieve/pii/S0098300421000030
https://doi.org/10.1109/HiPC.2018.00014
https://ieeexplore.ieee.org/document/8638041/
https://ieeexplore.ieee.org/document/8638041/
https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1007/s10994-011-5256-5
http://link.springer.com/10.1007/s10994-011-5256-5
http://link.springer.com/10.1007/s10994-011-5256-5
https://doi.org/10.1007/978-3-319-01595-8_18
https://doi.org/10.1007/978-3-319-01595-8_18
http://link.springer.com/10.1007/978-3-319-01595-8{_}18
http://link.springer.com/10.1007/978-3-319-01595-8{_}18
https://doi.org/10.1016/j.patcog.2020.107583
https://linkinghub.elsevier.com/retrieve/pii/S0031320320303861
https://linkinghub.elsevier.com/retrieve/pii/S0031320320303861
http://arxiv.org/abs/2110.00914
http://arxiv.org/abs/2110.00914
2110.00914

Developing a hyperparameter optimization method for classification of code snippets and questions of stack overflow: HyperSCC

differentiation of lasso-type models for hyperparameter
optimization. In III, H.D. and Singh, A. [eds.] Proceedings
of the 37th International Conference on Machine Learning
(PMLR), Proceedings of Machine Learning Research
119: 810–821. URL https://proceedings.mlr.press/

v119/bertrand20a.html.
[65] Stuke, A., Rinke, P. and Todorović, M. (2021)

Efficient hyperparameter tuning for kernel
ridge regression with bayesian optimization.
Machine Learning: Science and Technology 2(3):
035022. doi:10.1088/2632-2153/abee59, URL
https://doi.org/10.1088/2632-2153/abee59.

[66] Tu, H. and Nair, V. (2018) Is one hyperparameter
optimizer enough? In Proceedings of the 4th ACM
SIGSOFT International Workshop on Software
Analytics (New York, NY, USA: ACM): 19–
25. doi:10.1145/3278142.3278145, URL https:

//dl.acm.org/doi/10.1145/3278142.3278145.
[67] Kiyak, E.O., Cengiz, A.B., Birant, K.U. and Birant,

D. (2020) Comparison of Image-Based and Text-Based
Source Code Classification Using Deep Learning. SN
Computer Science 1(5): 266. doi:10.1007/s42979-020-
00281-1, URL https://link.springer.com/10.1007/

s42979-020-00281-1.
[68] Xu, B., Hoang, T., Sharma, A., Yang, C.,

Xia, X. and Lo, D. (2021) Post2Vec: Learning

Distributed Representations of Stack Overflow
Posts. IEEE Transactions on Software Engineering
: 1–1doi:10.1109/TSE.2021.3093761, URL https:

//ieeexplore.ieee.org/document/9469219/.
[69] Cao, K., Chen, C., Baltes, S., Treude, C. and

Chen, X. (2021) Automated Query Reformulation
for Efficient Search Based on Query Logs From
Stack Overflow. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE) (IEEE): 1273–
1285. doi:10.1109/ICSE43902.2021.00116, URL https:

//ieeexplore.ieee.org/document/9402151/.
[70] Stepin, I., Alonso, J.M., Catala, A. and Pereira-

Farina, M. (2020) Generation and evaluation of factual
and counterfactual explanations for decision trees and
fuzzy rule-based classifiers. In 2020 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE) (IEEE): 1–8.
doi:10.1109/FUZZ48607.2020.9177629, URL https://

ieeexplore.ieee.org/document/9177629/.
[71] Ge, Y.F., Orlowska, M., Cao, J., Wang, H. and

Zhang, Y. (2022) Mdde: multitasking distributed
differential evolution for privacy-preserving database
fragmentation. The VLDB Journal : 1–19.

[72] Li, J.Y., Du, K.J., Zhan, Z.H., Wang, H. and Zhang, J.

(2022) Distributed differential evolution with adaptive
resource allocation. IEEE Transactions on Cybernetics .

15 EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e5

https://proceedings.mlr.press/v119/bertrand20a.html
https://proceedings.mlr.press/v119/bertrand20a.html
https://doi.org/10.1088/2632-2153/abee59
https://doi.org/10.1088/2632-2153/abee59
https://doi.org/10.1145/3278142.3278145
https://dl.acm.org/doi/10.1145/3278142.3278145
https://dl.acm.org/doi/10.1145/3278142.3278145
https://doi.org/10.1007/s42979-020-00281-1
https://doi.org/10.1007/s42979-020-00281-1
https://link.springer.com/10.1007/s42979-020-00281-1
https://link.springer.com/10.1007/s42979-020-00281-1
https://doi.org/10.1109/TSE.2021.3093761
https://ieeexplore.ieee.org/document/9469219/
https://ieeexplore.ieee.org/document/9469219/
https://doi.org/10.1109/ICSE43902.2021.00116
https://ieeexplore.ieee.org/document/9402151/
https://ieeexplore.ieee.org/document/9402151/
https://doi.org/10.1109/FUZZ48607.2020.9177629
https://ieeexplore.ieee.org/document/9177629/
https://ieeexplore.ieee.org/document/9177629/

	1 Introduction
	1.1 Motivation
	1.2 Research objectives
	1.3 Contribution
	1.4 Research questions

	2 Background
	2.1 Source code classification
	2.2 Multi-label classification
	2.3 Hyperparameter optimization
	2.4 Problem formulation

	3 HyperSCC
	4 Experimental settings
	4.1 Data sets
	4.2 Prediction configurations
	4.3 Performance measures

	5 Results
	5.1 RQ1: What type of multi-label classification technique to choose for better success in programming language predictions?
	5.2 RQ2: Is HyperSCC superior to the state-of-the-art methods with respect to one-label programming language prediction?
	5.3 RQ3: To what extent can preprocessing increase prediction time?
	5.4 RQ4: Which script language is the most feasible for predicting one-label programming language?
	5.5 Discussion and implications

	6 Conclusion and Future Remarks

