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Abstract

Energy consumption optimization by predicting vehicle behaviour in a dynamic environment represents an
active research topic for the automotive industry. As vehicles are increasingly being equipped with driving
assistance systems that function under dynamic driving conditions, a trajectory specific energy saving strategy
must consider the trajectory particularities and predict in real time the opportunities for energy savings.

Researching and understanding the interactions between complex light intensity shapes and the trajectory
spatiotemporal specificity is the main objective of the presented spatiotemporal lightmorphic computing
framework for the Romanian Carpathian A1 and DN7 road network. Alternating start and stop locations
are included, between the following major cities: Bucures, ti, Timis, oara, Deva, Sibiu, Pites, ti.

Each trajectory segment measurement is composed from various slices defined as segmentation lengths (SL)
that characterize the light signatures and trajectory profile. The light intensity variations are contained in the
light distribution tensor Γt .

When analyzing the measured values, similarities between measurements are captured in a trajectory specific
data-set Φ . This spatiotemporal light distribution symmetry is used to predict the trajectory unique virtual
light shape evolution.

Observing the light intensity variations offers a unique perspective on the mentioned route. Having a
framework to characterize the light signature structural patterns for specific road trajectories, helps to
solve several real-world problems like: achieving optimal energy balance for specific trajectories or accurate
estimation of light intensity phenomena that can impact the interaction between vehicle and traveling
environment.
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1. Introduction

Researching and understanding the interaction
between complex light intensity morphing shapes
and the traveled trajectories is the main objective of
this work, with the aim at better characterizing the
complex interactions between light availability and

∗Corresponding author. Email: dumitrudamian@yahoo.com

spatiotemporal specificity for the Romanian Carpathian
road network formed by the A1-DN7 roads.

The basic idea is to extract the spatiotemporal
lightmorphic profile from raw data by using a sensor
sequence of values that are indexed in chronological
order and have a structured nature, which is very
common in many real-world applications. To that
extent, a data collection methodology was established
through a low-cost, small footprint sensor system [1]
with data recording ability [2].
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Various degrees of freedom(DoF) for the light virtual
shapes are considered. The energy demand can be
anticipated not only from the driver’s perspective[3]
but also from how the vehicle will react to its
environment. Additionally by adding the trajectory
specific light signature as a predictive feature of the
energy management control system, it is possible to
anticipate in real-time the trajectory specific energy
savings potential.

By conducting the spatiotemporal lightmorphic com-
puting for the acquired trajectory data, a unique virtual
light signature is discovered. Next, by comparing histor-
ical trajectory data with the light distribution patterns,
it is possible to predict the light morphing shape for
certain trajectory segments.

2. Related research
With the developed framework to analyze the spa-
tiotemporal lightmorphic shape for specific trajectories,
new products and services can be derived.

Previous work to use light availability for specific
trajectories include observing the vehicle swiveling
headlamps and light intensity for particular highway
geometric designs [4] or the effect of light intensity on
flight trajectory in bumblebees [5].

Besides the energy aware engineered systems, the
patterns in light intensity variation may be used to
determine the light availability for roadside vegetation
optimal growing conditions [6].

The selected trajectory is composed of the A1
highway and the national road DN7. Approximately
560km are covered in this research with multiple
measurements for certain sections of the route. For
the selected trajectory, various studies about the fauna
[7], archaeological footprints or roadside geological
vulnerability [8] exist.

3. Mathematical framework
The vehicle is considered to be a rigid body. As such
it is possible to define in the XYZ coordinate system,
a position vector for a point P that is located on
the vehicle body, that will have the following vector
representation:

~r = xt ∗~i + yt ∗ ~j + zt ∗~k

The position vector for the next time-step is
represented as:

~r ′ = x′t ∗~i′ + y′t ∗ ~j ′ + z′t ∗~k′

The dynamic relation between ~r ′ and ~r can be
represented as:

i′ = α11 ∗ i + α12 ∗ j + α13 ∗ k

j ′ = α21 ∗ i + α22 ∗ j + α23 ∗ k

k′ = α31 ∗ i + α32 ∗ j + α33 ∗ k

A matrix that characterizes the vehicle position
change for one time step will have the following
representation:

C =

α11 α12 α13
α21 α22 α23
α31 α32 α33


Considering the sum of multiple sequential matrices,

a vehicle position trajectory can be composed:

Γ =
N∑
i=1

Ci (1)

By observing the light intensity variations and the
distribution of measurements, a trajectory specific light
tensor can be defined as:

Γt = f (ΓIDT ) (2)

where:

• I – intensity of light varies accordingly to seasons
or weather conditions

• D – distribution characteristics for the same
trajectory

• T – trajectory adjustments due to vehicle speed
variations between departure and destination

For example, considering a predefined measurement
segmentation length (SL) having the value of three,
with two consecutive trajectory slices and three
distributions, the light tensor can be derived as having
the following representation:

ΓSL1
=

a111 a121 a131
a211 a221 a231
a311 a321 a331


ΓSL2

=

a112 a122 a132
a212 a222 a232
a312 a322 a332


The trajectory specific light tensor is constructed by

using the three mode-n unfolding:

Γ(1) =

a111 a121 a131 a112 a122 a132
a211 a221 a231 a212 a222 a232
a311 a321 a331 a312 a322 a332



Γ(2) =

a111 a211 a311 a112 a212 a312
a121 a221 a321 a122 a222 a322
a131 a231 a331 a132 a232 a332


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Γ(3) =
(
a111 a211 a311 a121 ... a231 a331
a112 a212 a312 a122 ... a232 a332

)
The trajectory tensor values are considered to be

included in the real numbers group, Γt ∈ R

N∏
i=1

Ki
where:

• Ki – modes index for the trajectory tensor

• R – group of real numbers

A graphical representation with Matplotlib [9] of
the trajectory specific light intensity tensor for five
measurements and a predefined SL value is given in
figure 1.

Figure 1. Predefined segment from the light intensity tensor

3.1. Probable light shape morphing
Values for the trajectory specific light tensor are
captured in a data-set:

Θ =
∑

ΓIDT (3)

While analyzing the data-set it is possible to
discover similarities between segments of them
{Γ 1
IDT , Γ

2
IDT , ..., Γ

j
IDT }.

Values for the trajectory specific light tensor that
show similarities are captured in a data-set:

ΦΓIDT
=

N∑
j=1

Γ
j
IDT (4)

While observing the distribution of multiple light
segments within the data-set ΦΓIDT

, it will be possible

to estimate the probability for trajectory specific light
tensor shape evolution:

pΦ = f (ρkpΦk ) (5)

where:

• pΦk – data-base k-th segment specific probability

• ρk – prediction weight for the k-th segment takes
values from 0 to 1

The obtained probability shape for the similarities
data-set, will be used as baseline homogenization
characterization for the virtual light morphing shapes.

3.2. Spatiotemporal lightmorphic signature
For each specific trajectory, a unique spatiotemporal
lightmorphic signature function can be defined as:

fL� =

I∫
1

D∫
1

T∫
1

Γtζtdt (6)

where:

• Γt – trajectory tensor

• ζt – point in time specificity

Since the fL� is continuous, the mean absolute
error(MAE) between measured and estimated values
can be considered.

MAE =
1
n

n∑
i

| ~mfL� − ~efL� |

where:

• n – number of samples for the considered
trajectory

• ~mfL� – light signature specific measured value

• ~efL� – light signature estimated value

3.3. Light vector field circulation
Since a point P is defined in the R3 space with the origin
coordinates at P = {0;~i, ~j,~k}, for multiple trajectory
measurements, there is the opportunity to define a
continuous light vector field v̄ that describes the light
morphing shape:

v̄(x, y, z) = M(x, y, z)~i +N (x, y, z)~j + T (x, y, z)~k (7)

The vector field circulation for the unique light
signature function fL� can be characterized as:
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∫
fL�

v̄dr̄ =
∫
fL�

[M(r(t)ẋ(t)) +N (r(t)ẏ(t)) + T (r(t)ż(t))]dt

(8)

4. Experimental considerations
Previous research in computational design explain how
to convert a single input mesh into a parametric model
by using methods such as cages [10], linear blend
skinning [11] or manifold harmonics. Such methods can
generate smooth virtual deformations for shapes that
seem more organic in behavior.

While observing the measured data for light shape
distribution on specific trajectories it was discovered
that there are symmetry patterns in the light intensity
distribution values.

From the saved data it is possible to randomly
select various light intensity vector shapes. As indicated
above in the spatiotemporal lightmorphic equation (6)
each particular driving path will have unique light
signatures that are used to generate smooth virtual light
evolution shapes.

4.1. Hardware components
All the measurements are done using the same vehicle,
driver and propulsion system.

Vehicle weight m 1523 kg
ICE max. mech. power Pice−max 51 kW
Battery capacity Q0 55 Ah
Drivetrain −− FWD −−
Transmission −− Manual −−
Number of gears −− 5 −−
Aerodynamic drag coefficient Cx 0.33 −−
Front suspension −− Independent −−
Low beam lights −− Halogen Active

Table 1. Vehicle Parameters

In table 1, specific vehicle parameters are described.
The sensor is placed on the windshield, inside the
vehicle and facing outwards. As a result, the light
intensity sensor will record the light variations due to
the vehicle movement on the selected road trajectory,
as it turns and bends following the road profile.
Windshield tilt is not varied during the measurements.
Only daytime sensor values are considered.

Data is recorded using Arduino UNO [2]. Light
intensity is measured using the BH1750 [1] digital 16bit
serial output type ambient light sensor.

The HW system is recording the data with same
predefined recurrence for all the measurements. When
analyzing the data, a median value is considered for
every 100 measurements.

Measurements are done for trajectories that represent
the Romanian Carpathian roads A1 and DN7, with
alternating start and stop locations between the
following major cities: Bucures, ti, Timis, oara, Deva,
Sibiu, Pites, ti. A map for the complete trajectory is
drawn in figure 2.

Figure 2. Romanian Carpathians A1-DN7 light intensity
measurement trajectory

4.2. Computing components
In order to analyze the measurement data, algorithms
are written, that follow the equations defined in the
mathematical framework.

Each trajectory can use various measurement slices
defined as segmentation lengths (SL) to characterize the
light signatures and trajectory profile.

For finding unique light signatures specific for each
segment of trajectory, the algorithm for light signatures
is used.

For finding matching light segments between mea-
surements, the algorithm for light patterns is used.
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Algorithm 1 Light Signatures

INPUT: Light measurements for the same trajectory
OUTPUT: Total segments and unique light signatures
BEGIN

segmentation length (SL)← value
meas one ← light.data

DEFINE the function light signature
with the arguments (meas one, SL):

FOR i ← 0 TO LEN(meas one) AND STEP(SL):
RETURN:

segmented data ← [SL]
ENDFOR

x ← 0
light signatures ← []

WHILE x < LEN(segmented data):
current segment ← segmented data [x]
x ← x + 1
segment signs ← []
FOR i,j ← ITERATOR

current segment(value, next value):
IF ← i = j

APPEND segment signs ← ” = ”
ELIF ← i < j

APPEND segment signs ← ” < ”
ELIF ← i > j

APPEND segment signs ← ” > ”
ENDFOR

APPEND light signatures ← segment signs

ENDWHILE

unique light signatures ← []

FOR elem ← light signatures
APPEND unique light signatures ← [segment]

ENDFOR

END

5. Obtained results

The complete Romanian Carpathians A1-DN7 spa-
tiotemporal lightmorphic trajectory from Bucures, ti to
Timis, oara is analyzed.

From Deva to Timis, oara a total of five measurements
were considered, while for the trajectory segment
Timis, oara to Deva, two path variations of the same
trajectory segment were considered. For path I, there
were four measurements, while for path II there were
three.

From Deva to Pites, ti via Sibiu there were three
measurements considered, while for the trajectory

Algorithm 2 Light Patterns

INPUT: Measurements for the same trajectory
OUTPUT: Matching light segments
BEGIN

index ← 0
matched pattern ← 0

FOR pattern ← meas two:
index ← index + 1
FOR signature ← meas one:

WHILE LEN(pattern)< LEN(meas one):
REMOVE ← meas one [SL]
IF ← pattern = meas one [SL]
matched pattern ← matched pattern +1

ENDFOR
ENDFOR

END

segment Pites, ti to Deva via Sibiu there were two
measurements considered.

For the Deva to Bucures, ti trajectory segment there
was one measurement considered.

5.1. Deva to Timis, oara trajectory segment

The specific light signature for the trajectory segment
from Deva to Timis, oara of highway A1 and DN7 roads
is measured and analyzed.

The physical trajectory length is relatively constant
while the journey duration varies between 3.5 and 5
hours.

As described in equation 2 the light intensity
variations are forming the light distribution tensor Γt .

Figure 3. Measured light values for the trajectory segment Deva
–> Timis, oara of A1-DN7 road network

Five light intensity measurements are considered
with the trajectory tensor having the following
representation along the distribution dimension:

Γt(DV→TM)
= f (ΓI1T , ΓI2T , ΓI3T , ΓI4T , ΓI5T )
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As described in equation 3 a specific data-set can be
constructed:

Θ(DV→TM) = ΓI1T + ΓI2T + ΓI3T + ΓI4T + ΓI5T

From the data-set Θ(DV→TM) it can be observed that
with an increasing SL, the unique light signatures and
the trajectory light segments are converging towards
each other.

After running the unique light signature algorithm,
the results are saved in table 2.

Segmentation length 10 15 20 30

ΓI1T trajectory segments 4880 3253 2440 1627
ΓI1T light signatures 2152 2926 2379 1625

ΓI2T trajectory segments 4500 3000 2250 1500
ΓI2T light signatures 1863 2619 2192 1497

ΓI3T trajectory segments 4073 2716 2037 1358
ΓI3T light signatures 1439 2191 1934 1352

ΓI4T trajectory segments 3484 2323 1742 1162
ΓI4T light signatures 530 1601 1472 1105

ΓI5T trajectory segments 4217 2811 2109 1406
ΓI5T light signatures 1285 2418 2069 1404

Table 2. Number of light intensity segments and unique light
signatures with various SL for trajectory segment Deva to
Timis, oara

Similarities between measurements are captured in
a trajectory specific light signature data-set Φ as
described in equation 4.

Φ(DV→TM) =
5∑
j=1

Γ
j
IDT

For a predefined SL, after running the algorithm for
light patterns between measurements, the results are
saved in table 3.

SL = 30 ΓI1T ΓI2T ΓI3T ΓI4T ΓI5T

ΓI1T — 103 134 2009 21

ΓI2T 15 — 295 513 71

ΓI3T 81 146 — 681 72

ΓI4T 1447 150 235 — 41

ΓI5T 18 58 81 545 —
Table 3. Non-unique matching light segments between
measurements for trajectory segment Deva to Timis, oara with
SL=30

For a future light distribution ΓIXT , each probable
light segment has the corresponding prediction weight
ρk . If there is a probable light segments match between

distributions, the ρk will have a value of one. If there is
not the ρk will have a value of zero.

Figure 4. Specific ρk probability distribution based on ΓI1T
segments in the data-set Φ

Considering as baseline the first distribution ΓI1T
in the data-set Φ , a total of 2267 light segments are
possible candidates for light segments matching with
the other measured distributions ΓI2T , ΓI3T , ΓI4T , ΓI5T :

Thus a future distribution X that considers the ΓI1T
as baseline, will have the following probability value
representation:

pΦΓIXT
= f (ρkpΦΓI2Tk

, ρkpΦΓI3Tk
, ρkpΦΓI4Tk

, ρkpΦΓI5Tk
) (9)

The baseline can change between any of the recorded
distributions.

Analyzing the observed similarities between ΓI1T and
ΓI2T leads to the discovery of a unique spatiotemporal
lightmorphic shape as represented in figure 5:

Figure 5. Unique light segments between ΓI1T and ΓI2T for
SL=30 and ρk ≥ 0.7

Repeating the same analysis, between ΓI1T and ΓI3T
the unique light segments are represented in figure 6,
between ΓI1T and ΓI4T the unique light segments are
represented in figure 7 and between ΓI1T and ΓI5T the
unique light segments are represented in figure 8.

According to spatiotemporal lightmorphic equation
6 a future distribution X that considers the ΓI1T as
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Figure 6. Unique light segments between ΓI1T and ΓI3T for
SL=30 and ρk ≥ 0.7

Figure 7. Unique light segments between ΓI1T and ΓI4T for
SL=30 and ρk ≥ 0.7

Figure 8. Unique light segments between ΓI1T and ΓI5T for
SL=30 and ρk ≥ 0.7

baseline will circulate between the virtual probable
shapes as in figure 9.

The baseline distribution can change between any of
the measured distributions (ΓI1T , ΓI2T , ΓI3T , ΓI4T , ΓI5T ).

With changing baseline between distributions
ΓI1T ,ΓI2T ,ΓI3T ,ΓI4T ,ΓI5T for ρk ≥ 0.7, the virtual probable
light shapes are represented in figure 10

According to equation 6 the unique light signature
function for the trajectory Deva to Timis, oara along the
distribution dimension, can be represented as:

Figure 9. Virtual light distribution based on light segments
matching with the baseline ΓI1T

Figure 10. Virtual probable light signatures for trajectory Deva
to Timis, oara with SL=30 and ρk ≥ 0.7

fL�(DV→TM)
=

D∫
1

Γt(DV→TM)
ζt(DV→TM)

dt

Following the same analysis, it is possible to add
into consideration the variability for light intensity
and specific trajectory characteristics as described
in equation 6 and obtain a unique spatiotemporal
lightmorphic shape.

fL�(DV→TM)
=

I∫
1

D∫
1

T∫
1

Γt(DV→TM)
ζt(DV→TM)

dt

5.2. Timis, oara to Deva trajectory segment
The specific light signature for the trajectory from
Timis, oara to Deva segment of A1-DN7, is measured and
analyzed in figure 11 and 13.

Trajectory length is relatively constant while the
journey duration varies between 3.5 and 4.5 hours.

Four light intensity measurements are considered
with the trajectory tensor having the following
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Figure 11. Measured light values for the Timis, oara to Deva (path
1) segment of A1-DN7

representation:

Γt(TM→DV (I))
= f (ΓI1T , ΓtI2T , ΓtI3T , ΓtI4T )

As considered in equation 3 a specific data-set is
constructed:

Θ(TM→DV (I)) = ΓI1T + ΓtI2T + ΓtI3T + ΓtI4T

From the data-set Θ(TM→DV (I)) it can be observed how
with an increasing SL, the unique light signatures and
the trajectory light segments are converging towards
each other.

After running the unique light signature algorithm,
the results are saved in table 4.

Segmentation length 10 15 20 30

ΓI1T trajectory segments 4072 2715 2036 1358
ΓI1T light signatures 1446 2262 1945 1350

ΓI2T trajectory segments 4065 2710 2033 1355
ΓI2T light signatures 1465 2352 1994 1354

ΓI3T trajectory segments 3401 2268 1701 1134
ΓI3T light signatures 1102 1801 1592 1132

ΓI4T trajectory segments 2977 1985 1489 993
ΓI4T light signatures 1057 1581 1365 979

Table 4. Number of light intensity segments and unique light
signatures with various segmentation lengths for Timis, oara to
Deva (I) trajectory

As considered in equation 4, similarities between
measurements are captured in a trajectory specific data-
set Φ .

Φ(TM→DV (I)) =
4∑
j=1

Γ
j
IDT

For a predefined SL, after considering the algorithm
for matching light patterns between measurements, the
results are saved in table 5.

SL = 30 ΓI1T ΓI2T ΓI3T ΓI4T

ΓI1T — 110 224 257

ΓI2T 209 — 57 58

ΓI3T 236 41 — 239

ΓI4T 345 67 173 —
Table 5. Non-unique matching light segments between
measurements for trajectory (I) Timis, oara to Deva with SL=30

Figure 12. Virtual probable light signatures for trajectory (I)
Timis, oara to Deva with SL=30 and ρk ≥ 0.7

With changing baseline between distributions
ΓI1T ,ΓI2T ,ΓI3T ,ΓI4T for ρk ≥ 0.7, the virtual probable
light shapes are represented in figure 12

By selecting a different trajectory configuration
between highway A1 and the DN1 roads, the specific
light signature changes accordingly and is represented
in figure 13.

Figure 13. Measured light values for the Timis, oara to Deva (path
2) segment of A1-DN7

Three light intensity measurements are considered
with the trajectory tensor having the following
representation:

Γt(TM→DV (II))
= f (ΓI1T , ΓtI2T , ΓtI3T )

As previously, from the data-set Θ(TM→DV (II)) it can
be observed that with an increasing SL, the unique
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light signatures and the trajectory light segments are
converging towards each other.

After running the unique light signature algorithm,
the results are saved in table 6.

Segmentation length 10 15 20 30

ΓI1T trajectory segments 3835 2557 1918 1279
ΓI1T light signatures 1471 2183 1861 1275

ΓI2T trajectory segments 3272 2181 1636 1091
ΓI2T light signatures 1182 1883 1599 1088

ΓI3T trajectory segments 3369 2246 1685 1123
ΓI3T light signatures 1271 2027 1657 1122

Table 6. Number of light intensity segments and unique light
signatures with various segmentation lengths for Timis, oara to
Deva trajectory (II)

Similarities between measurements are captured in a
trajectory specific data-set Φ saved in table 7.

SL = 30 ΓI1T ΓI2T ΓI3T

ΓI1T — 400 255

ΓI2T 299 — 184

ΓI3T 316 353 —
Table 7. Non-unique matching light segments between
measurements for trajectory (II) Timis, oara to Deva with SL=30

With changing baseline between distributions
ΓI1T ,ΓI2T ,ΓI3T for ρk ≥ 0.7, the virtual probable light
shapes are represented in figure 14.

Figure 14. Virtual probable light signatures for trajectory (II)
Timis, oara to Deva with SL=30 and ρk ≥ 0.7

5.3. Deva to Pites, ti (via Sibiu) trajectory segment
The specific light signature for the trajectory from Deva
to Pites, ti (via Sibiu) segment of A1-DN7, is measured
and analyzed.

Figure 15. Measured light values for the Deva to Pites, ti (via
Sibiu) segment of A1-DN7

Three light intensity measurements are considered
with the trajectory tensor having the following
representation:

Γt(DV→AG)
= f (ΓI1T , ΓtI2T , ΓtI3T )

As described in equation 3 a specific data-set is
constructed for the indicated trajectory:

Θ(DV→AG) = ΓI1T + ΓtI2T + ΓtI3T

From the data-set Θ(DV→AG) it can be observed how
with an increasing SL, the unique light signatures and
the trajectory light segments are converging towards
each other.

After running the unique light signature algorithm,
the results are saved in table 8.

Segmentation length 10 15 20 30

ΓI1T trajectory segments 4939 3293 2470 1647
ΓI1T light signatures 1607 3056 2461 1647

ΓI2T trajectory segments 4928 3286 2464 1643
ΓI2T light signatures 1624 3007 2447 1643

ΓI3T trajectory segments 4238 2826 2119 1413
ΓI3T light signatures 1111 2261 2031 1413

Table 8. Number of light intensity segments and unique light
signatures with various segmentation lengths for Deva to Pites, ti
(via Sibiu) trajectory

Similarities between measurements are captured in
a trajectory specific data-set Φ(DV→AG) as described in
equation 4.

The selected predefined SL is 20 segments and after
considering the algorithm for matching light patterns
between measurements, the results are saved in table 9.

With changing baseline between distributions
ΓI1T ,ΓI2T ,ΓI3T for ρk ≥ 0.7, the virtual probable light
shapes are represented in figure 16.
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SL = 20 ΓI1T ΓI2T ΓI3T

ΓI1T — 637 610

ΓI2T 568 — 1047

ΓI3T 605 1151 —
Table 9. Non-unique matching light segments between
measurements for trajectory Deva to Sibiu to Pites, ti with SL=20

Figure 16. Virtual probable light signatures for trajectory
segment Deva to Pites, ti (via Sibiu) with SL=20 and ρk ≥ 0.7

5.4. Pites, ti to Deva (via Sibiu) trajectory segment
The specific light signature for the trajectory from
Pites, ti to Deva (via Sibiu) segment of A1-DN7, is
measured and analyzed.

Figure 17. Measured light values for the Pites, ti to Deva (via
Sibiu) segment of A1-DN7

Two light intensity measurements are considered
with the trajectory tensor having the following
representation:

Γt(AG→DV )
= f (ΓI1T , ΓI2T )

From the data-set Θ(AG→DV ) it can be observed how
with an increasing SL, the unique light signatures and
the trajectory light segments are converging towards
each other.

After running the unique light signature algorithm,
the results are saved in table 10.

Segmentation length 10 15 20 30

ΓI1T trajectory segments 4536 3024 2268 1512
ΓI1T light signatures 1200 2443 2178 1505

ΓI2T trajectory segments 4601 3068 2301 1534
ΓI2T light signatures 1160 2369 2141 1522

Table 10. Number of light intensity segments and unique light
signatures with various segmentation lengths for Pites, ti to Deva
(via Sibiu) trajectory

The selected predefined SL is 20 segments and after
considering the algorithm for matching light patterns
between measurements, the results are saved in table
11.

SL = 20 ΓI1T ΓI2T

ΓI1T ... 5812

ΓI2T 5906 ...
Table 11. Non-unique matching light segments between
measurements for trajectory Pites, ti to Deva (via Sibiu) with
SL=20

With changing baseline between distributions
ΓI1T ,ΓI2T for ρk ≥ 0.7, the virtual probable light shapes
are represented in figure 18.

Figure 18. Virtual probable light signatures for trajectory
segment Pites, ti to Deva (via Sibiu) with SL=20 and ρk ≥ 0.7

5.5. Deva to Bucures, ti trajectory segment
The specific light signature for the trajectory from Deva
to Bucures, ti segment of A1-DN7, is measured and
analyzed.

One light intensity measurement is available with the
trajectory tensor having the following representation:

Γt(DV→B)
= f (ΓI1T )

After running the unique light signature algorithm,
the results are saved in table 12.
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Figure 19. Measured light values for the Deva to Bucures, ti (via
Sibiu) segment of A1-DN7

Segmentation length 10 15 20 30

ΓI1T trajectory segments 7781 5187 3891 2594
ΓI1T light signatures 2453 4631 3840 2592

Table 12. Number of light intensity segments and unique
light signatures with various segmentation lengths for Deva to
Bucures, ti (via Sibiu) trajectory

Analyzing the unique light signature function for
the trajectory Deva to Bucures, ti along the measured
distribution, multiple virtual light signature shapes can
be derived as represented in figure 20.

Figure 20. Virtual probable light signatures for trajectory
segment Deva to Bucures, ti with SL=30

In order to obtain the derived virtual shapes,
isochronous data gaps are artificially created. The
spatiotemporal lightmorphic computing framework is
able to accommodate such data gaps and provide an
estimated virtual shape.

6. Conclusion
The method developed in this work is designed to
provide a framework for other research efforts to use
the spatiotemporal lightmorphic computing in other
various energy saving projects.

The method is applied to the Romanian Carpathian
A1 and DN7 road network in order to obtain virtual
light shapes and determine the optimum energy saving
driving strategies.

Several questions have been answered trough the
analysis and usage of the spatiotemporal lightmorphic
computing framework:

• Can the optimum vehicle reaction be predicted for
the selected trajectory when the light signature is
estimated.

• What will be the optimum energy saving driving
style for the predicted trajectory considering
dynamic vehicle external parameters.

• What shape will the unique light signature have
for the Romanian Carpathian A1 and DN7 road
network.

• Is it possible to estimate the light signature for
future driving scenarios.

Additional sensor measurements are planned to
be added in the existing light intensity data-base
like: sound characteristics, specific vibrations, unique
humidity variations, temperature profile, chemical
components concentration levels.

With this sensor fusion approach, the optimum
energy conservation configurations can be discovered
for specific trajectories.

Having this evolution of knowledge, a better
understanding of the light intensity specificity for the
Romanian Carpathian A1 and DN7 road network might
lead to innovative vehicles and smart infrastructures.
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