
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

Prediction Based Dynamic Controller Placement in SDN
Ramya G1,*, Manoharan R1

1Pondicherry Engineering College, Pondicherry, India

Abstract
The current technologies such as IoT, 5G networks and Fog computing creates a challenge in the efficient management of
devices in dynamic conditions. Software-Defined Network (SDN) has been defined as a promising solution for providing
efficient network management by decoupling the data and control planes from the network devices and enables
programmability of network devices. The major challenge in SDN is identification of number of controllers to be placed and
its optimal placements in the network. To address this issue, this work proposes a Traffic Engineering mechanism that
leverages the performance of Machine Learning to predict controller numbers by analysing and predicting the controller’s
traffic. The optimal locations of controllers are identified by using the K-Means++ algorithm. The proposed method is
simulated using Mininet and the results depict that the proposed methodology outperforms the existing methodologies in
terms of performance parameters.

Keywords: SDN, Quality of Controller, Traffic classification, Traffic Prediction, Controller Placement, Mininet, Flow Installation
Time

Received on 13 December 2020, accepted on 18 April 2021, published on 27 April 2021

Copyright © 2021 Ramya G et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any
medium so long as the original work is properly cited.

doi: 10.4108/eai.27-4-2021.169420

1. Introduction

The tremendous increase in the number of devices
connected to the Internet and the current technologies like
IoT, Fog, 5G needs an efficient network management
system. The lack of efficient network management may
result in network congestion, poor routing, and an increase
in communication delay. The SDN and Network Function
Virtualization (NFV) are key-enabling technologies to
provide efficient network management. Both advocate
open-source and programmability of network devices
which leads to innovation in network management.

The capability of a network to deliver services rapidly
by efficiently managing user demands is the aim of
programmable networks. SDN aims to deliver a
programmable network [1] by separating the control plane
and data plane from the network devices and puts the
control logic in the centralised control namely “the
controller”. The controller resides in the control plane of
SDN knows the network topology created, number of
forwarding devices and its current status, flow rule
management and other network policies. This centralized

*Corresponding author. Email: ramya028@gmail.com

nature of SDN allows us to enforce our traffic polices in
the network [2]. Since the Controller in the network
controls all the activities of the network, the controller’s
performance may affect the overall network performance.
Therefore, the Controller should be highly efficient to
manage the incoming PACKET_IN messages. It should
not be under-utilized or should not be overloaded.
Therefore, identifying the optimal number of controllers to
be placed becomes essential.

This work adapts a Traffic Engineering Mechanism
(TE) to identify the optimal number of controllers to be
placed in the network. TE is an important application in
network which aims to study the measurement and the
management of network traffic [3]. Traffic Engineering is
an iterative process of reading the network state, analysing
and classifying the traffic and predicts future traffic to
avoid network congestion. Traffic Engineering also
focuses on enhancing the network performance in terms of
Quality of Service, proper resource management, enhanced
routing, improved security, and good user experience
which may reduce cost also.

The openness of SDN by being programmable network
allows user to do innovations and implementation of the

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

http://creativecommons.org/licenses/by/3.0/

Ramya G, Manoharan R

2

polices in the network and thus opens the doors for the
implementation of new TE mechanisms. Several traditional
TE mechanisms are available such as Equal Cost Multi-
Path routing (ECMP), Intermediate System and
Intermediate System (IS-IS), and Multi-protocol Label
Switching (MPLS) [3] make all the decisions locally which
may not be applicable in SDN because the controller in the
SDN based network is centralized one.

Recently, Machine Learning (ML) is remarkably
applied to every possible field including networking to
solve complex issues. Applying ML techniques to the SDN
network is easier because of the two major reasons. Firstly,
the recent advancements in the Graphics Processing Unit
(GPU) and the Tensor Processing Unit (TPU) [4] performs
computations in a faster and efficient manner. Secondly,
the SDN controller acts as a Network Operating System
holds the global view of the entire network [2].

Though SDN has many advantages over traditional
networks, two main issues namely Controller Placement
Problem (CPP) and Flow Rule Management are to be
addressed properly. This work mainly focuses on the CPP.
The CPP can be defined as the identification of the number
of controllers to be placed and their optimal locations in the
network. This will not only enhance the performance of the
network but also ensures the optimal utilization and fair
load distribution amongst controllers. Therefore, the
identification of the optimal number of controllers to be
placed plays a vital role in improving the network
performance. Once the controller numbers are identified,
that has to be placed in the optimal location to avoid the
unnecessary delay in the installation of flow rules to the
switches. This work aims to identify the optimal number of
controllers based on the network traffic. Here, the number
of controllers is a variable that changes dynamically
according to the network traffic. To achieve the above
objectives, this work leverages the benefits of ML by
combining with SDN to predict the controller numbers and
their optimal placements in the network.

The placement of the controllers is done by K-Means++
clustering algorithm, which is an extended version of K-
Means clustering technique. The K-Means++ performs the
same way of K-Means however K-Means++ instructs the
procedure to initialize the initial cluster positions. The
initial number of controllers is identified and its placements
are done by the K-Means++ algorithm. Once the placement
is done, network traffic is generated, and the traffic are
collected. From the collected traffic, the network traffic is
analysed and predicted using the multi-class logistic
regression model. The classification model is designed to
predict LNH (Low, Normal and High) code. Based on the
predicted traffic, the number of controllers for the LHN
code are estimated exactly using a greedy approach and the
numbers are sent to the placement algorithm for Optimal
Placement of it.

 The rest of the paper is organised as follows. Section 2
describes the Controller Placement Problem (CPP). In
section 3 related works to CPP is discussed. Section 4
describes the proposed methodology for controller
placement and for analysing and predicting network traffic.

In section 5 a greedy approach is applied for distributing
the load to controllers and how controller numbers are
decided dynamically is presented. In section 6 results and
comparisons are shown. Finally ends with a conclusion.

2. Controller Placement Problem (CPP)

In SDN networks, the Controller Placement Problem (CPP)
can be defined as identifying the number of controllers to
be placed in the network and its optimal locations for its
placement. The Figure1 shows the SDN architecture. The
Controller residing in the control plane is responsible for
all network management activities. Whenever a packet is
received by the switch, the switch looks into the flow table.
If no match is found for that flow, the switch sends the
packet as PACKET_IN message to the controller [1]. The
Controller defines flow-rule for the packet and sends back
to the switch as PACKET_OUT message. The Controllers
are connected in a one-hop distance to the switch logically,
but in reality, they are connected in multi-hop distance. The
controller should be connected in such a way that the
communication delay between the switch and the controller
is minimal.

Figure 1. SDN architecture

During the early stage of SDN, a single controller [5]
was deployed to control all the managing activities in the
network. But “a single controller is always prone to ‘single-
point failure’”. Hence the idea of placing multiple
controllers in network was introduced [5]. The major
setback with multiple controller scenario is deciding on the
number of controllers have to be placed and where to place
those controllers in the network. Figure 2 shows the
controller connected in minimal delay with the switches.

Figure 2. Controller- Switch connected with minimal
latency

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

Prediction Based Controller Placement in SDN

3

3. Related Work

The Controller Placement Problem (CPP) has attracted
many researches to put forth their ideas for identifying
optimal controller locations in the network. The major
parameter considered for optimized controller placement
was latency. The related work is categorised into two
categories namely SDN Controller Placements and SDN
Traffic Management as shown in the Figure 3. The first
category presents the works related to CPP with “latency”
as a parameter to be minimized and the second category
presents the works related to SDN controller using machine
learning methodologies.

Figure 3. Related work on SDN Controller
Management

3.1 Controller Placement based on Latency
as objective parameter:

This section presents the related work in the CPP with
respect to minimizing the latency between the controller
and the switch. In [4], the CPP was addressed for the first
time. The problem was mapped onto the Facility Location
Problem to identify the optimal controller locations. The
latency between the controller and the switches was taken
as the parameter to optimize placements of controller.
In [5,6], the authors proposed a Pareto Optimal Controller
Placement (POCO) and has taken more cases with respect
to the latency parameter. In addition to that, the authors also
considered link/node failure scenarios to elevate their
work. However, the number of controllers to be placed was
not calculated and was given directly to the algorithm for
optimal placements of controllers. In [7], the authors
proposed a linear programming model to minimize the
Flow Setup Time by minimizing the distance between the
switch and the controller in a distributed environment. In
[8], the authors proposed a Firefly algorithm to minimize
the communication latency between the controller and the
switch.

In [9], a modified K-Means algorithm was proposed for
the CPP in SDN. In that, for initial cluster selection,
shortest path was calculated and the nodes with minimum
distance were selected as the initial controller placements.
Then using those points, the improved K-Means algorithm
is used for optimal controller placement. In [10], a
distributed controller layout problem was designed for the
wide-area networks which aims to minimize the controller-
to-controller latency and tried to balance the controller
load. In [11], the authors proposed a Pareto Integrated Tabu
Search (PITS) for optimal controller placements and also

addressed the link/node failure and a greedy technique to
perform migration in case of failure/controller load
imbalance situations.

3.2 SDN Traffic Management:

This section gives insights to the work related to the
machine learning algorithms proposed for the traffic
management in SDN Controller. The Traffic management
in SDN controller focussed more on classification of input
traffic, providing Quality of Service (QoS) and identifying
the network attack patterns. The traffic management in
SDN is shown in Figure 4.

Figure 4. SDN Traffic Management

In [12], authors proposed a Decision Tree (DT) model
to classify the input packet flow. This work classifies
Elephant flows and Mice flows from the input packet and
to predict the same. In [13], various machine learning
algorithms both supervised and unsupervised algorithms
were analysed to classify the traffic from various
applications such as Facebook, YouTube, LinkedIn and
other applications. The data for traffic classification were
collected from the OpenFlow protocol of SDN and
machine learning algorithms are applied to classify the
traffic. Finally, they concluded that the Supervised
Machine Learning techniques performs better than the
Unsupervised methods. In [14], a QoS aware traffic
classification method was achieved by using Semi-
Supervised model and DPI. Initially, DPI was used to
inspect the packets and then they were labelled. The
labelled dataset was sent to the Semi-Supervised model for
classification of applications and QoS was achieved. In
[15], authors extended the SDN framework to the wireless
network. Using the ML approach, the traffic classification
was performed for mobile applications. They achieved an
average of 95.5% classified data. By analysing the traffic,
a framework was proposed and it was analysed for network
performance using network parameters such as throughput,
network lifetime.

In [16], an application awareness-based traffic
classification was done. They created a framework called
“Atlas” for the classification of various applications in
android environment by incorporating ML and crowd
sensing algorithm. In [17], they developed a Back
Propagation Artificial Neural Network to analyse the

Objective

SDN Controller
Placements Latency

SDN Traffic
Management

Machine Learning
algorithms

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

Ramya G, Manoharan R

4

integrated load for various paths in the network and the
same was predicted. Based on the prediction, routing
optimization was achieved. In NeuRoute [18], introduced
a dynamic routing by classifying traffic and predicts the
traffic matrix from which dynamic routing was performed.
In [19], a machine learning approach for controller
placement was done. Multilabel traffic classification was
done to predict the controller placement. The algorithm
predicted whether the placed controller will be available in
the future or not. A neural network-based algorithm is
designed for predicting controller placement. In [20,21],
Deep Neural Network was developed for predicting
intrusion detection in the network.

In [22], the authors classified the controllers’ traffic into
Low and High based on the number of packets and number
of bytes received by the controller using Artificial Neural
Network (ANN) and predicted the controller traffic. In
[23], the authors proposed a methodology to improve the
quality of controller by connecting switches to more than
one controller in 70-30 ratio. They improved the
performance of controller in reliability context. Buts not
focussed to optimize the number of controllers to be
placed. In [28], the authors addressed the Link Flooding
Attacks (LFA) in wired and wireless SDN by identifying
its attack types and variants. They categorised and
compared the existing mitigation on LFA on SDN
ecosystems. In [29], the authors classified the network
traffic based on the applications in the SDN network. They
used three different supervised model namely Support
Vector Machine, Naïve Bayes, and Nearest centroid for
classification and also addressed the challenges faced
during live data capturing.

From the existing work, it is obvious that either a
mathematical model was formulated or a metaheuristic
approach is mapped to solve CPP. When an ML approach
is employed in SDN, either traffic classification or traffic
prediction was performed. Classification primarily
focussed on classification of application whereas
prediction is done for network security purposes. Very few
works have focussed on controller placement based on
traffic classification and prediction. This work gives an
insight in dynamic prediction of controller numbers and its
optimal placement by classifying and predicting the
network traffic using the Machine Learning technique.

4. Proposed Methodology

In this section, the proposed approach for controller
placement and traffic prediction is described. The
controller placement is done by K-Means ++ algorithm and
the prediction of LNH code is done by using Multi-class
Logistic Regression technique. The proposed approach is
depicted in Figure 5.

Figure 5. Proposed methodology

Initially, the controller positions are identified by means
of the K-Means ++ initialization policy. Then the
controllers are placed in the optimal locations using the
same K-Means++ clustering technique. Once the
controllers are placed in the optimal locations, the traffic is
generated and captured. The captured traffic is classified as
LNH code and the same is predicted. A greedy approach is
proposed to distribute the predicted traffic among
controllers and thus the number of controllers are identified
and the numbers are given as input for the placement
algorithm for its optimal placements. Here, we introduce a
data manager to collect the traffic from the OpenFlow
protocol, pre-processing it and sends the collected data to
the Multi-class Logistic Regression algorithm for
classifying and predicting the traffic.

4.1 Proposed Methodology for CPP

In the controller placement scenario, the communication
latency between the controller and the switch should be
minimum. Because, whenever a new packet arrives at the
switch, the switch forwards the packet to the controller.
The controller will decide on whether to forward/drop the
packets. The controller processes the packets and sends
forwarding rule to switches and it is shown in Figure 6.

Figure 6. Packet Processing

So, the controller has to be placed in the network in such
a way that the latency between the controller and switch is
always minimum. This minimum latency reduces the
packet flow installation time which eventually reduces the

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

5

average delay of the network [24]. If the controller is
placed far away to the switch, then the time for installing
the forwarding rule will get increased which eventually
affects the network performance. Therefore, the distance-
based K-Means++ clustering algorithm is adapted
according to the CPP and optimal controller locations are
identified.

The Controller Placement Problem can also be viewed
as network partition problem. The clustering methodology
is one of the methods to solve the network partition
problem. The K-Means is the straight forward algorithm to
solve the above issue. The major disadvantage in the K-
Means is, it initially assumes the centroids randomly and
tries to forms the clusters. In order to avoid it, the K-Means
++ algorithm was introduced. The K-Means ++ defines the
procedure to initialize the positions of centroids in the
network and adapts K-Means to form clusters. This works
applies the same procedure to find the optimal locations to
place controllers in the network.

In a network topology, G= (V, E) in which V represents
the switches, E represents the link between the switches.
Let C be the controllers to be placed in the network. The
switches and the controllers are represented as follows:
V= {v1, v2, v3,…,vn}, where n denotes the number of
switches in the network
 C= {c1,c2,c3, …,ck}, where k denotes the number of
controllers located in the network
The relation between the switch and controller can be
defined as follows:

𝐶𝐶⊂V
Let 𝑋𝑋𝑣𝑣 = {(𝑥𝑥𝑣𝑣1,𝑦𝑦𝑣𝑣1), (𝑥𝑥𝑣𝑣2,𝑦𝑦𝑣𝑣2), … , (𝑥𝑥𝑣𝑣𝑣𝑣 ,𝑦𝑦𝑣𝑣𝑣𝑣)} be the
position of switches in the topology and 𝑋𝑋𝑐𝑐 = {(𝑥𝑥𝑐𝑐1,𝑦𝑦𝑐𝑐1),
(𝑥𝑥𝑐𝑐2,𝑦𝑦𝑐𝑐2), … , (𝑥𝑥𝑐𝑐𝑐𝑐 ,𝑦𝑦𝑐𝑐𝑐𝑐)} be the position of controllers in
the topology.

After placing the controllers in the network, the
topology G can be defined as 𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝐶𝐶). The first
controller position is initialized uniformly random position
in the network. This is similar to the K-Means algorithm
but the key difference is that the other positions are not
selected in the random manner. The D(x) is the distance
parameter defines the distance between the initial
controller position to the switches in the network. In the
next step, the distance between the chosen controller
position to all the switches in the network. The next
controller position will be the one whose squared distance
�𝐷𝐷(𝑥𝑥)�

2
 is the farthest to the initial controller position.

Then from the second controller position, the next position
will be calculated. The procedure gets repeated until the
required number of controller positions are initialized.

1. Now with the initialized controller position, the
K-Means algorithm is executed to get the optimal
controller position. Specify the number of
controllers to be placed in the network (k).

2. Initialize the initial controller positions in the
network and assign switches to it.

3. For all switches connected to the controller,
calculate the latency between the controller and

switch by computing the sum of squared distance
between the initialized controller position and the
switches connected to it. It can be calculated as
follows:

𝑃𝑃 = ∑ ∑ �𝑋𝑋𝑣𝑣𝑣𝑣 − 𝑋𝑋𝑐𝑐𝑐𝑐�
2𝑐𝑐

𝑐𝑐=1
𝑣𝑣
𝑣𝑣=1 ------ (1)

where, �𝑋𝑋𝑣𝑣𝑣𝑣 − 𝑋𝑋𝑐𝑐𝑐𝑐�
2
 – squared distance between the

switch and the controller.
4. If the initialized controller position is not optimal

i.e. the latency between the controller and the
switch is not minimum, then calculate the new
controller position by using the following
equation.

𝑃𝑃𝑣𝑣𝑐𝑐 = 1
P
∑ 𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣=1 ------- (2)

 where, 𝑃𝑃𝑣𝑣𝑐𝑐 is the new controller position and 𝑋𝑋𝑐𝑐𝑐𝑐 is
the controller, which position to be recalculated.

5. Repeat Step 3 and 4 until no change in the
controller positions.

6. Repeat the step 3,4, and 5 for other controllers to
be placed in the network.

Figure 7. K-Means++ Clustering

The clusters formed for the sample network is shown in
Figure 7 and the arcs represents the clusters formed. The
workflow of the controller placement is shown in Fig 8.

Prediction Based Controller Placement in SDN

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

Ramya G, Manoharan R

6

Figure 8. Work flow of Controller Placement
technique

Algorithm for Controller Placement:
Input: G= (V, E), k, P (Placement set), 𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑐𝑐}
Output: Optimal Controller location (P)
1. Select the initial position c from C
2. for all switches i in V:
 D(x) = ∑ ‖𝑋𝑋𝑐𝑐1 − 𝑋𝑋𝑣𝑣𝑣𝑣‖𝑣𝑣

𝑣𝑣=1
3. Choose the next position of controller 𝑐𝑐𝑣𝑣, choosing 𝑣𝑣 ∈

𝑉𝑉 with the probability 𝐷𝐷(𝑥𝑥)2

∑ 𝐷𝐷(𝑥𝑥)2𝑣𝑣∈𝑉𝑉

4. Repeat the steps until we have taken k initial controller
positions

Controller Placement:
for all controllers (j) in k:
 for all switches 𝑖𝑖 ∈ 𝑗𝑗 in n:

min: 𝑃𝑃𝑐𝑐 = ∑ �𝑋𝑋𝑣𝑣𝑣𝑣 − 𝑋𝑋𝑐𝑐𝑐𝑐�
2𝑣𝑣

𝑣𝑣=1

 if 𝑃𝑃𝑐𝑐 is minimal
 𝑃𝑃 ← 𝑃𝑃𝑐𝑐

 else
𝑃𝑃𝑐𝑐′ = 1

𝑃𝑃𝑗𝑗
 ∑ 𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣=1

 goto min
 j++

return P
The controller positions for the topology LambdaNet is
shown in Figure 9. Initially, 5 controllers are placed in the
network. So, the number of clusters was initiated to 5. By
calculating the latency between the centers (controllers)
and the switches, the nodes which are assigned as
controllers for LambdaNet network shown in Figure 7 are
[1,40], [7,8], [13,34], [21,27], [36,37]. The controller and
nodes assigned as follows:
Cluster A: [40,2,33,41]
Cluster B: [0,3,2,11,4,5,6,8,9,12,13,16,14,15,17]
Cluster C: [8,26,29,15,24,30,35]
Cluster D: [17,19,18,27,20,30,25]
Cluster E: [32,35,36,37,40]

Figure 9. LambdaNet network and its controller
placements

4.2 Traffic Classification and Prediction
(TCP) SDN:

In this section the Traffic Classification and Prediction
(TCP SDN) is discussed. Traffic Classification and
Prediction plays a vital role in network traffic management.
The network resources can be efficiently utilized by
managing the network traffic. This work, addresses the
proper utilization of the controllers placed in the network
by classifying and predicting the network traffic. In this
work, the traffic is classified as Low, Normal, and High
(LNH code). By predicting the traffic, the number of
controllers to be placed can be varied dynamically by
adding more controllers or removing some controllers in
the network. Here, the Multi-Class Logistic Regression
[25] is used to predict LNH code.

The entire work flow of this work is shown in Figure 10.
The proposed TCP SDN consists of the Traffic Monitoring
(TM) module, Data Preparation (DP) module, and Traffic
Analysis and Prediction modules (TAP).

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

7

Figure 10. Work flow of the Proposed Prediction
mechanism

The above modules will perform the following operations:
1. Traffic generation
2. Traffic capturing
3. Data Pre-Processing and Feature Extraction
4. Model learning
5. Classification and
6. Prediction

Traffic Monitoring Module:
This module performs Traffic generation and capturing.
The network traffic is generated by using Iperf commands.
The network traffic statistics can be collected from the
OpenFlow Switches and from the Wireshark tool. The data
is collected on that day and its previous day and combined
together to form the dataset for data pre-processing.
Data Preparation Module:
The traffic management mechanism proposed in this paper,
performs analysing the data, prediction of data, and
calculating the threshold value for classifying LNH code.
To perform this, the dataset needs to be transformed to the
required format to train the model. The data manager
resides here and performs the data transformation. The data

manager starts data cleaning process starts by removing the
unwanted attributes from the dataset.

The first field in the dataset is time and is made atomic
and the corresponding value are mapped to identify how
much traffic is been generated at that time. The dataset
consists of different types of data format which needs to be
normalized (0-1) to the single format to make it suitable for
the training. The standard scalar function is utilized to
normalize the data. The standard value of a data point can
be calculated as follows:

𝑧𝑧 = (𝑥𝑥−𝑢𝑢)
𝑠𝑠

 --- (3)
where, z is the normalized score, x is the value to be
normalized, u is the mean and s is the standard deviation
value. The attribute Controller is added to the dataset which
is computed by identifying the switch to which controller
it is connected. The final attribute Traffic is also added by
analysing the attributes Time, N_Packets (number of
packets transferred at that time) and N_Bytes (number of
bytes transferred at that time). An average mean value is
computed for the N_Packets and N_Bytes at the time T is
used to set the threshold value for classifying the LNH
code. The final dataset which is to be sent to the classifier
algorithm contains 9 attributes in which 8 are independent
attributes and 1, the target attribute is the dependent one.
The data manager performs all the data cleaning and pre-
processing process and make the dataset ready for analysis.
Traffic Analysis and Prediction (TAP):
The TAP module performs classifier learning and
predicting the LNH code. The classifier learning is the
most important task in any machine learning process. The
dataset is reduced to 70% with all the 9 attributes is set to
learning phase. The remaining 30% of the dataset is set for
testing. The dataset obtained contains 135678 data values
on which 70% (94975) is set for training the classifier. The
remaining 30% (40702) data values are set for testing.
The classifier learning process begins deciding the solver,
deciding C value (Inverse regularization strength),
deciding multi- class value and tuning the hyperparameter
𝛽𝛽 by computing its value. After deciding these values, the
input data to the classifier learning is the Feature Matrix
(FM). The FM consists of all the attributes in which
analysis operation going to be performed.
Suppose, the dataset has ‘m’ features and ‘n’ observed
values, the Feature Matrix (FM) is represented as follows:

𝐹𝐹𝐹𝐹 = �

1 𝑎𝑎11 …
1 𝑎𝑎 …
⋮
1

⋮
𝑎𝑎𝑣𝑣𝑛𝑛

⋮
…

𝑎𝑎1𝑛𝑛
𝑎𝑎2𝑛𝑛
⋮

𝑎𝑎𝑣𝑣𝑛𝑛

�

The number of classes needs to be classified are Low,
Normal, and High (LNH code) and thus number of classes
becomes 3 (k=3). In this proposed approach, the solver is
set to ‘lbfgs’ and the multi-class is set to ‘OVR’. The OVR
(One-vs-Rest) approach consider each class as binary
model and applies regression on it.
Let 𝑌𝑌𝑣𝑣 be the outcome corresponding to the ‘k’ classified
class. The predictor function 𝑓𝑓(𝑘𝑘, 𝑖𝑖) is to be predicted for
the 𝑖𝑖𝑡𝑡ℎ row can be calculated as follows:

Prediction Based Controller Placement in SDN

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

Ramya G, Manoharan R

8

𝑓𝑓(𝑘𝑘, 𝑖𝑖) = 𝛽𝛽0,𝑐𝑐 + 𝛽𝛽1,𝑐𝑐 𝑎𝑎1,𝑣𝑣 + 𝛽𝛽2,𝑐𝑐 𝑎𝑎2,𝑣𝑣 + ⋯+ 𝛽𝛽𝑀𝑀,𝑐𝑐𝑎𝑎𝑀𝑀,𝑣𝑣 ---
- (4)

where, 𝛽𝛽 is the regression coefficient to be tuned.
The Logistic Regression is a predictive analysis algorithm
that is based on the probability of the number of events
occurred. The probabilities for LNH code are as follows:
𝑃𝑃(𝑌𝑌𝐿𝐿 = 1 ∨ 𝑋𝑋; 𝜃𝜃) for class 1 (low traffic)
𝑃𝑃(𝑌𝑌𝑁𝑁 = 2 ∨ 𝑋𝑋; 𝜃𝜃) for class 2 (normal traffic)
𝑃𝑃(𝑌𝑌𝐻𝐻 = 3 ∨ 𝑋𝑋; 𝜃𝜃) for class 3 (high traffic)
To fit the model,

ℎ𝜃𝜃
(𝐿𝐿) = 𝑃𝑃(𝑦𝑦 = 𝑖𝑖 ∨ 𝑋𝑋; 𝜃𝜃) for low traffic, ℎ𝜃𝜃

(𝑁𝑁) =
𝑃𝑃(𝑦𝑦 = 𝑖𝑖 ∨ 𝑋𝑋; 𝜃𝜃) for Normal traffic, and
ℎ𝜃𝜃

(𝐻𝐻) = 𝑃𝑃(𝑦𝑦 = 𝑖𝑖 ∨ 𝑋𝑋; 𝜃𝜃) for high traffic.
The regression model for TCP SDN is shown in Figure 11.

Figure 11. Traffic classification

Here, represents low traffic, represents medium/normal
traffic and high traffic is represented by . . The model for
LNH code is represented in Figure 12.

Figure 12. LNH code classification

The last layer of Multi- Class logistic Regression is
SoftMax regression which integrates all the probability
values to produce the final predicted traffic (𝑃𝑃𝑇𝑇) . Given the
input to the SoftMax layer, it performs the exponential
operation to all the input values (z) and makes all the values
to be positive. The SoftMax function is defined as follows:

𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑥𝑥(𝑧𝑧) = 𝑒𝑒𝑧𝑧

∑ 𝑒𝑒𝑧𝑧𝑖𝑖𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖=1

 ---- (5)

The workflow of classifying and prediction is shown in
Figure 13.

Figure 13. Work Flow of TAP module

Algorithm for Traffic Prediction:
Input: Network Traffic Dataset
Output: LNH code
1. Generate Traffic using Traffic generating

commands.
2. Obtain Flow Table Statistics from OpenFlow

Switches and from the Wireshark tool.
3. The data cleaning process is carried out to

transform the attributes and normalize the
data to uniform format.

4. Feature Extraction is carried out and
attributes such as Controller and Traffic are
calculated.

5. Derive Feature Matrix (FM) from the selected
attributes.

6. Split Train (70%) and Test (30%) dataset
from the traffic dataset and tune the hyper
parameter 𝛽𝛽.

7. Perform the Classifier learning and predict
LNH code.

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

9

4.3. Decision of Number of Controllers
using Greedy approach:

From the obtained traffic dataset, Controller Threshold
(𝐶𝐶𝑇𝑇) is set by analysing the network traffic. To find out the
𝐶𝐶𝑇𝑇, the Flow Installation Time (FIT) value is calculated.
The point at which the FIT value increases and saturates
that point is taken as the 𝐶𝐶𝑇𝑇. The number of controllers
needed for the network is decided by using both the
Predicted Traffic (𝑃𝑃𝑇𝑇) and the Controllers’ Threshold 𝐶𝐶𝑇𝑇.
Each and every controller to be placed in the network is
considered as a bin. The Predicted Traffic is allotted to the
controller up to its threshold value 𝐶𝐶𝑇𝑇. The Predicted
Traffic gets subtracted after the traffic is allotted to the
controller. The number of controllers in which the
Predicted Traffic is allotted is taken as the number of
controllers needed for the network. By identifying and
optimizing the number of controllers to be placed in the
network, the controller quality can be improved and
eventually network performance also increases.

Algorithm for Deciding the Number of Controllers:
Input: Predicted Traffic (𝑃𝑃𝑇𝑇), Controller

threshold (𝐶𝐶𝑇𝑇)
Output: Number of Controllers
1. Initialize number of controllers (𝐶𝐶𝐾𝐾) to 0
2. While (𝑃𝑃𝑇𝑇>0)
3. If (𝑃𝑃𝑇𝑇 > 0 && 𝐶𝐶𝑇𝑇 < 𝑃𝑃𝑇𝑇)

 𝑃𝑃𝑇𝑇 = 𝑃𝑃𝑇𝑇 − 𝐶𝐶𝑇𝑇
 𝐶𝐶𝐾𝐾 + +
 Continue;

 Else
 𝐶𝐶𝐾𝐾 + +
 𝑃𝑃𝑇𝑇 = 0

4. Return 𝐶𝐶𝐾𝐾

5. Result and Analysis

5.1. Experimental Setup and Performance
Metrics for Controller Placement

This section presents the experimental setup and the
performance metrics taken to examine the performance of
the proposed method. The proposed K-Means++ algorithm
is written in Python and the controller placement scenario
is executed in the Mininet emulator. The Mininet Emulator
is an exclusive environment to simulate Software-Defined
Networks [26]. The controller used for the experiment is
the POX controller and the OpenFlow switch version is OF
1.3. Many network topologies are considered for executing
the K-Means++ algorithm. The topologies are taken from
the standard Internet Topology Zoo [27] and the topologies
considered are LambdaNet, IRIS, Forthnet, BTN,
Bellsouth, Arpanet, Abvt, and Sprint.

The proposed K-Means++ is evaluated by comparing
the proposed with the existing algorithm Pareto Integrated

Tabu Search (PITS) [5], Genetic Algorithm (GA), standard
K-Means, and with the Random Placements (RP). All the
algorithms are executed numerous times and the best of it
is shown here. In all the runs, the proposed approach
outperforms the other two approaches. Additionally, the
following situations are implemented to evaluate the
controller performance.

A single controller scenario. A single controller is
placed in the optimal location of the network and the
performance was analysed.

The controller and the switches are far away from each
other. Here, the switches are purposefully connected to the
controller which is far away to the switches. So that the
performance of the controller can be evaluated.

In the SDN scenario, the controller plays a vital role in
evaluating network performance. So, the time taken to
install the flows to the switch is taken as the major
parameter for evaluating the controller performance. The
other parameters taken are Average delay and Network
Throughput.

Flow Installation Time (FIT):
Flow Installation Time is, time taken by controller to
analyse packet and sending forwarding rules to switches. It
can be calculated as follows:

𝐿𝐿𝑓𝑓𝑣𝑣𝑡𝑡 = �(𝐿𝐿𝑠𝑠𝑐𝑐 ∗ 𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑓𝑓𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝐸𝐸𝑃𝑃𝐼𝐼𝑁𝑁) + (𝐿𝐿𝑐𝑐𝑠𝑠 ∗
𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑓𝑓𝑃𝑃𝑎𝑎𝑐𝑐𝑘𝑘𝑛𝑛𝑠𝑠𝑂𝑂𝑂𝑂𝑇𝑇)� --- (4)

 where,
𝐿𝐿𝑆𝑆𝐶𝐶 – Latency between the switch and the controller
𝐿𝐿𝐶𝐶𝑆𝑆 – Latency between the controller and switch
𝐿𝐿𝐶𝐶𝑆𝑆 can be calculated as follows:

𝐿𝐿𝐶𝐶𝐶𝐶 = ∑ ∑ 𝑑𝑑�𝑆𝑆𝑣𝑣 ,𝐶𝐶𝑐𝑐�𝑐𝑐
𝑐𝑐=0

|𝑉𝑉|
𝑣𝑣=0 --- (5)

where,

d(Si, Cj) defines the latency between the switch and the
controller
k defines number of controllers

Average Delay:
The Average Delay is defined as the delay recorded for
installation of flow rules and the time to transmit the
packet.
The Average Latency (DAVG) can be calculated as
follows:

𝐷𝐷𝐴𝐴𝑣𝑣𝐴𝐴 =
𝑃𝑃𝐴𝐴𝐴𝐴+𝐿𝐿𝑓𝑓𝑖𝑖𝑓𝑓+𝑃𝑃𝐹𝐹𝐴𝐴

𝑣𝑣𝑢𝑢𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑒𝑒𝑡𝑡𝑠𝑠
 ---- (6)

where,
PAT defines Packet Arrival Time
Lfit defines Flow Installation Time
PFT defines Forwarding Time

Throughput:
It is defined as the average data rate of successful
transmission of data. It is defined in bits/s.

5.2 Results and Comparison of CPP:

Flow Installation Time:

Prediction Based Controller Placement in SDN

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

Ramya G, Manoharan R

10

The FIT for all the algorithms is calculated and presented
in Figure 14. The FIT value of the proposed K-Means++
shows an improvement in lowering the time for installing
flow rules to switches. The proposed is compared with the
existing algorithms and the proposed algorithm performs
on an average of 60-70 % (approximately) better than the
other methodologies.

The lowest recorded FIT value is 10ms in LambdaNet
topology for the proposed K-Means++ algorithm and the
high FIT value recorded for the proposed approach is
50ms. The average FIT value of the proposed approach is
32ms approximately which is quite low when compared
with the other mechanisms taken for comparison. From the
graph, it is evident that the proposed K-Means++
outperforms the other algorithms.

Figure 14. Flow Installation Time

Average Latency:
The Figure 15 illustrates the recorded average delay for
transmitting packets from the source to destination of all
the algorithms in different topologies.

Figure 15. Average Latency

The average delay is recorded very low for the proposed
approach which is less than 50ms. The average latency
value of proposed shows improvement in lessening the
average delay of network for all the topologies. When the
proposed work is compared with other methodologies, the
average delay decreased to 55-67% approximately which
certainly shows the greater performance of the proposed
approach. The average value of average delay of the
proposed approach is very low when compared with other
algorithms.

Throughput:
The Figure 16 depicts the throughput obtained for various
topologies of the proposed and the other algorithms taken
for comparison.

Figure 16. Throughput

The average throughput of the proposed methodology is
6.7*10^9 bits/s. The higher throughput gained for the
proposed K-Means++ is in the IRIS topology. From the
above graph, it is evident that the proposed performs better
than the other methods considered here. On an average of
20-30 % improvement in throughput of proposed approach
when compared with other methods.

5.3 Experimental Results for the Single
Controller Scenario:

A single controller is placed in the location of the network
using the proposed K-Means++ approach. A single
controller is placed so that the performance of the network
as well as the controller can be evaluated. When a single
controller was placed in the network, the single controller
is able to respond (PACKET_OUT) to all the incoming
PACKET_IN messages received from all the switches
presented in the network. The overhead occurred in this
scenario is, the time to install the forwarding rules to the
switches.

Since, a single controller was placed, it is its
responsibility to process all the incoming packets and make
decision to all the incoming PACKET_IN messages. The
FIT got increased which ultimately affects the average
delay. The switches which are closer to the controller got
the forwarding rules installed quicker than the switches that
are far away from the controller.

The topologies in which the single controller was placed
are Iris, Forthnet, BTN, Chinanet, and LambdaNet. For the
experimental purpose, a single controller was placed using
K-Means++ algorithm and the metrics were analysed. For
the comparison purpose, a single controller was placed
randomly in the network and the performance was
analysed. In both the methods of placing a single controller,
K-Means++ performed much better than the random
placements of controller in the network. The Figure
17,18,19 presents the FIT, Average delay and throughput
of K-Means++ and Random Placement of single controller.

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

11

Figure 17. Flow Installation Time

Figure 18. Average Latency

Figure 19. Throughput

5.4 Controller and Switches Increased
Latency:

In this scenario, the controller and switches are placed in
such a way that the controller and switches are far away
from each other. In order to analyse the FIT for the
PACKET_IN messages, this scenario is simulated. Here, a
single controller is placed anywhere in the network. The
same network commands used in above cases are used to
generate traffic. In this scenario, particularly the switch
which is connected far away from the controller and the

switch which is nearer to the controller is identified and
those switch performances were analysed for the
topologies includes Iris, Forthnet, BTN, Chinanet, and
LambdaNet. The Figure 20 shows the FIT when the switch
is connected to the nearest controller and to the farthest
controller.

Figure 20. FIT when the switches are connected to
the nearest and farthest controller

From the observed result, it is evident that the switch
which is connected to the closest controller will have low
FIT. So, the controller should be placed in the network in
such a way that the latency between the controller and the
switches connected to it is low.

5.5 Experimental setup and Performance
metrics for Traffic Analysis and Prediction:

This section explains the experimental setup for traffic
analysis and prediction. The Multi-class Logistic
Regression algorithm is written in Python and executed
using Juypter Notebook. The proposed model is compared
with relevant multi-class models. The models taken for
comparing our proposed work are Naïve-Bayes and
Support Vector Machine.
Performance Metrics:

Precision, Recall, f1score, accuracy and
hamming loss are used as performance metrics to evaluate
the performance of the model.
Precision:

It is defined as number of true positive rate (Tp)
over the sum of number of true positives and false
positives (Fp) and it is calculated by using equation 7.

𝑃𝑃𝑛𝑛𝑛𝑛𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 = 𝑇𝑇𝑝𝑝
𝑇𝑇𝑝𝑝+𝐹𝐹𝑝𝑝

 ---- (7)

Recall:
It is defined as the number of true positives over

the sum of true positives and the number of false
negatives (Fn) and it is calculated as in equation 8.

𝑅𝑅𝑛𝑛𝑐𝑐𝑎𝑎𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑝𝑝
𝑇𝑇𝑝𝑝+𝐹𝐹𝑛𝑛

 ---- (8)

F1-Score:
The F1-score is defined as the “harmonic mean of
Precision and Recall”. This can be calculated by using
equation 9.

Prediction Based Controller Placement in SDN

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

Ramya G, Manoharan R

12

F1-Score = 2 ∗ (𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑣𝑣𝑠𝑠𝑣𝑣𝑛𝑛𝑣𝑣∗𝑛𝑛𝑒𝑒𝑐𝑐𝑛𝑛𝑟𝑟𝑟𝑟)
(𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑣𝑣𝑠𝑠𝑣𝑣𝑛𝑛𝑣𝑣+𝑛𝑛𝑒𝑒𝑐𝑐𝑛𝑛𝑟𝑟𝑟𝑟)

 ---- (9)
The following are the precision, recall, and F1-score
values obtained from the experiment.

From the precision – recall values shown above, it is
evident that the multiclass logistic regression performs well
in predicting the values. Here, 1 stand for low traffic, 5
stands for normal/regular traffic, and 10 stands for high
traffic. The multi class LR is compared with Naïve Bayes,
Support Vector Machine (SVM). The Figure 21 shows the
comparison of various models.

Figure 21. Model Accuracy

Hamming Loss:

It can be defined as the “fraction of incorrectly predicted
samples” from the dataset. The following Figure 22 shows
the hamming loss of each model.

Figure 22. Hamming Loss

5.6 Number of Controllers after Traffic
Prediction:

The future traffic of the network is predicted and from
which the number of controllers needed for the predicted
traffic is calculated. The number of controllers required for
controlling the predicted network traffic for various
topologies during low, regular, and high traffic are shown
in Figure 23.

 Figure 23. Predicted Number of Controllers

The predicted number of controllers sent as the input to
the K-Means++ algorithms and are placed in optimal
locations of the network. The controllers’ number can be
either increased or decreased according to the network
traffic and this assures the dynamic decision on controllers’
number to be placed in the network.

5.7 Effect of Varying the Controllers’
Threshold:

Here, the performance of network is also analysed by
varying the threshold value from 1000kreq/s to 2000kreq/s.
The following graphs are the plots of controllers’
performance with respect to varying threshold. The Figure
24 depicts the FIT value for various threshold.

Figure 24. FIT

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

13

Figure 25. Average Latency

Figure 26. Throughput

The above Figure 25 and 26 shows the network
performance with different controller threshold values in
terms of Average Latency and Throughput of proposed K-
Means++ for various topologies.

6. Conclusion

In SDN, the controller plays a vital role in network
management. Since all the network activities are managed
by the controller, it is essential to find optimal number of
controllers and place them in optimal locations. In this
work, we proposed a method which dynamically decide the
number of controllers and their optimal placement in the
network. The proposed model analyses and predict the
network traffic and classify it into LNH code. This was
achieved using the Multi-class Logistic Regression model.
From the predicted traffic (LNH code), a greedy approach
was designed to decide the optimal number of controllers
to manage the predicted traffic. Then the optimal number
of controllers are placed in the optimal locations in the
network using the adapted K-Means++ algorithm. The
propose methods were analysed for various performance
and compared with the existing methodologies. From the
experimental results, it is evident that the proposed
approach performs better than the existing works. In the
future, this work can be extended to detect network attack
patterns.

References

[1] Singh, Ashutosh Kumar, and Shashank Srivastava. "A
survey and classification of controller placement problem
in SDN." International Journal of Network
Management 28, no. 3 (2018): e2018.

[2] Xie, Junfeng, F. Richard Yu, Tao Huang, Renchao Xie,
Jiang Liu, Chenmeng Wang, and Yunjie Liu. "A survey of
machine learning techniques applied to software defined
networking (SDN): Research issues and
challenges." IEEE Communications Surveys &
Tutorials 21, no. 1 (2018): 393-430.

[3] Wang, Mowei, Yong Cui, Xin Wang, Shihan Xiao, and
Junchen Jiang. "Machine learning for networking:
Workflow, advances and opportunities." IEEE
Network 32, no. 2 (2017): 92-99.

[4] Heller, Brandon, Rob Sherwood, and Nick McKeown.
"The controller placement problem." In Proceedings of
the first workshop on Hot topics in software defined
networks, ACM,(2012), pp. 7-12.

[5] Lange, Stanislav, Steffen Gebert, Thomas Zinner, Phuoc
Tran-Gia, David Hock, Michael Jarschel, and Marco
Hoffmann. "Heuristic approaches to the controller
placement problem in large scale SDN networks." IEEE
Transactions on Network and Service Management 12,
no. 1 (2015): 4-17.

[6] Hock, David, Matthias Hartmann, Steffen Gebert,
Michael Jarschel, Thomas Zinner, and Phuoc Tran-Gia.
"Pareto-optimal resilient controller placement in SDN-
based core networks." In 25th IEEE
International Teletraffic Congress (ITC), IEEE (2013),
pp. 1-9.

[7] Sridharan, Vignesh, Mohan Gurusamy, and Tram
Truong-Huu. "On multiple controller mapping in
software defined networks with resilience
constraints." IEEE Communications Letters 21, no. 8
(2017): 1763-1766.

[8] Sahoo, Kshira Sagar, Sampa Sahoo, Anamay Sarkar,
Bibhudatta Sahoo, and Ratnakar Dash. "On the placement
of controllers for designing a wide area software defined
network." In TENCON 2017-2017 IEEE Region 10
Conference, pp. 3123-3128. IEEE, 2017.

[9] Wang, Guodong, Yanxiao Zhao, Jun Huang, Qiang Duan,
and Jun Li. "A K-means-based network partition
algorithm for controller placement in software defined
network." In 2016 IEEE International Conference on
Communications (ICC), pp. 1-6. IEEE, 2016.

[10] Liao, Lingxia, and Victor CM Leung. "Genetic
algorithms with particle swarm optimization-based
mutation for distributed controller placement in SDNs."
In 2017 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-
SDN), pp. 1-6. IEEE, 2017.

[11] Ramya, G., and R. Manoharan. "Enhanced Multi-
Controller Placements in SDN." In 2018 International
Conference on Wireless Communications, Signal
Processing and Networking (WiSPNET), pp. 1-5. IEEE,
2018.

[12] Xiao, Peng, Wenyu Qu, Heng Qi, Yujie Xu, and Zhiyang
Li. "An efficient elephant flow detection with cost-
sensitive in SDN." In 2015 1st International Conference

Prediction Based Controller Placement in SDN

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

Ramya G, Manoharan R

14

on Industrial Networks and Intelligent Systems
(INISCom), pp. 24-28. IEEE, 2015.

[13] P. Amaral, J. Dinis, P. Pinto, L. Bernardo, J. Tavares, and
H. S. Mamede, “Machine learning in software defined
networks: Data collection and traffic classification,” in
Proc. IEEE ICNP’16, Singapore, Singapore, Nov. 2016,
pp. 1–5.

[14] Wang, Pu, Shih-Chun Lin, and Min Luo. "A framework
for QoS-aware traffic classification using semi-
supervised machine learning in SDNs." In 2016 IEEE
International Conference on Services Computing (SCC),
pp. 760-765. IEEE, 2016.

[15] Uddin, Mostafa, and Tamer Nadeem. "TrafficVision: A
case for pushing software defined networks to wireless
edges." In 2016 IEEE 13th International Conference on
Mobile Ad Hoc and Sensor Systems (MASS), pp. 37-46.
IEEE, 2016.

[16] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G.
Noubir, “Application-awareness in SDN,” in Proc. ACM
SIGCOMM’13, Hong Kong, China, 2013, pp. 487–488.

[17] Chen-Xiao, Cui, and Xu Ya-Bin. "Research on load
balance method in SDN." International Journal of Grid
and Distributed Computing 9, no. 1 (2016): 25-36.

[18] Azzouni, Abdelhadi, Raouf Boutaba, and Guy Pujolle.
"NeuRoute: Predictive dynamic routing for software-
defined networks." In 2017 13th International Conference
on Network and Service Management (CNSM), IEEE,
2017, pp. 1-6.

[19] S. Nanda, F. Zafari, C. DeCusatis, E. Wedaa, and B.
Yang, “Predicting network attack patterns in SDN using
machine learning approach,” in Proc. IEEE NFV-
SDN’16, Palo Alto, CA, USA, Nov. 2016, pp. 167–172.

[20] T. Tang, S. A. R. Zaidi, D. McLernon, L. Mhamdi, and
M. Ghogho, “Deep recurrent neural network for intrusion
detection in SDN-based networks,” in Proc. IEEE
NetSoft’18, Montreal, Canada, 2018.

[21] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep
learning approach to network intrusion detection,” IEEE
Trans. Emerging Topics in Computational Intelligence,
vol. 2, no. 1, pp. 41–50, Feb 2018.

[22] Thiruvengadam Hemamalini, Ramya Gopalakrishnan,
and Manoharan Rajendiran. "Dynamic Controller
Deployment in SDN Networks Using ML Approach."
In International Conference on Sustainable
Communication Networks and Application, pp. 311-318.
Springer, Cham, 2019.

[23] Sridharan, Vignesh, Purnima Murali Mohan, and Mohan
Gurusamy. "QoC-Aware Control Traffic Engineering in
Software Defined Networks." IEEE Transactions on
Network and Service Management (2019).

[24] G Ramya, R Manoharan, “A New Algorithm for
Controller Placement in SDN”, International Journal of
Engineering and Technology (IJEAT), Vol.8, pp. 1196-
1201, (2019)

[25] Bishop, Christopher M. (2006) “Pattern recognition and
machine learning”,springer.

[26] Kaur, Karamjeet, Japinder Singh, and Navtej Singh
Ghumman. (2014) "Mininet as software defined
networking testing platform." In International Conference
on Communication, Computing & Systems (ICCCS), pp.
139-42.

[27] Knight, Simon, Hung X. Nguyen, Nickolas Falkner, Rhys
Bowden, and Matthew Roughan.(2011) "The Internet
Topology Zoo." IEEE Journal on Selected Areas in
Communications 29, no. 9 1765-1775.

[28] ur Rasool, Raihan, Hua Wang, Usman Ashraf, Khandakar
Ahmed, Zahid Anwar, and Wajid Rafique. "A survey of
link flooding attacks in software defined network
ecosystems." Journal of Network and Computer
Applications (2020): 102803.

[29] Raikar, Meenaxi M., S. M. Meena, Mohammed Moin
Mulla, Nagashree S. Shetti, and Meghana Karanandi.
"Data Traffic Classification in Software Defined
Networks (SDN) using supervised-learning." Procedia
Computer Science 171 (2020): 2750-2759.

EAI Endorsed Transactions
Scalable Information Systems

06 2021 - 08 2021 | Volume 8 | Issue 32 | e6

