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Abstract 
The current technologies such as IoT, 5G networks and Fog computing creates a challenge in the efficient management of 
devices in dynamic conditions. Software-Defined Network (SDN) has been defined as a promising solution for providing 
efficient network management by decoupling the data and control planes from the network devices and enables 
programmability of network devices. The major challenge in SDN is identification of number of controllers to be placed and 
its optimal placements in the network. To address this issue, this work proposes a Traffic Engineering mechanism that 
leverages the performance of Machine Learning to predict controller numbers by analysing and predicting the controller’s 
traffic. The optimal locations of controllers are identified by using the K-Means++ algorithm. The proposed method is 
simulated using Mininet and the results depict that the proposed methodology outperforms the existing methodologies in 
terms of performance parameters. 
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1. Introduction

The tremendous increase in the number of devices 
connected to the Internet and the current technologies like 
IoT, Fog, 5G needs an efficient network management 
system. The lack of efficient network management may 
result in network congestion, poor routing, and an increase 
in communication delay.  The SDN and Network Function 
Virtualization (NFV) are key-enabling technologies to 
provide efficient network management. Both advocate 
open-source and programmability of network devices 
which leads to innovation in network management.  

The capability of a network to deliver services rapidly 
by efficiently managing user demands is the aim of 
programmable networks. SDN aims to deliver a 
programmable network [1] by separating the control plane 
and data plane from the network devices and puts the 
control logic in the centralised control namely “the 
controller”. The controller resides in the control plane of 
SDN knows the network topology created, number of 
forwarding devices and its current status, flow rule 
management and other network policies. This centralized 
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nature of SDN allows us to enforce our traffic polices in 
the network [2].  Since the Controller in the network 
controls all the activities of the network, the controller’s 
performance may affect the overall network performance. 
Therefore, the Controller should be highly efficient to 
manage the incoming PACKET_IN messages. It should 
not be under-utilized or should not be overloaded. 
Therefore, identifying the optimal number of controllers to 
be placed becomes essential. 

This work adapts a Traffic Engineering Mechanism 
(TE) to identify the optimal number of controllers to be 
placed in the network. TE is an important application in 
network which aims to study the measurement and the 
management of network traffic [3]. Traffic Engineering is 
an iterative process of reading the network state, analysing 
and classifying the traffic and predicts future traffic to 
avoid network congestion. Traffic Engineering also 
focuses on enhancing the network performance in terms of 
Quality of Service, proper resource management, enhanced 
routing, improved security, and good user experience 
which may reduce cost also.   

The openness of SDN by being programmable network 
allows user to do innovations and implementation of the 
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polices in the network and thus opens the doors for the 
implementation of new TE mechanisms. Several traditional 
TE mechanisms are available such as Equal Cost Multi-
Path routing (ECMP), Intermediate System and 
Intermediate System (IS-IS), and Multi-protocol Label 
Switching (MPLS) [3] make all the decisions locally which 
may not be applicable in SDN because the controller in the 
SDN based network is centralized one.  

Recently, Machine Learning (ML) is remarkably 
applied to every possible field including networking to 
solve complex issues. Applying ML techniques to the SDN 
network is easier because of the two major reasons. Firstly, 
the recent advancements in the Graphics Processing Unit 
(GPU) and the Tensor Processing Unit (TPU) [4] performs 
computations in a faster and efficient manner. Secondly, 
the SDN controller acts as a Network Operating System 
holds the global view of the entire network [2]. 

Though SDN has many advantages over traditional 
networks, two main issues namely Controller Placement 
Problem (CPP) and Flow Rule Management are to be 
addressed properly. This work mainly focuses on the CPP. 
The CPP can be defined as the identification of the number 
of controllers to be placed and their optimal locations in the 
network. This will not only enhance the performance of the 
network but also ensures the optimal utilization and fair 
load distribution amongst controllers. Therefore, the 
identification of the optimal number of controllers to be 
placed plays a vital role in improving the network 
performance. Once the controller numbers are identified, 
that has to be placed in the optimal location to avoid the 
unnecessary delay in the installation of flow rules to the 
switches. This work aims to identify the optimal number of 
controllers based on the network traffic. Here, the number 
of controllers is a variable that changes dynamically 
according to the network traffic. To achieve the above 
objectives, this work leverages the benefits of ML by 
combining with SDN to predict the controller numbers and 
their optimal placements in the network. 

The placement of the controllers is done by K-Means++ 
clustering algorithm, which is an extended version of K-
Means clustering technique. The K-Means++ performs the 
same way of K-Means however K-Means++ instructs the 
procedure to initialize the initial cluster positions. The 
initial number of controllers is identified and its placements 
are done by the K-Means++ algorithm. Once the placement 
is done, network traffic is generated, and the traffic are 
collected. From the collected traffic, the network traffic is 
analysed and predicted using the multi-class logistic 
regression model. The classification model is designed to 
predict LNH (Low, Normal and High) code. Based on the 
predicted traffic, the number of controllers for the LHN 
code are estimated exactly using a greedy approach and the 
numbers are sent to the placement algorithm for Optimal 
Placement of it. 

 The rest of the paper is organised as follows. Section 2 
describes the Controller Placement Problem (CPP). In 
section 3 related works to CPP is discussed. Section 4 
describes the proposed methodology for controller 
placement and for analysing and predicting network traffic. 

In section 5 a greedy approach is applied for distributing 
the load to controllers and how controller numbers are 
decided dynamically is presented. In section 6 results and 
comparisons are shown. Finally ends with a conclusion.  

2. Controller Placement Problem (CPP)

In SDN networks, the Controller Placement Problem (CPP) 
can be defined as identifying the number of controllers to 
be placed in the network and its optimal locations for its 
placement. The Figure1 shows the SDN architecture. The 
Controller residing in the control plane is responsible for 
all network management activities. Whenever a packet is 
received by the switch, the switch looks into the flow table. 
If no match is found for that flow, the switch sends the 
packet as PACKET_IN message to the controller [1]. The 
Controller defines flow-rule for the packet and sends back 
to the switch as PACKET_OUT message. The Controllers 
are connected in a one-hop distance to the switch logically, 
but in reality, they are connected in multi-hop distance. The 
controller should be connected in such a way that the 
communication delay between the switch and the controller 
is minimal.  

Figure 1. SDN architecture 

During the early stage of SDN, a single controller [5] 
was deployed to control all the managing activities in the 
network. But “a single controller is always prone to ‘single-
point failure’”. Hence the idea of placing multiple 
controllers in network was introduced [5]. The major 
setback with multiple controller scenario is deciding on the 
number of controllers have to be placed and where to place 
those controllers in the network. Figure 2 shows the 
controller connected in minimal delay with the switches. 

Figure 2. Controller- Switch connected with minimal 
latency 
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3. Related Work

The Controller Placement Problem (CPP) has attracted 
many researches to put forth their ideas for identifying 
optimal controller locations in the network. The major 
parameter considered for optimized controller placement 
was latency. The related work is categorised into two 
categories namely SDN Controller Placements and SDN 
Traffic Management as shown in the Figure 3. The first 
category presents the works related to CPP with “latency” 
as a parameter to be minimized and the second category 
presents the works related to SDN controller using machine 
learning methodologies. 

Figure 3. Related work on SDN Controller 
Management 

3.1 Controller Placement based on Latency 
as objective parameter: 

This section presents the related work in the CPP with 
respect to minimizing the latency between the controller 
and the switch. In [4], the CPP was addressed for the first 
time. The problem was mapped onto the Facility Location 
Problem to identify the optimal controller locations. The 
latency between the controller and the switches was taken 
as the parameter to optimize placements of controller.  
In [5,6], the authors proposed a Pareto Optimal Controller 
Placement (POCO) and has taken more cases with respect 
to the latency parameter. In addition to that, the authors also 
considered link/node failure scenarios to elevate their 
work. However, the number of controllers to be placed was 
not calculated and was given directly to the algorithm for 
optimal placements of controllers. In [7], the authors 
proposed a linear programming model to minimize the 
Flow Setup Time by minimizing the distance between the 
switch and the controller in a distributed environment. In 
[8], the authors proposed a Firefly algorithm to minimize 
the communication latency between the controller and the 
switch.  

In [9], a modified K-Means algorithm was proposed for 
the CPP in SDN. In that, for initial cluster selection, 
shortest path was calculated and the nodes with minimum 
distance were selected as the initial controller placements. 
Then using those points, the improved K-Means algorithm 
is used for optimal controller placement. In [10], a 
distributed controller layout problem was designed for the 
wide-area networks which aims to minimize the controller-
to-controller latency and tried to balance the controller 
load. In [11], the authors proposed a Pareto Integrated Tabu 
Search (PITS) for optimal controller placements and also 

addressed the link/node failure and a greedy technique to 
perform migration in case of failure/controller load 
imbalance situations. 

3.2 SDN Traffic Management: 

This section gives insights to the work related to the 
machine learning algorithms proposed for the traffic 
management in SDN Controller. The Traffic management 
in SDN controller focussed more on classification of input 
traffic, providing Quality of Service (QoS) and identifying 
the network attack patterns. The traffic management in 
SDN is shown in Figure 4. 

Figure 4. SDN Traffic Management 

In [12], authors proposed a Decision Tree (DT) model 
to classify the input packet flow. This work classifies 
Elephant flows and Mice flows from the input packet and 
to predict the same. In [13], various machine learning 
algorithms both supervised and unsupervised algorithms 
were analysed to classify the traffic from various 
applications such as Facebook, YouTube, LinkedIn and 
other applications. The data for traffic classification were 
collected from the OpenFlow protocol of SDN and 
machine learning algorithms are applied to classify the 
traffic. Finally, they concluded that the Supervised 
Machine Learning techniques performs better than the 
Unsupervised methods. In [14], a QoS aware traffic 
classification method was achieved by using Semi-
Supervised model and DPI. Initially, DPI was used to 
inspect the packets and then they were labelled. The 
labelled dataset was sent to the Semi-Supervised model for 
classification of applications and QoS was achieved. In 
[15], authors extended the SDN framework to the wireless 
network. Using the ML approach, the traffic classification 
was performed for mobile applications. They achieved an 
average of 95.5% classified data. By analysing the traffic, 
a framework was proposed and it was analysed for network 
performance using network parameters such as throughput, 
network lifetime. 

In [16], an application awareness-based traffic 
classification was done. They created a framework called 
“Atlas” for the classification of various applications in 
android environment by incorporating ML and crowd 
sensing algorithm.  In [17], they developed a Back 
Propagation Artificial Neural Network to analyse the 
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integrated load for various paths in the network and the 
same was predicted. Based on the prediction, routing 
optimization was achieved. In NeuRoute [18], introduced 
a dynamic routing by classifying traffic and predicts the 
traffic matrix from which dynamic routing was performed. 
In [19], a machine learning approach for controller 
placement was done. Multilabel traffic classification was 
done to predict the controller placement. The algorithm 
predicted whether the placed controller will be available in 
the future or not. A neural network-based algorithm is 
designed for predicting controller placement. In [20,21], 
Deep Neural Network was developed for predicting 
intrusion detection in the network.  

In [22], the authors classified the controllers’ traffic into 
Low and High based on the number of packets and number 
of bytes received by the controller using Artificial Neural 
Network (ANN) and predicted the controller traffic. In 
[23], the authors proposed a methodology to improve the 
quality of controller by connecting switches to more than 
one controller in 70-30 ratio. They improved the 
performance of controller in reliability context. Buts not 
focussed to optimize the number of controllers to be 
placed. In [28], the authors addressed the Link Flooding 
Attacks (LFA) in wired and wireless SDN by identifying 
its attack types and variants. They categorised and 
compared the existing mitigation on LFA on SDN 
ecosystems. In [29], the authors classified the network 
traffic based on the applications in the SDN network. They 
used three different supervised model namely Support 
Vector Machine, Naïve Bayes, and Nearest centroid for 
classification and also addressed the challenges faced 
during live data capturing. 

From the existing work, it is obvious that either a 
mathematical model was formulated or a metaheuristic 
approach is mapped to solve CPP. When an ML approach 
is employed in SDN, either traffic classification or traffic 
prediction was performed. Classification primarily 
focussed on classification of application whereas 
prediction is done for network security purposes. Very few 
works have focussed on controller placement based on 
traffic classification and prediction. This work gives an 
insight in dynamic prediction of controller numbers and its 
optimal placement by classifying and predicting the 
network traffic using the Machine Learning technique. 

4. Proposed Methodology

In this section, the proposed approach for controller 
placement and traffic prediction is described. The 
controller placement is done by K-Means ++ algorithm and 
the prediction of LNH code is done by using Multi-class 
Logistic Regression technique. The proposed approach is 
depicted in Figure 5. 

Figure 5. Proposed methodology 

Initially, the controller positions are identified by means 
of the K-Means ++ initialization policy. Then the 
controllers are placed in the optimal locations using the 
same K-Means++ clustering technique. Once the 
controllers are placed in the optimal locations, the traffic is 
generated and captured. The captured traffic is classified as 
LNH code and the same is predicted. A greedy approach is 
proposed to distribute the predicted traffic among 
controllers and thus the number of controllers are identified 
and the numbers are given as input for the placement 
algorithm for its optimal placements. Here, we introduce a 
data manager to collect the traffic from the OpenFlow 
protocol, pre-processing it and sends the collected data to 
the Multi-class Logistic Regression algorithm for 
classifying and predicting the traffic. 

4.1 Proposed Methodology for CPP 

In the controller placement scenario, the communication 
latency between the controller and the switch should be 
minimum. Because, whenever a new packet arrives at the 
switch, the switch forwards the packet to the controller. 
The controller will decide on whether to forward/drop the 
packets. The controller processes the packets and sends 
forwarding rule to switches and it is shown in Figure 6. 

Figure 6. Packet Processing 

So, the controller has to be placed in the network in such 
a way that the latency between the controller and switch is 
always minimum. This minimum latency reduces the 
packet flow installation time which eventually reduces the 
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average delay of the network [24]. If the controller is 
placed far away to the switch, then the time for installing 
the forwarding rule will get increased which eventually 
affects the network performance. Therefore, the distance-
based K-Means++ clustering algorithm is adapted 
according to the CPP and optimal controller locations are 
identified.  

The Controller Placement Problem can also be viewed 
as network partition problem. The clustering methodology 
is one of the methods to solve the network partition 
problem. The K-Means is the straight forward algorithm to 
solve the above issue. The major disadvantage in the K-
Means is, it initially assumes the centroids randomly and 
tries to forms the clusters. In order to avoid it, the K-Means 
++ algorithm was introduced. The K-Means ++ defines the 
procedure to initialize the positions of centroids in the 
network and adapts K-Means to form clusters. This works 
applies the same procedure to find the optimal locations to 
place controllers in the network. 

In a network topology, G= (V, E) in which V represents 
the switches, E represents the link between the switches. 
Let C be the controllers to be placed in the network. The 
switches and the controllers are represented as follows: 
V= {v1, v2, v3,…,vn}, where n denotes the number of 
switches in the network 
 C= {c1,c2,c3, …,ck}, where k denotes the number of 
controllers located in the network  
The relation between the switch and controller can be 
defined as follows: 

𝐶𝐶⊂V 
Let 𝑋𝑋𝑣𝑣 =  {(𝑥𝑥𝑣𝑣1,𝑦𝑦𝑣𝑣1), (𝑥𝑥𝑣𝑣2,𝑦𝑦𝑣𝑣2), … , (𝑥𝑥𝑣𝑣𝑣𝑣 ,𝑦𝑦𝑣𝑣𝑣𝑣)}  be the 
position of switches in the topology and 𝑋𝑋𝑐𝑐 =  {(𝑥𝑥𝑐𝑐1,𝑦𝑦𝑐𝑐1),
(𝑥𝑥𝑐𝑐2,𝑦𝑦𝑐𝑐2), … , (𝑥𝑥𝑐𝑐𝑐𝑐 ,𝑦𝑦𝑐𝑐𝑐𝑐)} be the position of controllers in 
the topology. 

After placing the controllers in the network, the 
topology G can be defined as 𝐺𝐺 =  (𝑉𝑉,𝐸𝐸,𝐶𝐶). The first 
controller position is initialized uniformly random position 
in the network. This is similar to the K-Means algorithm 
but the key difference is that the other positions are not 
selected in the random manner. The D(x) is the distance 
parameter defines the distance between the initial 
controller position to the switches in the network. In the 
next step, the distance between the chosen controller 
position to all the switches in the network. The next 
controller position will be the one whose squared distance 
�𝐷𝐷(𝑥𝑥)�

2
 is the farthest to the initial controller position. 

Then from the second controller position, the next position 
will be calculated. The procedure gets repeated until the 
required number of controller positions are initialized.  

1. Now with the initialized controller position, the
K-Means algorithm is executed to get the optimal
controller position. Specify the number of
controllers to be placed in the network (k).

2. Initialize the initial controller positions in the
network and assign switches to it.

3. For all switches connected to the controller,
calculate the latency between the controller and

switch by computing the sum of squared distance 
between the initialized controller position and the 
switches connected to it. It can be calculated as 
follows: 

𝑃𝑃 = ∑ ∑ �𝑋𝑋𝑣𝑣𝑣𝑣 − 𝑋𝑋𝑐𝑐𝑐𝑐�
2𝑐𝑐

𝑐𝑐=1
𝑣𝑣
𝑣𝑣=1  ------ (1) 

where, �𝑋𝑋𝑣𝑣𝑣𝑣 − 𝑋𝑋𝑐𝑐𝑐𝑐�
2
 – squared distance between the

switch and the controller. 
4. If the initialized controller position is not optimal

i.e. the latency between the controller and the
switch is not minimum, then calculate the new
controller position by using the following
equation.

𝑃𝑃𝑣𝑣𝑐𝑐 = 1
P
∑ 𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣=1   ------- (2)

            where, 𝑃𝑃𝑣𝑣𝑐𝑐 is the new controller position and 𝑋𝑋𝑐𝑐𝑐𝑐 is 
the controller, which position to be recalculated. 

5. Repeat Step 3 and 4 until no change in the
controller positions.

6. Repeat the step 3,4, and 5 for other controllers to
be placed in the network.

Figure 7.  K-Means++ Clustering 

The clusters formed for the sample network is shown in 
Figure 7 and the arcs represents the clusters formed. The 
workflow of the controller placement is shown in Fig 8. 
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Figure 8. Work flow of Controller Placement 
technique 

Algorithm for Controller Placement:  
Input: G= (V, E), k, P (Placement set), 𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑐𝑐} 
Output: Optimal Controller location (P) 
1. Select the initial position c from C
2. for all switches i in V:
         D(x) = ∑ ‖𝑋𝑋𝑐𝑐1 − 𝑋𝑋𝑣𝑣𝑣𝑣‖𝑣𝑣

𝑣𝑣=1  
3. Choose the next position of controller 𝑐𝑐𝑣𝑣, choosing 𝑣𝑣 ∈

𝑉𝑉 with the probability 𝐷𝐷(𝑥𝑥)2

∑ 𝐷𝐷(𝑥𝑥)2𝑣𝑣∈𝑉𝑉

4. Repeat the steps until we have taken k initial controller
positions

Controller Placement: 
for all controllers (j) in k: 
       for all switches 𝑖𝑖 ∈ 𝑗𝑗 in n: 

min: 𝑃𝑃𝑐𝑐 = ∑ �𝑋𝑋𝑣𝑣𝑣𝑣 − 𝑋𝑋𝑐𝑐𝑐𝑐�
2𝑣𝑣

𝑣𝑣=1

 if 𝑃𝑃𝑐𝑐 is minimal 
    𝑃𝑃 ←  𝑃𝑃𝑐𝑐  

      else 
𝑃𝑃𝑐𝑐′ =  1

𝑃𝑃𝑗𝑗
 ∑ 𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣=1  

     goto min 
 j++ 

return P 
The controller positions for the topology LambdaNet is 
shown in Figure 9. Initially, 5 controllers are placed in the 
network. So, the number of clusters was initiated to 5. By 
calculating the latency between the centers (controllers) 
and the switches, the nodes which are assigned as 
controllers for LambdaNet network shown in Figure 7 are 
[1,40], [7,8], [13,34], [21,27], [36,37]. The controller and 
nodes assigned as follows: 
Cluster A: [40,2,33,41] 
Cluster B: [0,3,2,11,4,5,6,8,9,12,13,16,14,15,17] 
Cluster C: [8,26,29,15,24,30,35] 
Cluster D: [17,19,18,27,20,30,25] 
Cluster E: [32,35,36,37,40] 

Figure 9. LambdaNet network and its controller 
placements 

4.2 Traffic Classification and Prediction 
(TCP) SDN: 

In this section the Traffic Classification and Prediction 
(TCP SDN) is discussed. Traffic Classification and 
Prediction plays a vital role in network traffic management. 
The network resources can be efficiently utilized by 
managing the network traffic. This work, addresses the 
proper utilization of the controllers placed in the network 
by classifying and predicting the network traffic. In this 
work, the traffic is classified as Low, Normal, and High 
(LNH code). By predicting the traffic, the number of 
controllers to be placed can be varied dynamically by 
adding more controllers or removing some controllers in 
the network. Here, the Multi-Class Logistic Regression 
[25] is used to predict LNH code.

The entire work flow of this work is shown in Figure 10.
The proposed TCP SDN consists of the Traffic Monitoring 
(TM) module, Data Preparation (DP) module, and Traffic 
Analysis and Prediction modules (TAP).  
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Figure 10. Work flow of the Proposed Prediction 
mechanism 

The above modules will perform the following operations: 
1. Traffic generation
2. Traffic capturing
3. Data Pre-Processing and Feature Extraction
4. Model learning
5. Classification and
6. Prediction

Traffic Monitoring Module: 
This module performs Traffic generation and capturing. 
The network traffic is generated by using Iperf commands. 
The network traffic statistics can be collected from the 
OpenFlow Switches and from the Wireshark tool. The data 
is collected on that day and its previous day and combined 
together to form the dataset for data pre-processing. 
Data Preparation Module: 
The traffic management mechanism proposed in this paper, 
performs analysing the data, prediction of data, and 
calculating the threshold value for classifying LNH code. 
To perform this, the dataset needs to be transformed to the 
required format to train the model. The data manager 
resides here and performs the data transformation. The data 

manager starts data cleaning process starts by removing the 
unwanted attributes from the dataset.  

The first field in the dataset is time and is made atomic 
and the corresponding value are mapped to identify how 
much traffic is been generated at that time. The dataset 
consists of different types of data format which needs to be 
normalized (0-1) to the single format to make it suitable for 
the training. The standard scalar function is utilized to 
normalize the data. The standard value of a data point can 
be calculated as follows: 

𝑧𝑧 = (𝑥𝑥−𝑢𝑢)
𝑠𝑠

      --- (3) 
where, z is the normalized score, x is the value to be 
normalized, u is the mean and s is the standard deviation 
value. The attribute Controller is added to the dataset which 
is computed by identifying the switch to which controller 
it is connected. The final attribute Traffic is also added by 
analysing the attributes Time, N_Packets (number of 
packets transferred at that time) and N_Bytes (number of 
bytes transferred at that time). An average mean value is 
computed for the N_Packets and N_Bytes at the time T is 
used to set the threshold value for classifying the LNH 
code. The final dataset which is to be sent to the classifier 
algorithm contains 9 attributes in which 8 are independent 
attributes and 1, the target attribute is the dependent one. 
The data manager performs all the data cleaning and pre-
processing process and make the dataset ready for analysis. 
Traffic Analysis and Prediction (TAP): 
The TAP module performs classifier learning and 
predicting the LNH code. The classifier learning is the 
most important task in any machine learning process. The 
dataset is reduced to 70% with all the 9 attributes is set to 
learning phase. The remaining 30% of the dataset is set for 
testing. The dataset obtained contains 135678 data values 
on which 70% (94975) is set for training the classifier. The 
remaining 30% (40702) data values are set for testing.  
The classifier learning process begins deciding the solver, 
deciding C value (Inverse regularization strength), 
deciding multi- class value and tuning the hyperparameter 
𝛽𝛽 by computing its value. After deciding these values, the 
input data to the classifier learning is the Feature Matrix 
(FM). The FM consists of all the attributes in which 
analysis operation going to be performed. 
Suppose, the dataset has ‘m’ features and ‘n’ observed 
values, the Feature Matrix (FM) is represented as follows: 

𝐹𝐹𝐹𝐹 =  �

1 𝑎𝑎11 …
1 𝑎𝑎 …
⋮
1

⋮
𝑎𝑎𝑣𝑣𝑛𝑛

⋮
…

𝑎𝑎1𝑛𝑛
𝑎𝑎2𝑛𝑛
⋮

𝑎𝑎𝑣𝑣𝑛𝑛

� 

The number of classes needs to be classified are Low, 
Normal, and High (LNH code) and thus number of classes 
becomes 3 (k=3). In this proposed approach, the solver is 
set to ‘lbfgs’ and the multi-class is set to ‘OVR’. The OVR 
(One-vs-Rest) approach consider each class as binary 
model and applies regression on it. 
Let 𝑌𝑌𝑣𝑣 be the outcome corresponding to the ‘k’ classified 
class. The predictor function 𝑓𝑓(𝑘𝑘, 𝑖𝑖) is to be predicted for 
the 𝑖𝑖𝑡𝑡ℎ row can be calculated as follows: 
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𝑓𝑓(𝑘𝑘, 𝑖𝑖) =  𝛽𝛽0,𝑐𝑐 + 𝛽𝛽1,𝑐𝑐 𝑎𝑎1,𝑣𝑣 +  𝛽𝛽2,𝑐𝑐 𝑎𝑎2,𝑣𝑣 + ⋯+ 𝛽𝛽𝑀𝑀,𝑐𝑐𝑎𝑎𝑀𝑀,𝑣𝑣 ---
- (4)

where, 𝛽𝛽 is the regression coefficient to be tuned.  
The Logistic Regression is a predictive analysis algorithm 
that is based on the probability of the number of events 
occurred. The probabilities for LNH code are as follows: 
𝑃𝑃(𝑌𝑌𝐿𝐿 = 1 ∨ 𝑋𝑋; 𝜃𝜃) for class 1 (low traffic) 
𝑃𝑃(𝑌𝑌𝑁𝑁 = 2 ∨ 𝑋𝑋; 𝜃𝜃) for class 2 (normal traffic) 
𝑃𝑃(𝑌𝑌𝐻𝐻 = 3 ∨ 𝑋𝑋; 𝜃𝜃) for class 3 (high traffic) 
To fit the model, 

ℎ𝜃𝜃
(𝐿𝐿) = 𝑃𝑃(𝑦𝑦 = 𝑖𝑖 ∨ 𝑋𝑋; 𝜃𝜃) for low traffic, ℎ𝜃𝜃

(𝑁𝑁) =
𝑃𝑃(𝑦𝑦 = 𝑖𝑖 ∨ 𝑋𝑋; 𝜃𝜃) for Normal traffic, and 
ℎ𝜃𝜃

(𝐻𝐻) = 𝑃𝑃(𝑦𝑦 = 𝑖𝑖 ∨ 𝑋𝑋; 𝜃𝜃) for high traffic. 
The regression model for TCP SDN is shown in Figure 11. 

Figure 11. Traffic classification 

Here,   represents low traffic,    represents medium/normal 
traffic and high traffic is represented by   . . The model for 
LNH code is represented in Figure 12. 

Figure 12. LNH code classification 

The last layer of Multi- Class logistic Regression is 
SoftMax regression which integrates all the probability 
values to produce the final predicted traffic (𝑃𝑃𝑇𝑇) . Given the 
input to the SoftMax layer, it performs the exponential 
operation to all the input values (z) and makes all the values 
to be positive. The SoftMax function is defined as follows: 

𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑥𝑥(𝑧𝑧) =  𝑒𝑒𝑧𝑧

∑ 𝑒𝑒𝑧𝑧𝑖𝑖𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖=1

     ---- (5) 

The workflow of classifying and prediction is shown in 
Figure 13.  

Figure 13. Work Flow of TAP module 

Algorithm for Traffic Prediction: 
Input: Network Traffic Dataset 
Output: LNH code 
1. Generate Traffic using Traffic generating

commands.
2. Obtain Flow Table Statistics from OpenFlow

Switches and from the Wireshark tool.
3. The data cleaning process is carried out to

transform the attributes and normalize the
data to uniform format.

4. Feature Extraction is carried out and
attributes such as Controller and Traffic are
calculated.

5. Derive Feature Matrix (FM) from the selected
attributes.

6. Split Train (70%) and Test (30%) dataset
from the traffic dataset and tune the hyper
parameter 𝛽𝛽.

7. Perform the Classifier learning and predict
LNH code.
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4.3. Decision of Number of Controllers 
using Greedy approach: 

From the obtained traffic dataset, Controller Threshold 
(𝐶𝐶𝑇𝑇) is set by analysing the network traffic. To find out the 
𝐶𝐶𝑇𝑇, the Flow Installation Time (FIT) value is calculated. 
The point at which the FIT value increases and saturates 
that point is taken as the 𝐶𝐶𝑇𝑇. The number of controllers 
needed for the network is decided by using both the 
Predicted Traffic (𝑃𝑃𝑇𝑇) and the Controllers’ Threshold 𝐶𝐶𝑇𝑇.  
Each and every controller to be placed in the network is 
considered as a bin. The Predicted Traffic is allotted to the 
controller up to its threshold value 𝐶𝐶𝑇𝑇. The Predicted 
Traffic gets subtracted after the traffic is allotted to the 
controller. The number of controllers in which the 
Predicted Traffic is allotted is taken as the number of 
controllers needed for the network. By identifying and 
optimizing the number of controllers to be placed in the 
network, the controller quality can be improved and 
eventually network performance also increases.  

Algorithm for Deciding the Number of Controllers: 
Input:  Predicted Traffic (𝑃𝑃𝑇𝑇), Controller 

threshold (𝐶𝐶𝑇𝑇) 
Output: Number of Controllers 
1. Initialize number of controllers (𝐶𝐶𝐾𝐾) to 0
2. While (𝑃𝑃𝑇𝑇>0)
3.       If (𝑃𝑃𝑇𝑇 > 0 && 𝐶𝐶𝑇𝑇 <  𝑃𝑃𝑇𝑇) 

    𝑃𝑃𝑇𝑇 =  𝑃𝑃𝑇𝑇 −  𝐶𝐶𝑇𝑇 
    𝐶𝐶𝐾𝐾 + + 
    Continue; 

  Else 
  𝐶𝐶𝐾𝐾 + +  
 𝑃𝑃𝑇𝑇 = 0 

4. Return  𝐶𝐶𝐾𝐾

5. Result and Analysis

5.1. Experimental Setup and Performance 
Metrics for Controller Placement 

This section presents the experimental setup and the 
performance metrics taken to examine the performance of 
the proposed method. The proposed K-Means++ algorithm 
is written in Python and the controller placement scenario 
is executed in the Mininet emulator. The Mininet Emulator 
is an exclusive environment to simulate Software-Defined 
Networks [26]. The controller used for the experiment is 
the POX controller and the OpenFlow switch version is OF 
1.3. Many network topologies are considered for executing 
the K-Means++ algorithm. The topologies are taken from 
the standard Internet Topology Zoo [27] and the topologies 
considered are LambdaNet, IRIS, Forthnet, BTN, 
Bellsouth, Arpanet, Abvt, and Sprint.  

The proposed K-Means++ is evaluated by comparing 
the proposed with the existing algorithm Pareto Integrated 

Tabu Search (PITS) [5], Genetic Algorithm (GA), standard 
K-Means, and with the Random Placements (RP). All the
algorithms are executed numerous times and the best of it
is shown here. In all the runs, the proposed approach
outperforms the other two approaches. Additionally, the
following situations are implemented to evaluate the
controller performance.

A single controller scenario. A single controller is 
placed in the optimal location of the network and the 
performance was analysed. 

The controller and the switches are far away from each 
other. Here, the switches are purposefully connected to the 
controller which is far away to the switches. So that the 
performance of the controller can be evaluated. 

In the SDN scenario, the controller plays a vital role in 
evaluating network performance. So, the time taken to 
install the flows to the switch is taken as the major 
parameter for evaluating the controller performance. The 
other parameters taken are Average delay and Network 
Throughput. 

Flow Installation Time (FIT): 
Flow Installation Time is, time taken by controller to 
analyse packet and sending forwarding rules to switches. It 
can be calculated as follows: 

𝐿𝐿𝑓𝑓𝑣𝑣𝑡𝑡 = �(𝐿𝐿𝑠𝑠𝑐𝑐 ∗ 𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑓𝑓𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝐸𝐸𝑃𝑃𝐼𝐼𝑁𝑁) + (𝐿𝐿𝑐𝑐𝑠𝑠 ∗
𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑓𝑓𝑃𝑃𝑎𝑎𝑐𝑐𝑘𝑘𝑛𝑛𝑠𝑠𝑂𝑂𝑂𝑂𝑇𝑇)� --- (4) 

 where,  
𝐿𝐿𝑆𝑆𝐶𝐶 – Latency between the switch and the controller 
𝐿𝐿𝐶𝐶𝑆𝑆 – Latency between the controller and switch  
𝐿𝐿𝐶𝐶𝑆𝑆  can be calculated as follows:  

𝐿𝐿𝐶𝐶𝐶𝐶 = ∑ ∑ 𝑑𝑑�𝑆𝑆𝑣𝑣 ,𝐶𝐶𝑐𝑐�𝑐𝑐
𝑐𝑐=0

|𝑉𝑉|
𝑣𝑣=0          --- (5) 

where, 

d(Si, Cj)  defines the latency between the switch and the 
controller 
k defines number of controllers 

Average Delay: 
The Average Delay is defined as the delay recorded for 
installation of flow rules and the time to transmit the 
packet. 
The Average Latency (DAVG) can be calculated as 
follows: 

𝐷𝐷𝐴𝐴𝑣𝑣𝐴𝐴 =
𝑃𝑃𝐴𝐴𝐴𝐴+𝐿𝐿𝑓𝑓𝑖𝑖𝑓𝑓+𝑃𝑃𝐹𝐹𝐴𝐴

𝑣𝑣𝑢𝑢𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑒𝑒𝑡𝑡𝑠𝑠
  ---- (6) 

where, 
PAT   defines Packet Arrival Time 
Lfit defines Flow Installation Time 
PFT defines Forwarding Time 

Throughput: 
It is defined as the average data rate of successful 
transmission of data. It is defined in bits/s. 

5.2 Results and Comparison of CPP: 

Flow Installation Time: 
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The FIT for all the algorithms is calculated and presented 
in Figure 14. The FIT value of the proposed K-Means++ 
shows an improvement in lowering the time for installing 
flow rules to switches. The proposed is compared with the 
existing algorithms and the proposed algorithm performs 
on an average of 60-70 % (approximately) better than the 
other methodologies. 

The lowest recorded FIT value is 10ms in LambdaNet 
topology for the proposed K-Means++ algorithm and the 
high FIT value recorded for the proposed approach is 
50ms. The average FIT value of the proposed approach is 
32ms approximately which is quite low when compared 
with the other mechanisms taken for comparison. From the 
graph, it is evident that the proposed K-Means++ 
outperforms the other algorithms. 

Figure 14. Flow Installation Time 

Average Latency: 
The Figure 15 illustrates the recorded average delay for 
transmitting packets from the source to destination of all 
the algorithms in different topologies.  

Figure 15. Average Latency 

The average delay is recorded very low for the proposed 
approach which is less than 50ms. The average latency 
value of proposed shows improvement in lessening the 
average delay of network for all the topologies. When the 
proposed work is compared with other methodologies, the 
average delay decreased to 55-67% approximately which 
certainly shows the greater performance of the proposed 
approach. The average value of average delay of the 
proposed approach is very low when compared with other 
algorithms. 

Throughput: 
The Figure 16 depicts the throughput obtained for various 
topologies of the proposed and the other algorithms taken 
for comparison. 

Figure 16. Throughput 

The average throughput of the proposed methodology is 
6.7*10^9 bits/s. The higher throughput gained for the 
proposed K-Means++ is in the IRIS topology. From the 
above graph, it is evident that the proposed performs better 
than the other methods considered here. On an average of 
20-30 % improvement in throughput of proposed approach
when compared with other methods.

5.3 Experimental Results for the Single 
Controller Scenario: 

A single controller is placed in the location of the network 
using the proposed K-Means++ approach. A single 
controller is placed so that the performance of the network 
as well as the controller can be evaluated. When a single 
controller was placed in the network, the single controller 
is able to respond (PACKET_OUT) to all the incoming 
PACKET_IN messages received from all the switches 
presented in the network. The overhead occurred in this 
scenario is, the time to install the forwarding rules to the 
switches.  

Since, a single controller was placed, it is its 
responsibility to process all the incoming packets and make 
decision to all the incoming PACKET_IN messages. The 
FIT got increased which ultimately affects the average 
delay.  The switches which are closer to the controller got 
the forwarding rules installed quicker than the switches that 
are far away from the controller.   

The topologies in which the single controller was placed 
are Iris, Forthnet, BTN, Chinanet, and LambdaNet. For the 
experimental purpose, a single controller was placed using 
K-Means++ algorithm and the metrics were analysed. For
the comparison purpose, a single controller was placed
randomly in the network and the performance was
analysed. In both the methods of placing a single controller,
K-Means++ performed much better than the random
placements of controller in the network. The Figure
17,18,19 presents the FIT, Average delay and throughput
of K-Means++ and Random Placement of single controller.
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Figure 17. Flow Installation Time 

 

Figure 18. Average Latency 

Figure 19. Throughput 

5.4 Controller and Switches Increased 
Latency: 

In this scenario, the controller and switches are placed in 
such a way that the controller and switches are far away 
from each other. In order to analyse the FIT for the 
PACKET_IN messages, this scenario is simulated. Here, a 
single controller is placed anywhere in the network. The 
same network commands used in above cases are used to 
generate traffic. In this scenario, particularly the switch 
which is connected far away from the controller and the 

switch which is nearer to the controller is identified and 
those switch performances were analysed for the 
topologies includes Iris, Forthnet, BTN, Chinanet, and 
LambdaNet. The Figure 20 shows the FIT when the switch 
is connected to the nearest controller and to the farthest 
controller. 

Figure 20. FIT when the switches are connected to 
the nearest and farthest controller 

From the observed result, it is evident that the switch 
which is connected to the closest controller will have low 
FIT. So, the controller should be placed in the network in 
such a way that the latency between the controller and the 
switches connected to it is low. 

5.5 Experimental setup and Performance 
metrics for Traffic Analysis and Prediction: 

This section explains the experimental setup for traffic 
analysis and prediction. The Multi-class Logistic 
Regression algorithm is written in Python and executed 
using Juypter Notebook. The proposed model is compared 
with relevant multi-class models. The models taken for 
comparing our proposed work are Naïve-Bayes and 
Support Vector Machine.  
Performance Metrics: 

Precision, Recall, f1score, accuracy and 
hamming loss are used as performance metrics to evaluate 
the performance of the model. 
Precision: 

It is defined as number of true positive rate (Tp) 
over the sum of number of true positives and false 
positives (Fp) and it is calculated by using equation 7. 

𝑃𝑃𝑛𝑛𝑛𝑛𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 = 𝑇𝑇𝑝𝑝
𝑇𝑇𝑝𝑝+𝐹𝐹𝑝𝑝

   ---- (7) 

Recall: 
It is defined as the number of true positives over 

the sum of true positives and the number of false 
negatives (Fn) and it is calculated as in equation 8. 

𝑅𝑅𝑛𝑛𝑐𝑐𝑎𝑎𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑝𝑝
𝑇𝑇𝑝𝑝+𝐹𝐹𝑛𝑛

 ---- (8) 

F1-Score: 
The F1-score is defined as the “harmonic mean of 
Precision and Recall”. This can be calculated by using 
equation 9. 
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F1-Score = 2 ∗ (𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑣𝑣𝑠𝑠𝑣𝑣𝑛𝑛𝑣𝑣∗𝑛𝑛𝑒𝑒𝑐𝑐𝑛𝑛𝑟𝑟𝑟𝑟)
(𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑣𝑣𝑠𝑠𝑣𝑣𝑛𝑛𝑣𝑣+𝑛𝑛𝑒𝑒𝑐𝑐𝑛𝑛𝑟𝑟𝑟𝑟)

   ---- (9) 
The following are the precision, recall, and F1-score 
values obtained from the experiment. 

From the precision – recall values shown above, it is 
evident that the multiclass logistic regression performs well 
in predicting the values. Here, 1 stand for low traffic, 5 
stands for normal/regular traffic, and 10 stands for high 
traffic. The multi class LR is compared with Naïve Bayes, 
Support Vector Machine (SVM). The Figure 21 shows the 
comparison of various models. 

 

Figure 21. Model Accuracy 

Hamming Loss: 

It can be defined as the “fraction of incorrectly predicted 
samples” from the dataset. The following Figure 22 shows 
the hamming loss of each model.  

Figure 22. Hamming Loss 

5.6 Number of Controllers after Traffic 
Prediction: 

The future traffic of the network is predicted and from 
which the number of controllers needed for the predicted 
traffic is calculated. The number of controllers required for 
controlling the predicted network traffic for various 
topologies during low, regular, and high traffic are shown 
in Figure 23. 

   Figure 23. Predicted Number of Controllers     

The predicted number of controllers sent as the input to 
the K-Means++ algorithms and are placed in optimal 
locations of the network.  The controllers’ number can be 
either increased or decreased according to the network 
traffic and this assures the dynamic decision on controllers’ 
number to be placed in the network. 

5.7 Effect of Varying the Controllers’ 
Threshold: 

Here, the performance of network is also analysed by 
varying the threshold value from 1000kreq/s to 2000kreq/s. 
The following graphs are the plots of controllers’ 
performance with respect to varying threshold. The Figure 
24 depicts the FIT value for various threshold. 

Figure 24. FIT 
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Figure 25. Average Latency 

Figure 26. Throughput 

The above Figure 25 and 26 shows the network 
performance with different controller threshold values in 
terms of Average Latency and Throughput of proposed K-
Means++ for various topologies. 

6. Conclusion

In SDN, the controller plays a vital role in network 
management. Since all the network activities are managed 
by the controller, it is essential to find optimal number of 
controllers and place them in optimal locations. In this 
work, we proposed a method which dynamically decide the 
number of controllers and their optimal placement in the 
network. The proposed model analyses and predict the 
network traffic and classify it into LNH code. This was 
achieved using the Multi-class Logistic Regression model. 
From the predicted traffic (LNH code), a greedy approach 
was designed to decide the optimal number of controllers 
to manage the predicted traffic. Then the optimal number 
of controllers are placed in the optimal locations in the 
network using the adapted K-Means++ algorithm. The 
propose methods were analysed for various performance 
and compared with the existing methodologies. From the 
experimental results, it is evident that the proposed 
approach performs better than the existing works. In the 
future, this work can be extended to detect network attack 
patterns. 
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