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Abstract. Considered by the behavior of the finite automaton in a fuzzy environment that 
punishes or encourages an automaton with some fixed membership functions that are 
independent of time. Using the properties of the generalized Markov chain it is shown 
that the finite automaton under consideration in a fuzzy environment learns and more 
often performs that the action the punishment for which is minimal. 
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1  Introduction 

The methods of the theory of Markov chains and processes are widely used in the study of 
processes of different nature. As an example, one can point to a description of the behavior of 
finite automata in a stationary random environment, which punishes or encourages an 
automaton for performing an action with some fixed probabilities. It should be noted that the 
beginning of a systematic study of the questions of the behavior of finite automata in a 
stationary random environment - as a task of choice one of several actions with random 
reinforcement - is connected M. L. Tsetlin's. His belongs owns the well-known construction of 
a finite automaton with linear tactics, which forms an asymptotically optimal sequence in a 
stationary random environment [1]. However, for the first time, the a task of sequentially 
choosing one of two methods of action, each of which can lead to success or failure was 
considered in [2].  Then V. I. Krinsky, by the same rule to construct   a finite automaton and 
studied its behavior in a stationary random environment [3]. The developed approach for 
studying the behavior of automata in a stationary random environment in [1, 3] was based on 
the study of the final (at time t → ∞) probabilities of Markov chains describing the behavior of 
these automata in a stationary random environment. It was believed that the sequence of finite 
automata of V. I. Krinsky, unlike a finite automaton with linear tactics by M. L. Tsetlin’s, is 
asymptotically optimal (with respect to the memory capacity of the automaton n → ∞) in any 
stationary random environment. However, further research showed [see e.g. 4] that this 
automaton in a probabilistic environment unconditional optimal behavior does not possess: its 
behavior in a random environment can turn out to be both optimal  and anti-optimal. It should 
be noted that the study of the behavior of automata in a random environment is based on the 
classical apparatus of probability Markov chains, which has serious experimental support in 
statistics. For the analysis of systems with fuzzy information, such an experimental base is not 
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yet available. Therefore, the results obtained in the this article can be considered as one 
example for the statistics fuzzy systems. An analysis of the behavior of automata in a fuzzy 
environment became possible after a certain generalization of the apparatus of Markov chains 
to non-probabilistic case [5]. Using this apparatus, in [6] the behavior of an automaton with 
linear tactics  M. L. Tsetlin's was considered and it was shown that under certain additional 
conditions for environment parameters, the behavior of an automaton with linear tactics in a 
fuzzy environment is asymptotically optimal. In this paper considered the behavior of the 
finite automaton of V. I. Krinsky in a fuzzy environment, which punishes or encourages an 
automaton with some fuzzy membership functions. Using the properties of the generalized 
Markov chain it is shown that the finite automaton under consideration in a fuzzy environment 
learns and more often performs the action the punishment for which is minimal. 

 

2  The Behavior of  The   Finite Automaton  V. I. Krinsky's  in  a Fuzzy 
Environment 

 
The finite automaton of  V. I. Krinsky 𝐷𝐷2𝑛𝑛,2 has 2𝑛𝑛 internal states 𝐿𝐿(𝑛𝑛) = 𝐿𝐿1

(𝑛𝑛) ∪ 𝐿𝐿2
(𝑛𝑛), 𝐿𝐿1

(𝑛𝑛) ∩
𝐿𝐿2

(𝑛𝑛) = ∅   and in the states of the region 𝐿𝐿𝛼𝛼
(𝑛𝑛), 𝛼𝛼 = 1, 2  the automaton performs the action 𝑓𝑓𝛼𝛼, 

𝛼𝛼 = 1, 2.  At encouragement, an automaton from any state of depth  𝑥𝑥 = 𝑗𝑗 ( 𝑗𝑗 = 1,2, … ,𝑛𝑛)   
goes into the deepest state 𝑥𝑥 = 𝑛𝑛 of the region 𝐿𝐿𝛼𝛼

(𝑛𝑛),  𝛼𝛼 = 1, 2,  and at punishment  an 
automaton from any state of depth 𝑥𝑥 = 𝑗𝑗 goes into an neighboring state depth 𝑥𝑥 = 𝑗𝑗 − 1, 𝑗𝑗 =
2,3, … ,𝑛𝑛. A change in the actions of the automaton occurs from the state of depth  𝑥𝑥 = 1: the 
automaton, being in the state of depth  𝑥𝑥 = 1 in the region 𝐿𝐿𝛼𝛼

(𝑛𝑛) and receives a punishment, it 
goes into the state of the same depth 𝑥𝑥 = 1  of the region 𝐿𝐿𝛽𝛽

(𝑛𝑛),  𝛼𝛼,𝛽𝛽 = 1, 2, 𝛼𝛼 ≠  𝛽𝛽. The graph 
of transitions between the states of the automaton  𝐷𝐷2𝑛𝑛,2 is shown in Figure 1.  

 
 
Fig.1. The graph of transitions between the states of the automaton with two actions  𝐷𝐷2𝑛𝑛,2 in the region  

𝐿𝐿𝛼𝛼
(𝑛𝑛), 𝛼𝛼 = 1,2. 

 
Let the automaton 𝐷𝐷2𝑛𝑛,2 be placed in a fuzzy environment and assume, as in [6], that 𝜇𝜇𝑗𝑗

(𝛼𝛼)(𝑡𝑡) 
means the function of belonging to states depth  𝑥𝑥 = 𝑗𝑗 and appropriate  the action 𝑓𝑓𝛼𝛼, 𝛼𝛼 = 1, 2  
at time 𝑡𝑡 = 1,2, …. . Assume that at each moment of time the automaton either receives a 



punishment with the membership function  𝜆𝜆𝛼𝛼, or a encouragement  with the membership 
function  1 − 𝜆𝜆𝛼𝛼,  𝛼𝛼 = 1, 2. We note that the quantities 𝜆𝜆𝛼𝛼 (hence 1 − 𝜆𝜆𝛼𝛼)  𝛼𝛼 = 1, 2 are 
unobservable quantities and  they are time independent, i.e., the fuzzy environment is 
stationary. Note also, the transitions between the states of the automaton inside the region 𝐿𝐿𝛼𝛼

(𝑛𝑛), 
𝛼𝛼 = 1,2 are identical and differ only in membership functions 𝜆𝜆𝛼𝛼  and 1 − 𝜆𝜆𝛼𝛼  , 𝛼𝛼 = 1, 2   
which means that the nature of the environment is not known in advance to the automaton.  
We will also assume that the “automaton-fuzzy environment” system is described by a 
generalized Markov chain [6], which is ergodic and, therefore, with time stationary 
membership quantities form in it. Then, by virtue of [5], we have that the “fuzzy flows” from  
𝐿𝐿1

(𝑛𝑛) in 𝐿𝐿2
(𝑛𝑛) and are inversely balanced, i.e.   

 
𝜆𝜆1𝜇𝜇1

(1) = 𝜆𝜆2𝜇𝜇1
(2).                                                          (1) 

 
Given the design of the automaton, relatively fuzzy flows inside the region 𝐿𝐿1

(𝑛𝑛) we have that 
the fuzzy flow from the state of depth 𝑥𝑥 = 𝑗𝑗  to the state of depth 𝑥𝑥 = 𝑗𝑗 − 1 is equal to the sum 
of fuzzy flows from the state of    depth   2, 3, . . . , 𝑗𝑗 − 1. Thus   have: 

 
𝜆𝜆1 𝜇𝜇2

(1) = (1 − 𝜆𝜆1)𝜇𝜇1
(1), 

 
𝜆𝜆1 𝜇𝜇3

(1) = (1 − 𝜆𝜆1)�𝜇𝜇1
(1) + 𝜇𝜇2

(1)�, 
.  .  .   .  .   .    . 

𝜆𝜆1 𝜇𝜇𝑖𝑖
(1) = (1 − 𝜆𝜆1)�𝜇𝜇𝑘𝑘

(1)
𝑖𝑖−1

𝑘𝑘=1

, 𝑖𝑖 = 2,3, … ,𝑛𝑛,                               (2) 

.   .   .    .    .    . 
 

𝜆𝜆1 𝜇𝜇𝑛𝑛
(1) = (1 − 𝜆𝜆1)�𝜇𝜇1

(1) + 𝜇𝜇2
(1)+ .  .  . +𝜇𝜇𝑛𝑛−1

(1) �. 
 

Similarly, for the region  𝐿𝐿2
(𝑛𝑛)  will have: 

 
𝜆𝜆2 𝜇𝜇2

(2) = (1 − 𝜆𝜆2)𝜇𝜇1
(2), 

 
𝜆𝜆2 𝜇𝜇3

(2) = (1 − 𝜆𝜆2)�𝜇𝜇1
(2) + 𝜇𝜇2

(2)�, 
.   .   .    .    .    . 

            𝜆𝜆2 𝜇𝜇𝑖𝑖
(2) = (1 − 𝜆𝜆2)�𝜇𝜇𝑘𝑘

(2)
𝑖𝑖−1

𝑘𝑘=1

, 𝑖𝑖 = 2,3, … ,𝑛𝑛,                                    (3) 

.   .   .    .    .    . 
 

𝜆𝜆2 𝜇𝜇𝑛𝑛
(2) = (1 − 𝜆𝜆2)�𝜇𝜇1

(2) + 𝜇𝜇2
(2)+ .  .  . +𝜇𝜇𝑛𝑛−1

(2) �. 
 

From (2) and (3) express all  𝜇𝜇𝑗𝑗
(1) and  𝜇𝜇𝑗𝑗

(2)    ( 𝑗𝑗 = 2,3, … ,𝑛𝑛)   through   𝜇𝜇1
(1)  and  𝜇𝜇1

(2) 
respectively. As a result,  obtain  

 



 𝜇𝜇𝑗𝑗
(1) =

1 − 𝜆𝜆1
𝜆𝜆1

𝑗𝑗−1  𝜇𝜇1
(1),          𝜇𝜇𝑗𝑗

(2) =
1 − 𝜆𝜆2
𝜆𝜆2

𝑗𝑗−1  𝜇𝜇1
(2),                                    (4) 

    𝑗𝑗 = 2,3, … ,𝑛𝑛. 
From (1)  

 𝜇𝜇1
(2) =

𝜆𝜆1
𝜆𝜆2

 𝜇𝜇1
(1) 

and finally  will have  
 

 𝜇𝜇𝑗𝑗
(1) =

1 − 𝜆𝜆1
𝜆𝜆1

𝑗𝑗−1  𝜇𝜇1
(1), 

 

 𝜇𝜇𝑗𝑗
(2) =

𝜆𝜆1
𝜆𝜆2

  
1 − 𝜆𝜆2
𝜆𝜆2

𝑗𝑗−1  𝜇𝜇1
(1), 

 
𝑗𝑗 = 2,3, … ,𝑛𝑛.  

 
We now define the fuzzy membership functions 𝑀𝑀(𝛼𝛼) of the state of the automaton to the 
region 𝐿𝐿𝛼𝛼

(𝑛𝑛), 𝛼𝛼 = 1, 2. In [7], it was shown that the final membership function 𝜃𝜃   coming from 
𝑛𝑛 sources 𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑛𝑛 is determined by the expression  

 
𝜃𝜃(𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑛𝑛) = �𝛽𝛽𝑖𝑖

𝑖𝑖

−�𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗
𝑖𝑖≠𝑗𝑗

+ � 𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗𝛽𝛽𝑘𝑘
𝑖𝑖≠𝑗𝑗≠𝑘𝑘

− .   .  . 

which  can be rewritten in the following form   
 

𝜃𝜃(𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑛𝑛) = 1 − (1 − 𝛽𝛽1)(1 − 𝛽𝛽2).  .   . (1 − 𝛽𝛽𝑛𝑛) = 1 −�(1 − 𝛽𝛽𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

. 

Then the fuzzy final membership function 𝑀𝑀(1) of the state of the automaton of the region 
𝐿𝐿1

(𝑛𝑛), in which the automaton performs the first action,  
 

𝑀𝑀(1) = 1 −��1 −  𝜇𝜇𝑗𝑗
(1)� =

𝑛𝑛

𝑗𝑗=1

1 − �1 −  𝜇𝜇1
(1)���1 −

1 − 𝜆𝜆1
𝜆𝜆1

𝑗𝑗−1 𝜇𝜇1
(1)�

𝑛𝑛

𝑗𝑗=2

.                (5) 

 
Similarly, for the second action of the automaton, we obtain  
 

𝑀𝑀(2) = 1 −��1 −  𝜇𝜇𝑗𝑗
(2)� =

𝑛𝑛

𝑗𝑗=1

1 − �1 −  𝜇𝜇1
(2)���1 −   

1 − 𝜆𝜆2
𝜆𝜆2

𝑗𝑗−1 𝜇𝜇1
(2)� ,

𝑛𝑛

𝑗𝑗=2

 

 
which can be expressed in terms of  𝜇𝜇1

(1) in the following form 
 

𝑀𝑀(2) = 1 − �1 −
𝜆𝜆1
𝜆𝜆2

 𝜇𝜇1
(1)���1 −

𝜆𝜆1
𝜆𝜆2

  
1 − 𝜆𝜆2
𝜆𝜆2

𝑗𝑗−1 𝜇𝜇1
(1)�

𝑛𝑛

𝑗𝑗=2

.                                 (6) 



The value of the positive quantity  𝜇𝜇1
(1) ≤ 1  in the expressions 𝑀𝑀(1) and 𝑀𝑀(2) can be found 

from the obvious consideration   𝑀𝑀(1) + 𝑀𝑀(2) = 1. We now analyze expressions (5) and (6). 
Suppose that the automaton’s memory depth n is finite and the membership function for the 
punishment for the action 𝑓𝑓1 is less than the membership function for the punishment for the 
action 𝑓𝑓2,  i.e. 𝜆𝜆1 < 𝜆𝜆2  (therefore, the membership function for the encouragement for the 
action 𝑓𝑓1 will be greater than the membership function for the encouragement  for the action 
𝑓𝑓2, i.e. 1 − 𝜆𝜆1 > 1 − 𝜆𝜆2). Then from (5) and (6) it is easy to establish that 𝑀𝑀(1) > 𝑀𝑀(2). Now 
let 𝑛𝑛 → ∞. Then from (5) and (6) it is unambiguously impossible to establish which of the 
quantities 𝑀𝑀(1)  and 𝑀𝑀(2) is greater. Indeed, taking into account the design of the automaton, 
one can make the following analysis: if at the initial instant of time the automaton is in the 
state of the region  𝐿𝐿𝛼𝛼

(𝑛𝑛), 𝛼𝛼 = 1, 2, then at the first encouragement   it can end up in the deepest 
state of one or another areas and from which it will be practically impossible to exit (therefore, 
change actions) in a finite number ofstep. Consequently, the behavior of the automaton can 
turn out to be both optimal and anti-optimal. 

 
3  Conclusion 
  
The results obtained show  at  functioning finite automaton V. I. Krinsky's in a fuzzy 
environment, be observed the fact of his learning and  in a fuzzy environment its behavior is 
expedient: automaton in a fuzzy environment often performs the action for which the 
punishment is minimal. Regarding asymptotic optimality, we can say that   V. I. Krinsky's 
finite automaton in a fuzzy environment  not have obvious optimal behavior: its behavior in a 
fuzzy  environment can turn out to be both optimal  and anti-optimal. Thus, the finite 
automaton of V. I. Krinsky in a fuzzy environment behaves in the same way as in a 
probabilistic environment. 
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