
Overview of Secure File Share Over Mobile Network

Mohd Kamil Hussain, Siddhartha Sankar Biswas*, Safdar Tanweer, Zunaid

Aalam

{* Corresponding author : ssbiswas1984@gmail.com}

Jamia Hamdard, New Delhi - 110062

Abstract. Secure file sharing is application that enable sharing of files between mobile

devices with least involvement of external http server. Generally QT is a framework used

for development of embedded applications such as Elevator control panel, Washing

Machine program selector and Router management system etc. With release of QT5 the

domain of application development has broaden to personal computers and mobile

devices.I have used this framework to develop and generate apk for this application.The

core part of this study has been dedicated to development of communication model and

defining a protocol and flow of file sharing process, I have also developed some custom

components to fill the gap of QT framework in realm of android application. I have

developed light encryption method and authentication mechanism to keep the file sharing

more secure.

Keywords: Application workflow, Server component, Client Component, Listener Cycle

1 Introduction

The practice of sharing digital media such as documents, multimedia (audio/video),

graphics, computer programs, images and e-books etc is the primary requirement of any

information system. The main reasons for motivation behind the selection of this study is that

traditional file sharing applications rely on a server to share data between devices on different

networks. The server is a middle man which receives the information from one source and

stores it with itself and then relays it to intended recipient when it is connected. Server can

eavesdrop, manipulate or deny the message altogether. This dependency on server is risky for

communication in organizations where security is of prime importance such as security

agencies and scientific research facilities etc. In scenarios like Disaster Management and

Rescue Operations deployment of server is difficult. Mobile devices have increased their

potential by using powerful processors and enhanced storage capacity. The military uses a

secure and captive network facilities exclusively, where this application can be deployed

without any scope of misuse.

2 Application workflow

This application will be consisting of two broad components one for sending a file to

another device and other for receiving the incoming file and saving it in device. These are

called a sender and receiver respectively, by analogy to Internet based applications, a sender is

ICIDSSD 2020, February 27-28, New Delhi, India
Copyright © 2021 EAI
DOI 10.4108/eai.27-2-2020.2303212

alike a web browser or a client and a receiver is a server. Hence each application contains a

server and a client these components works independently to complete their functions for

example an application’s client may be busy sending requests to another application, while its

own server may be waiting for incoming connections or may not have been started yet.

A receiver end, the listener process executes inside its event loop, the only event it handles is

request for incoming connection, when encountered by incoming request, listener creates a

connection handler and transfers the request to it. while connection handler processes and

completes the request in another thread the listener goes back in loop to wait for another

request until its is terminated by its parent. [1,2] Connection handler creates a request handler,

get the response ,write it back on the same connection and finally ends its life-cycle. At client

side, the operation is very simple. User tries to connect with another device, once connection

is successful, sender asks user to select a file to be transferred. If a valid file is selected sender

then prepares to send the file to receiver in multiple small chunks. Once file is sent through

completely sender waits for user’s action to select another file or close the application. Refer

to the follojng Figure 1.

Fig. 1. Application Workflow

3 Design and Implementation

3.1 Server component

Server application is consists of tcp socket listener accepting incoming connections and

processes the query (Request) and returns the result based on it (Response). Listener spawns a

new instance of connection handler in a separate thread to handle each new connection so that

multiple requests are accepted without blocking application. As the application is to be

deployed on limited memory devices, there is a upper limit set for number of maximum

simultaneous connections available.[3,4,5]. The requests and responses are managed by

separate classes which follows paradigms of HTTP protocol. Once the response is written off

the connection is released so that server can resume accepting new connections if it had

paused due to application reaching maximum open connections.

3.2 Client Component

Client app is consists of a connection handler which tries to connect to http server. If initial

connection attempt is not successful then Client shows Server not Available message and

returns, if connection is successful, the client present the GUI to user to send appropriate file

to server. The user selects the file through system‟s file open dialog. Once a file is chosen,

client split the file into chunks and adds the file in process pipeline, pipeline is progressed

when response of previously sent chunk is acknowledged by client. For each transfer the client

uses a API KEY provided by server. Client asks for new API KEY before initiating a new

transfer. Before transfering a chunk of file, client prepares a payload containing information

about the command user intends to run on server for example Checking if server is up,

requesting an API or sending a file chunk etc. The following diagram illustrates basic working

of client app.

3.3 Listener Classes

This class is responsible for creating and initializing a tcp server which listens to the specified

port of client machine. When a new connection is arrived, a callback is executed by system

with the help of SIGNAL & SLOT mechanism of QT framework. This callback is provided

with socket descriptor. Socket descriptor is used to identify the socket. Listener creates a new

socket and assign to it the received socket descriptor. Listener callback then pass this socket to

ConnectionHandler to start processing incoming connection. Listener extends the QTcpServer

class provided by QT framework to provides signals for indicating new connection is arrived

and to provides a listen function to start listening to a specified port.

The Request class HTTPRequest is responsible for processing the incoming request it works

on a socket provided to it by ConnectionHandler through the Listener class. If there are bytes

available for reading in a socket the connectionHandler calls the read methods of

HTTPRequest class to extract headers and body of request. Once Request parsing is complete

the connectionHandler calls HTTP Request Handler class to take appropriate action and

subsequently send a HTTPResponse. This whole process is one iteration of steps depicted in

flowchart is illustrated in following figure 2.

Fig. 2. Listener Cycle

4 Building and testing

4.1 Building APK with QT

Qt creator is an IDE that comes with QT framework supports the following methods for

distributing the android application.

(i) As a standalone Package

(ii) As a minimal package containing dependency to Ministro tool. Ministro is a system

wide Qt shared libraries installer/provider service. It acts as a bridge between apps and

Qt libraries.

For this application it is not required to deploy on play store or generate a signed APK

therefore we are using a single standalone apk generated by QT creator without any external

dependencies of Ministro tool. Qt creator has android sources GUI to create and edit Manifest

file of android application. Package name, Application Name, Minimum SDK , Target SDK

and Permissions can be edited via from a GUI form. For Running application, can be done

directly to a device or on a emulator. QT native ABI builder provides tools for managing

android SDK and Android ABI. It can also detect ABIs created by AVD manager tool of

Android studio. We have created ABI from Android studio as it provides latest downloads

from official android sources. Android studio generates the apk with no dependency on system

architecture, whereas in Qt creator deployment also requires configuration settings such as

architecture of target machine such as X86 or Armeabi. Based on the architecture We have

generated two apks for each model type.

4.2 Testing and Deployment

This application requires that device should have a capability of being contacted by another

device or PC over Internet with the help of IP address. This IP address should be static or at

least semi static so as to support file transfer with multiple requests in a session.

Due to the inherent IPv4 address shortage , any carrier uses IPv4 PAT (PORT ADDRESS

TRANSLATION) to connect any subscriber to internet. Instead of assigning one address to

each user, carrier uses one address for thousands of users. Carrier does this by assigning

different port numbers to different users but uses single IP address for all of them. This

limitation of 4g/3g Data connection make our application impossible for testing on mobile

devices over conventional internet connection.Thus testing of applications is done on a closed

network of static IP addresses.Refer to Table 1 below. Also military and department of

defense issues the special broadband and internet services that provide static IP addresses to

mobile devices over data connection. We have also arranged a setup to test our application on

such environment for a very short duration. Due to the intrinsic security policy of department

of defense and Indian army the application is tested for sharing some trivial files and images

and was immediately uninstalled under the supervision of concerned officials. It was found

that some executable files are deleted automatically upon completion of transfer on devices

which have antiviruses installed.

Table 1. Results of the tests.

S.No File Type File Sizes (MB) Result

1 Text(.txt) 1 - 50 Pass

2 Image(.jpg, .png, .gif) 1 - 50 Pass

3 Video(.mp4) 1 - 50 Pass

4 Compressed (.zip, .rar) 1 - 50 Pass

5 Executables(.exe) 1 - 50 Pass

4.3 Issues faced in testing and their workarounds

Mobile screen layouts and and widgets: One of the main problem with QT android

development is that the look and feel of application on mobile devices. When Deployed on

mobile screen the sizes of widgets and their positions within window changes completely .

Android Studio solves the problem by maintaining size and positions in way that is neutral to

device‟s screen size. It does so by specifying the metrics in density pixels instead of pixels. In

Qt there is no support of Density pixels as for now, the solution to this problem is to use SVG

images and layouts which scales in similar fashion on all device screens .The variation is

minimal. Dialogs and popups: Some application requires popup and dialog services such as

opening a file from file open dialog or opening the popup to show error message. QT does not

provide native look and feel of such services on android devices. The appearance of these

dialogs and popups exactly like in desktop application hence making it very difficult to use.

Thus we have implemented our own popop and dialog managers to solve this problem. It is

not as rich as native android but easy to use. Permissions : Android has changed its permission

model to ask for permission only at the runtime when the feature of application is used for the

first time. This is supported with API Level 6.0. This feature is implemented by calling

JAVA/Android native code from c++. For devices which are below API level 6, a permission

must be granted manually by going to settings->Applications->SecureClient ->Permissions.

Encryption and Decryption,: We are using simple encryption developed in house instead of

using standard AES based encryption as that requires a development of services as a separate

standalone project which could not be completed in given time frame.

5 Conclusion

The evolution of smartphones from IBM‟s personal communicator Apple‟s IPhone X has

changed the way the information is stores and shared among the devices. The emergence

cloud enabled devices has also made the file sharing and information sharing experience very

easy and seamless. With a click of button the pictures and documents can be shared to people

participating in a conference over Google‟s office or members of a WhatsApp group. There

has always been a concern regarding the security of the files being shared. As a part of this

project we have developed a file sharing application for android devices where server itself is

embedded in a mobile application. Due to rise in computing power of mobility devices it is

possible to run a mini server application in mobile device itself. In this model we have created

a TCP based listener which is allowed to use only few number of simultaneous connections.

furthermore the task of server application is limited to accept and parse a small set of

commands only. The client on the other hand is allowed to share a file in multiple consecutive

requests. One client cannot send file while a another file sharing is already in progress. File

transfer is paused if due to some reason the host cannot be communicated or error in

transmission had occurred. User can resume the sharing manually when network is up and

running again. We have tested the application on special network arrangements which allowed

allocation of fixed non sharing static IP address to mobile devices. This feature was available

with few commercial carriers but now being discontinued due to shortage of IPV4 address

space. The framework used for developing overall application is QT C++ for android

application which allowed me to leverage my c++ programming skills to develop android

application without learning new skills for mobile application development.

References

[1] Kumar R, Rajalakshmi S. Mobile cloud computing: Stan-dard approach to protecting and securing

of mobile cloud ecosystems. Proceedings of International Conference on Computer Sciences and

Applications; 2013. p. 663–9

[2] C Uddin M, Memon J, Alsaqour R, Shah A, Rozan MZA. Mo-bile agent based multi-layer

security framework for cloud data centers. Indian Journal of Science and Technology. 2015 Jun;

8(12):171–8.4.

[3] Rajathi A, Saravanan N. A survey on secure storage in cloud computing. Indian Journal of Science

and Technol-ogy. 2013 Apr; 6(4):1–6.

[4] Mishra A, Jain R, Durresi A. Cloud computing: Network-ing and communication challenges.

IEEE Communications Magazine. 2012; 50(9):24–5.

[5] Rajarajeswari S, Somasundaram K. Data confidentiality and privacy in cloud computing. Indian

Journal of Science and Technology. 2016 Jan; 9(4):1–8.

