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Abstract. A problem of packing a limited number of unequal circular objects in a fixed 
size rectangular container is considered. The circular object is considered in a 
general sense, as a set of points that are all the same distance (not necessary Euclidean) 
from a center. The aim is to maximize the (weighted) number of objects placed into 
the container or minimize the waste. This problem has numerous applications in 
logistics, including production and packing for the textile, apparel, naval, 
automobile, aerospace and food industries. Frequently the problem is formulated as 
a nonconvex continuous optimization problem which is solved by heuristic techniques 
combined with local search procedures. We study a linear integer programming 
formulation based on approximating container by a regular grid. The nodes of the grid 
are considered as potential positions for assigning centers of the objects thus giving rise 
to a large scale linear 0-1 optimization problem with binary variables representing 
the assignment of centers to the nodes of the grid. Recursive packing allowing 
nesting circles inside one another is also considered. Numerical results are 
presented to demonstrate the efficiency of the proposed approach.  

Keywords: circle packing, integer programming, large scale optimization. 

1   Introduction 

Packing a set of items of known dimensions into one or more large objects or 
containers to minimize a certain objective (e.g., the unused part of the objects or waste) 
constitutes a family of natural combinatorial optimization problems applied in 
logistics, computer science, industrial engineering, manufacturing and production 
processes, material science and nanotechnology, medicine [3, 6-8, 10, 30]. 

Packing problems for regular shapes (circles and rectangles) of objects and/or 
containers are well studied (see, e.g., a review [12] for circle packing). In circle 
packing problem the aim is to place a certain number of circles, each one with a fixed 
known radius inside a container. The circles must be totally placed in the container 



without overlapping. The shape of the container may vary from a circle, a square, a 
rectangular, etc. Circle packing problems can be classified into two categories 
depending on whether the circle objects are equal [2, 5, 9, 22, 28] or unequal [1, 11, 
13, 14, 16, 23-25, 27, 30, 32]. For packing unequal circles it is frequently assumed 
that exactly one circle of each radius is available [12]. However in many logistic 
applications [6] the number of circles packed has to be large enough to fulfil the 
demand while the supply of the circles may also be limited. 

In this paper we study packing unequal circular-like objects in a rectangular 
container using a regular grid to approximate the container. It is assumed that (inside a 
given interval) multiple objects of the same radius can be packed. The circular-like 
object is considered in a general sense, as a set of points that are all the same distance 
(not necessary Euclidean) from a given point. Thus different shapes, such as ellipses, 
rhombuses, rectangles, octagons can be treated the same way by simply changing the 
norm used to define the distance. The nodes of the grid are considered as potential 
positions for assigning centers of the circles. The packing problem is then stated as a 
large scale linear 0-1 optimization problem. Valid inequalities are used to 
strengthening the original formulation. Numerical results on packing unequal circles, 
squares, rhombuses and regular octagons are presented to demonstrate efficiency of the 
proposed approach. Recursive packing, i.e. nesting circular objects inside one another is 
also considered. To the best of our knowledge, the idea to use a grid for 
approximated solution was first implemented by Beasley [4] in the context of cutting 
problems. Recently this approach was applied in [9, 17-21, 29] for packing problems. 
This work is a continuation of [20]. The rest of the paper is organized as follows. 
Section 2 presents the main constructions: basic binary model and valid inequalities. 
Results of a numerical experiment are presented in Section 3, while the last section 
concludes. 

2   Basic model 

Suppose we have non-identical circles kC  of known radius kR , {1,2,... }k K K∈ = .

Here we consider the circle as a set of points that are all the same distance kR  (not

necessary Euclidean) from a given point. In what follows we will use the same 

notation kC  for the figure bounded by the circle, 2
0{ : }k k kC z z z R= ∈ − ≤ ,

assuming that it is easy to understand from the context whether we mean the curve or 
the figure. Suppose that at most kM   circles kC  are available for packing and at least

km  of them have to be packed. Denote by {1,2..., }i I n∈ = the node points of a

regular grid covering the rectangular container. Let F I⊆ be the grid points lying on

the boundary of the container. Denote by ijd the distance (in the sense of norm used to

define the circle) between points i and j  of the grid. Define binary variables 1k
ix =

if centre of a circle kC  is assigned to the point i ; 0k
ix = otherwise.



Since the circle kC  assigned to the point i has to be no-overlapping with other

circles packed, then we have 0l
jx =  for ,j I l K∈ ∈ , such that ij k ld R R< + . For

fixed ,i k  let { , : , }ik ij k lN j l i j d R R= ≠ < + . Let ikn be the cardinality of

ikN : ik ikn N= . Then the problem of optimal packing can be stated as follows:

maxz = k
k i

i I k K
S x

∈ ∈
∑∑ (1)

subject to 

, ,k
k i k

i I
m x M k K

∈

≤ ≤ ∈∑ (2)

1, \k
i

k K
x i I F

∈

≤ ∈∑ , (3)

min , , ,k
k i ijj F

R x d i I k K
∈

≤ ∈ ∈ (4)

1,k l
i jx x+ ≤  for i I∈ , k K∈ , ( , ) ikj l N∈ (5)

{0,1}, ,k
ix i I k K∈ ∈ ∈ (6)

Here kS represent the importance of kC  in the packing pattern, e.g. kS  can be the

area of kC . Constraints (2) ensure that the number of circles packed is between km
and kM ; constraints (3) that at most one centre is assigned to any grid point;

constraints (4) that the point i can not be a centre of the circle kC if the distance from

i to the boundary is less than kR ; pair-wise constraints (5) guarantee that there is no

overlapping between the circles; constraints (6) represent the binary nature of 
variables. More details on the problem (1)-(6) and its properties one can find in [18-
20].  

Note that all constructions proposed above remain valid for any norm used to 
define a circular-like object. In fact, changing the norm affects only the distance 

ijd used in the definitions of the sets ikN in the non-overlapping constraints (5). That

is, by simple pre-processing we can use the basic model (1)-(6) for packing different 
geometrical objects of the same shape. It is important to note that the non-overlapping 

condition has the form ij k ld R R≥ +  no matter which norm is used.

For example, a circular object in the maximum norm : max { }i iz z
∞
= is

represented by a square, taxicab norm 
1
: iz z=∑  yields a rhombus. In a similar

way we may manage rectangles, ellipses, etc. Using a superposition of norms, we can 
consider more complex circular objects. For  

: max { , }i i iz z zγ= ∑ (7)

and a suitable 0.5 1γ< <  we get an octagon, an intersection of a square and a
rhombus.  



To tightening the LP-relaxation for (1)-(6), we consider valid inequalities aimed to 

ensure that no grid point is covered by two circles. Define matrix k
ijα⎡ ⎤⎣ ⎦ as follows.

Let 1k
ijα =  for ij kd R< , 0k

ijα =  otherwise. By this definition, 1k
ijα = if the circle kC

centred at i covers point j . The following constraints ensure that no points of the grid
can be covered by two circles: 

1,k k
ij j

k K j I
x i Iα

∈ ∈

≤ ∈∑∑ . (8)

We can treat (8) as a relaxed non-overlapping conditions and expect that refining 
the grid reduces overlapping. The valid inequalities (8) hold for any norm used to 
define the circular object. Numerical experiments presented in [18-20] demonstrate 
that aggregating valid inequalities (8) to the original problem (1)-(6) improves 
significantly the value of the corresponding LP-bound. Moreover, valid inequalities 
change the structure of the optimal LP-solution. 

To consider nesting circular objects inside one another (recursive packing [25]), we 
only need to modify the non-overlapping constraints. In order to the circle kC
assigned to the point i be non-overlapping with other circles being packed (including

circles places inside this circle), it is necessary that 0l
jx =  for ,j I l K∈ ∈ , such

the k l ij k lR R d R R− < < +  for k lR R> . Let

{ , : , , }ik k l ij k l k lj l i j R R d R R R RΩ = ≠ − < < + > .

Then the non-overlapping constraints for packing circular objects with nesting can 
be stated as  

1,  for ; ;( , )k l
i j ikx x i I k K j l+ ≤ ∈ ∈ ∈Ω . (9)

Constraints (3) have to be omitted in the case of nesting. 

3   Computational results 

A numerical experiment was designed to evaluate the performance of the model (1)-
(6) for packing different ( 1K ≥ ) circular objects in a square rectangular container.

A rectangular uniform grid was used, such that all grid points are defined by the 
grid points on the edges of the square. Let L be a size of the square container, while

N  be a number of the equidistant grid points on its edge (and hence 2n N= ).
Similar to [23, 24, 26] the value of the radius was increased linearly with respect to 
the number of the circle. The following expression was used: 1 / 6R L K= ,

1( 0.8), 2,3...kR R k k K= − = .

For all problem instances at least one circle of each radius has to be packed ( 
1km = ), while kM were randomly generated integers, [50,200]kM U∈ . For the 

size of the square container [200,300]L U∈  was used. Four types of circular objects



were considered: circles, rhombuses, squares and octagons. For the octagon 

1/ 2γ = was used in (7) giving the right octagon. We used  2
k kS R=  for all

problem instances and shapes. 

Table 1.  Packing circles 

1 2 3 4 5 6

L 242 243 275 229 263 238

N 35 27 35 34 35 30

K 13 13 13 12 14 13

z 10450.4 14952.2 17970.5 12339.4 14333 14040
gap 90 12.8 28 34 53 17.7 

x
1(125/125) 
2(193/193) 
3(70/15) 
4(52/2) 

1(181/17), 2(82/29) 
3(137/3), 4(199/4) 
6(148/2), 7(85/2) 

8(135/2), 10(149/3) 
13(132/5) 

1(69/39), 
2(143/108) 

3(79/29), 4(181/9) 
5(124/22), 6(158/3) 
7(51/2), 10(62/2) 

11(105/3), 3(170/2) 

1(185/162) 
2(190/79) 
3(55/38) 
4(166/5) 
8(165/6) 
10(110/2) 

1(95/95) 
2(172/172) 
3(109/70) 
4(187/7) 

1(92/15), 2(142/62) 
3(176/13), 4(81/3) 
5(99/5), 6(149/4) 

8(175/3), 10(114/2) 
11(195/3), 
13(109/2) 

z 19185.8 20896.6 26402.4 15873.5 24334.2 25060.7

x

1(125/125),  
2(193/193) 
3(70/70) 
4(52725) 
5(114/11) 
6(134/4) 
7(52/3) 
9(109/3) 

1(181/181),2(83/83) 
3(137/99),4(199/28) 
5(165/5),6(148/2) 
7(85/3),8(135/2) 

9(109/3),11(107/2) 
12(196/2) 

1(69/69),2(143/143) 
3(79/79),4(181/38) 
5(124/20),6(158/4) 
7(51/3),8(192/2) 

10(62/4),12(106/2) 
13(170/3) 

1(185/185) 
2(190/190) 
3(55/55) 
4(166/22) 
5(174/3) 
6(62/4) 
7(51/3) 

11(136/2) 

1(95/95) 
2(172/172) 
3(109/109) 
4(187/24) 
5(107/8) 
6(187/4) 
7(187/5) 
8(104/3) 
9(128/4) 
10(105/2) 

1(92/92),2(142/142) 
3(176/91),4(81/21) 
5(99/5),6(149/6) 
7(76/2),8(175/5) 

10(114/2),11(195/3) 
12(124/2),13(109/3) 

Six problem instances for each circular object were generated and solved using 
valid inequalities (8) for non-recursive packing. All optimization problems were solved 
by the system CPLEX 12.61 [15]. The runs were executed on an Intel (R) Xeon (R) 
CPU E3-1245 v3 @ 3.4GHz with 8 cores and 16Gb RAM. The computation was 
interrupted after the computational time exceeded 10 hours CPU time.   

Fig. 1. Instance 2 



The results of the numerical experiment are presented in Tables 1-4. Here lines 5 
and 6 represent the best objective value z  and the corresponding mipgap in %
obtained by CPLEX. The line 7 gives the best primal solution x  in the form

( / )k kk M x where kx denotes the number of the k -objects packed. For example,

3(70/15) means that from 70 objects 3C available 15 objects were packed. The objects

with 1k kx m= =  are omitted. The last two lines present the best objective value and

the best primal solution for the case of recursive packing. For recursive packing the 
mipgap is omitted since it was higher than 200% for all shapes and problem instances. 
Figures 1-4 provide examples of packing patterns. 

Table2 .  Packing rhombuses 

1 2 3 4 5 6

L 269 288 261 239 215 219

N 29 28 34 27 30 34

K 14 12 14 14 13 12

z 31564.4 33878.4 28795.7 23685 19662.4 19199.9
gap 5 5.9 13.3 1.7 4.1 19.3

x
3(120/5),4(127/127) 

6(72/2),7(75/13) 
9(83/2),10(162/5) 

13(125/4),14(188/1) 

2(126/7) 
3(57/32) 
6(77/46) 
11(80/3) 

1(185/3) 
2(175/2) 
3(174/58) 
5(70/3) 
6(99/76) 

3(141/2) 
4(142/5) 
5(67/60) 

10(123/13) 
14(83/18) 

2(134/3) 
3(83/7) 
4(51/42) 
7(97/2) 

8(151/49) 
12(122/11) 

1(189/16),2(193/38) 
3(79/79),4(51/5) 

5(147/43),6(159/2) 
7(123/4),11(96/2) 

12(162/2) 

z 35730.4 49413.1 44888.8 28437.8 30501.9 28986.1

x
1(132/132),2(74/74) 

3(120/120),4(127/127) 
5(171/23),6(72/14) 

7(75/4),8(108/2) 
11(50/2) 

1(151/151) 
2(126/126) 
3(57/57) 
4(131/23) 
5(113/28) 
6(77/19) 
7(164/8) 
8(158/4) 
9(117/2) 
10(176/3) 
11(80/2) 

1(185/185) 
2(175/175) 
3(174/174) 
4(139/29) 
5(70/46) 
6(99/31) 
7(165/11) 
8(130/40) 
9(57/3) 

10(103/2) 
11(127/3) 

1(97/97),2(68/68) 
3(141/141),4(142/142) 

5(67/67),6(57/29) 
7(100/9),8(102/8) 
9(166/6),10(123/2) 
11(155/3),12(123/2) 

1(199/199) 
2(134/134) 
3(83/83) 
4(51/51) 
5(68/58) 
6(105/45) 
7(97/42) 
8(151/18) 
9(165/6) 
10(104/4) 
11(118/2) 
13(199/3) 

1(189/189),2(193/193) 
3(79/79),4(51/49) 
5(147/20),6(159/6) 
7(123/7),8(195/2) 
9(108/4),10(152/3) 
11(96/2),12(162/2) 

Fig. 2. Instance 6 



As we can see from these tables, larger values of the mipgap correspond to 
“roundish” objects (circles and octagons) while for “angular” objects (squares and 
rhombuses) the mipgap is much smaller.  

Table 3.  Packing squares 

1 2 3 4 5 6

L 227 219 211 215 289 282

N 29 30 32 35 34 31

K 12 12 12 14 12 12

z 11628 10542.2 10171 10326.7 18216.3 14040
Gap 7.7 6.3 6.9 12.7 11.6 17.7

x

2(181/12) 
3(198/8) 
4(75/2) 
6(129/18) 
9(115/3) 
11(56/2) 

1(132/2) 
2(51/51) 
3(59/6) 
4(159/2) 
7(165/5) 
12(88/4) 

1(51/13),2(156/9) 
3(191/3),4(163/3) 
6(179/3),9(82/2) 

10(62/3),11(198/17) 

2(69/35),3(175/4) 
4(94/9),7(80/31) 

9(161/2),10(124/2) 
12(137/2),13(116/2) 

1(100/15) 
2(67/13) 
5(90/3) 
7(176/4) 
8(94/3) 
11(52/3) 
12(184/2) 

1(189/6) 
2(82/5) 
3(97/4) 
4(149/5) 
6(200/2) 
7(97/34) 
10(68/3) 

z  16693.9 15394 13974.4 14852.2 30162.6 26149.3

x

1(107/107) 
2(181/181) 
3(198/65) 
4(75/13) 
5(173/12) 
6(129/6) 
7(63/2) 
8(154/4 

1(132/132) 
2(51/51) 
3(59/56) 
4(159/10) 
5(112/9) 
6(104/9) 
7(165/5) 
11(88/2) 

1(51/51),2(156/156) 
3(191/145),4(163/62) 
5(165/18),6(179/11) 

7(89/5),8(73/4) 
9(82/2),10(62/2) 

11(198/3),12(116/2) 

1(184/184),2(69/69) 
3(175/98),4(94/37) 
5(65/27),6(50/15) 
7(80/11),8(160/3) 
9(161/4),10(124/2) 

12(137/2) 

1(100/99), 
2(67/67) 
3(178/41) 
4(142/24) 
5(90/14) 
6(101/2) 
7(176/8) 
8(94/2) 
9(122/2) 
10(153/2) 

1(189/189),2(82/82) 
3(97/60),4(149/23) 
5(115/26),6(200/17) 

7(97/9),8(165/2) 
9(116/3),10(68/2) 

11(64/2) 

Fig. 3. Instance 4 

We also note that although the computations were interrupted after 10 hours CPU time, 
both primal solution and mipgap remain almost unchanged after the first hour of 
computations. This effect was observed for all problem instances and shapes including 
recursive packing. Analyzing the final packing patterns we may conclude that for 
circles and octagons the small radii are used almost completely (close to the upper 
limit kM ), while for squares and rhombuses the distribution of radii used in the final



packing is more uniform. The patterns for recursive packing seem to be sparse, 

however note that the smallest objects were completely used, , 1,2k
i i kx M k= =∑ .

Table 4.  Packing octagons 

1 2 3 4 5 6

L 275 262 262 256 214 202

N 32 34 35 33 34 27

K 13 14 14 14 12 12

z 17508.2 16668.4 15575.8 14663.2 9938.24 9892.6
gap 23.1 23.6 35.9 34.9 49 16.6

x
1(134/28),2(79/71) 
3(131/23),4(140/2) 

5(71/2),6(187/5) 
7(87/3),8(67/8) 

9(190/4),12(81/3) 

1(106/32),2(156/50) 
3(61/24),4(163/6) 
5(97/9),6(142/3) 
7(69/2),9(119/3) 
10(78/2),11(63/2) 

14(176/2) 

1(71/6) 
2(196/99) 
3(83/45) 
4(173/35) 
5(159/2) 
13(149/2) 

1(187/29) 
2(179/150) 
3(123/46) 
4(89/4) 
5(112/4) 
6(141/3) 
14(184/2) 

1(64/64) 
2(188/188) 
3(105/69) 
4(153/110) 
6(142/3) 
8(159/2) 
9(112/2) 

1(60/8) 
2(173/21) 
3(71/32) 
4(81/12) 
5(66/5) 
6(53/5) 
8(128/3) 
11(141/2) 
12(173/11) 

z 23891 27421.9 21323.9 30902.4 14899.7 12141.8

x
1(134/134),2(79/79) 
3(131/101),4(140/28) 
5(71/17),6(187/10) 

7(87/3),8(67/3) 
9(190/3),12(81/2) 

1(106/106),2(156/156) 
3(61/61),4(163/46) 
5(97/15),6(142/7) 
7(69/3),8(168/4) 

10(78/3),12(128/2) 
14(176/2) 

1(71/71) 
2(196/196) 
3(83/83) 
4(173/25) 
5(159/11) 
6(82/5) 
7(162/4) 
8(170/2) 
9(119/2) 

1(187/187),2(179/179) 
3(123/81),4(89/23) 
5(112/8),6(141/7) 
7(71/4),8(109/4) 

9(190/3),11(152/2) 
12(170/3),13(190/2) 

14(184/3) 

1(64/64), 
2(188/188) 
3(105/105) 
4(153/97) 
5(53/24) 
6(142/13) 
7(57/4) 
8(159/2) 
9(112/4) 
10(146/3) 
11(105/2) 

1(60/60) 
2(173/173) 
3(71/71) 
4(81/81) 
5(66/31) 
6(53/5) 
7(90/6) 
8(128/5) 

Fig. 4. Instance 4 



1   Conclusions 

We presented numerical experiment with integer model for approximate packing 
unequal circular objects. A formulation permitting nesting circles inside one another 
(recursive packing) was also considered and numerically evaluated. Recursive packing was 
mentioned in [8, 10] in the context of packing pipes of different diameters into a shipping 
container and has not received much attention so far [25]. Two types of circular objects 
were studied – “roundish” (circle and right octagon) and “angular” (square and rhombus). 
The computational study indicates that (inside 10 hours of CPU time limit) the best primal 
solution as well as the corresponding mipgap remain almost unchanged after the first hour of 
computation. This may be caused by a low quality of dual bounds generated by the 
commercial software. An interesting direction for the future research is to study the 
use of Lagrangian relaxation and corresponding heuristics [31] to cope with large 
dimension of arising problems and to improve the dual bounds. Some complements in 
this direction are in course. This work was partially supported by CONACYT, Mexico 
(167019). 
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