
Lightweight Risk Management: The Development of Agile Risk Tool

Agents

Edzreena Edza Odzaly¹
,
², Des Greer¹, Darryl Stewart¹

¹Queens University Belfast, University Road, Belfast, Northern Ireland, UNITED KINGDOM

²Universiti Teknologi MARA, Faculty of Computer and Mathematical Sciences,

77300 Merlimau, Malacca, MALAYSIA

{eodzaly01|des.greer|dw.stewart}@qub.ac.uk

Abstract. Risk management is an important process in Software Engineering. However, it can be

perceived as somewhat contrary to the more lightweight processes used in Agile methods. Thus an

appropriate and realistic risk man-agement model is required as well as tool support that minimizes

human effort. We propose the use of software agents to carry out risk management tasks and make

use of the data collected from the project environment to detect risks. This paper describes the

underlying risk management model in an Agile Risk Tool (ART) where software agents are used to

support identification, assess-ment and monitoring of risk. It demonstrates the interaction between

agents, agents’ compliance with the designated rules and how agents react to changes in project

environment data. The result shows that agents are of use for detect-ing risk and reacting

dynamically to changes in project environment thus, help to minimize the human effort in

managing risk.

Keywords: Software Risk Management, Agile Risks, Agile Projects, Software Agents.

1 Introduction

Risk management is recognized as a key process area in the Software Process. Most risk management

literature relates to heavyweight plan-driven processes and typically as-sumes that, for example,

requirements have been agreed and signed off in advance of development. On the other hand Agile

software development uses an iterative approach to software construction, aimed at reducing development

time, prioritising value, while improving software quality and inherently reducing risk [1]. This paper

intended to demonstrate the idea of software agents to help manage risks in project development. As a

start, we highlighted the issues identified in risk management. Later, the proposed Agile Risk Tool (ART)

model is discussed which focusing on the development of the tool. This includes how the risk

management activities are decomposed into agents as well as the interaction between risk agents. The list

of risks triggered in the project is then presented in the risk register and is available for display at the

dashboard. This

paper introduced new method where software agents can be used to detect risk and react dynamically to

changes in agile project environment.

2 Research Problems

2.1 Traditional Risk Management

Risk management in research articles is always acknowledged as being of utmost im-portance. To

determine what is needed we used existing work [2], on an investigation of the barriers to risk

management. The results in that investigation concluded:

 That there is no standard or commonly adopted risk management process and/or tool being used in

software development situations.

 That Risk Identification was the most effort intensive process and additionally 30%agreed that Risk

Monitoring is most difficult and needs more effort.

 That the biggest barrier was that visible (and tangible) development costs get more attention than

intangibles like loss of net profit and downstream liability.

Despite the acceptance that risk management methods enhance system development performance,

nonetheless little support is to be found on the provision of these methods [3]. It was argued that the

methods of managing risk in software development are not comprehensive as they deal with specific

types of risk [4]. Besides, despite many well known risk management approaches having been

introduced, risk management was still reported as not being well practiced [5][6]. As reported in [7]

discussed the most com-mon risk management approaches found in the literature and highlighted

practices such as checklists, analytical frameworks, process models and risk response strategies. Many

researchers have conducted research in tailoring risk management, providing various approaches.

However, only a few studies have been reported to integrate risk manage-ment with contemporary

software development. One study discovered that there was still plenty of work to be done due to the fact

that the integration of risk management and software development process was still at its initial stages

[8].

2.2 Risk Issues in Agile Software Projects

It is clear that people issues are the most critical in agile projects and that these must be addressed if

agile is to be implemented successfully [9]. Indeed, one of the most im-portant success factors in an

agile project is individual competency [1]. Additionally, estimation of effort is a consistent challenge in

agile development work, especially when it is done for the first time [10] and there are issues with agile

skills and personnel turnover, as well as job dissatisfaction [11][12][13]. In Scrum individual motivation

is very important and influences how diligent team members are; for example in attending Daily Scrum

Meetings [14]. Recognising non-compliance with established practices can provide early signs of risks

e.g. low morale expressed during the daily meeting or avoid-ing discussing problems when behind

schedule [15].

3 Solution Approach

As a result of the issues identified, there is a strong motivation to improve the manage-ment of risk in

agile projects without reducing agility in projects. In reality, contempo-rary risk management should be

able to be integrated into the agile process to support decision making.

3.1 The Agile Risk Tool (ART) Model

The development of the ART model started with the establishment of a view of how risk management

may apply in an agile environment. Figure 1 below depicts an over-view of the resulting model.

Fig. 1. Agile Risk Tool (ART) Model describing the application of Risk Management in Agile

environment

The model represents how risks are gathered and managed throughout the agile project. During the

Input stage, the agile process begins with planning and requirements gather-ing. At this stage, while

preparing the project, at the same time, the gathering of risk data can commence. Requirements in agile

processes are most often represented as user stories. These are textual descriptions that contain the

customer’s specification of needs for the required system. A product backlog is a subset of these

requirements that will be selected from based on priority.

The environment data used contains:

 A project in this context is a set of user stories, the membership of which is not fixed at any point

of its lifetime. Each project relates the unique project name of the pro-ject, a set of goals for the

project, when it started and when it ended.

 A team is a set of persons where each person consists of a set of attributes describing the person.

Each team is working to achieve the goals of the project. For each team member there is specific

information, for example on the type of skills that the team member possesses and also their levels

of expertise in defined skills, stated as an in-teger;

 User stories are divided into tasks. A task refers to a textual description of the task associated with

the estimated hours of completion, the name of the person responsi-ble for the task and the

progress for the task;

 Progress refers to additional information on the progress of a specific task as report-ed by the

person responsible for the task. This includes information on attendance of the team member in the

Daily Scrum Meeting and whether progress or an impedi-ment is reported for the task;

 Risk data represents information on risk captured by the tool. The information in-cludes the name

of the risk, its severity, the owner of the risk, location of the risk as well as the date the risk is

triggered and resolved.

The risk indicators and rules refer to a set of predefined risk factors brainstormed by the team at the

early stage of the project and encoded as rules (this will be further discussed in the next subsection).

The risk indicators contain a textual description indicating a threshold or state that will trigger the risk.

One example might be where a high priority task is selected in the sprint by a developer with too low a

predefined skill threshold. Rules contain a list of conditions for an event encoded into IF/THEN

statements. Later, this information is stored in the rule engine. Input data refers to a set of collected

data from the environment and translated into a set of templates readable by the tool.

During the Process stage, the project proceeds as iterations which include sprint back-logs, design and

code, testing and small releases of the product requirement. Iterations contain are time-boxed into

fixed length durations of development. Risk agents (or ART agents) will manage the risk based on the

input data defined earlier. This risk process is autonomous, where software agents; identify, assess and

monitor risk based on the input data from the environment. Once any risk is triggered, risk data will be

displayed in the Risk register. Any changes or updates to the environment will affect the risk data

(whether or not the risk is flagged up).

At the Output stage, the final risk data can be obtained after the delivery of the product and during a

Sprint review meeting. The risk register provides a view of all identified risk data. At the end, the data

displayed in the Risk Register can be recorded and saved in the Risk data repository where this

information can be used to plan future projects.

The model has been demonstrated further and used as part of the work in [16]. This is where the ART

architecture proposed was demonstrated in order to explore the applica-tion of risk management in

agile application. This paper however, focused on the devel-opment of ART agents used at the Process

Stage.

The development of ART Agents.

One way to move towards automation is to give software agents responsibility to identify,

assess and monitor risk. These agents ideally should be able to autonomously react to

environmental changes, where the environment in this case is the software de-velopment

environment, including the set of tools being used.

In order to reduce barriers in risk management application, a lightweight risk manage-ment approach

is needed. The newly proposed approach includes three main steps in risk management; risk

identification, risk assessment and risk monitoring. The rationale of doing so was twofold (i) to

develop a realistic and acceptable risk management pro-cess that can fit into the agile methods (ii) an

empirical study [2] confirmed the most complicated steps in managing risks were risk identification

and risk monitoring. In addition, prior to this section evidence is established that contended that risk

manage-ment was difficult mainly due to the required human effort. Given this, the aim is to

substitute some of the human involvement with autonomous software agents with the goal that these

could manage risk and minimize the need for manual input. Automated agents can therefore help ease

the work load in managing risk, specifically in identify-ing, assessing and monitoring risk.

Fig. 2. Risk decomposition graph for the Agile Risk Tool (ART) agents of four risk manage-

ment activities

Decomposition of risks into activities is commonplace. One example discussed in [17] used

decomposition of risk into conceptual elements like risk factor, risk event, risk outcome, risk

reaction, risk effect and utility loss. More recently a top down goal de-composition technique is

described in [18] and [19]. Indeed Boehm’s tutorial on risk [20] decomposes risk management into

activities. In this work the category or type of agents used was derived based on initial agent goal

decomposition as shown in Figure 2, based on Boehm’s work.

The generic aim of this work is to find ways of lowering the barriers to application of risk

management. One of the objectives is to use the agents since agent behaviour is more adaptable and

can act on behalf of the project manager of the agile project. In this case, some of the effort of the

project manager is replaced by agent execution such that

they will react automatically according to their own goals. In identifying goals for the agents, the top

level goal is started in order to apply risk management in software devel-opment project, particularly

in agile projects. This goal is further decomposed into two intermediate sub goals; assessing risk and

controlling risk. These sub goals are then decomposed into six smaller sub goals; identify, analyse,

prioritize, plan, resolve and monitor. As a result of the decomposition of the goal, agents were

assigned based on the smallest sub goals which supported the top level goal. Since the most effort

intensive steps identified earlier were identification and monitoring, for the meantime, both sub goals

were selected in addition to analyse and prioritize goals as highlighted in Figure 2. Note that here

that only the bottom level goals are engaged; the assumption being that top and intermediate level

goals might have largely a controlling function but nonethe-less have their own goals on how lower

level agents should interact.

Further ART agents were developed for this work as four agents; Manager Agent, Iden-tify Agent,

Assess Agent (combines analyse and prioritize goals) and Monitor Agent. This is depicted as in

Figure 3 that shows the interactions (communicate via passing message) between Manager agent and

the Identify, Assess and Monitor agents. Depend-ing on the data from the environment, the agents

react to detect risk dynamically through rules execution, where rules are invoked from the rule

engine. The ART agents’ communication is described further as below.

Fig. 3. The communication between the ART agents and how they interact within the environ-

ment data and rule engine

There are four ART agents and each of them has a designated goal assigned to them. The goal

and purpose of each of these is discussed below.

 Manager Agent acts as an intermediary between the other three agents. It manages and executes

rules, gets data from the Environment and notifies Identify agent if any risk is triggered.

 Identify agent is notified if any risk is triggered. It requests from the Manager agent what risk

has been identified and notifies the Assess agent.

 Assess agent is invoked by the Identify agent and its goal is to estimate the Risk Exposure (RE)

of the identified risk where RE = Probability (P) x Impact (I). The identified risk will then be

ranked as High, Medium or Low and the Monitor agent is notified to take subsequent action.

 Monitor agent is invoked by the Assess agent with some data: RE and rank of the identified

risk. The Monitor agent will establish the location of the identified risk along with the owner of

the risk. These data are then displayed in the Risk Register which later can be recorded and

saved in the Risk data repository.

Process.

At the Process Stage, the ART agents will monitor the risk by acknowledging any rules or risk

indicators triggered as informed by the ART template. The ART agents will initiate communication

between them. Messages are passed according to request and each agent will notify another agent

in prompting any further action to be taken. An example of the ART agents’ communication was

introduced earlier in this chapter (Fig-ure 3).

Fig. 4. Sniffer Agent

Figure 4 show an interaction between the ART agents starting when a risk is triggered.

The figure shows the agents passing message using Sniffer agent in the JADE platform.

True to its name, sniffer agent is a purely java application that tracks messages in the JADE

environment. It is useful when debugging the agent behaviours and for analysing message passing

using in the sniffer GUI [21].

Rules and the environment data are dynamically editable. In the event where changes need to be

made, one can modify the environment data (which has been translated into the ART template

earlier) as well as the risk rules and indicators using the provided main screen area. On the other

hand, when developing possible risks associated with rules and risk indicators, one might find the

environment data used to be insufficient to detect certain risks. In some cases, a small change in

collection of the environment data would allow defining or detecting more risks. For example,

adding the information on developer’s skill will allow monitoring the developer’s programming

capability espe-cially in completing high priority task. An example of a rule syntax that can be

used is, “IF the developer skill level is ‘Low’ AND the developer involved with a ‘High’ priority

task, THEN there is probability a risk of the task cannot be completed on time because of the

developer’s poor programming skill”.

ART agents will react dynamically to input data, process the input by assessing any risk triggered

and produce a risk result in the Risk Register.

Fig. 5. Agile Risk Tool - Risk Register

Output.

The idea of a Risk register has been defined by [22] who states that “the risk register has two

main roles. The first is that of a repository of a corpus of knowledge… The second role of the risk

register is to initiate the analysis and the plans that flow from it”. While [23] reported that very

few development and construction of risk registers alt-hough it is commonly used in Risk

Management. As such, risk register developed in this work can represent as a risk dashboard in

which one can see a list of risks triggered by the ART agents. The Figure 5 shows an example of

risk register used as the visualiza-tion of output in this tool.

4 Conclusion

In this paper we presented a novel approach to manage risk in agile projects. This work provides

several significant investigations on the problems and issues in risk manage-ment specifically in

agile projects. The development of the ART agents has been demonstrated in order to reduce

effort in managing risk. The ART model demonstrated in [16] moves the body of knowledge

forward via novel contributions towards building a reliable model of risk management. The

approach is necessarily supported by a proto-type tool to manage risks in example agile projects.

This approach however, to the authors’ knowledge and understanding has never been applied in

risk management especially that aimed at reduction of the human effort in risk management and

to provide as much autonomy as possible. In addition, the result-ing risk management process is

naturally lightweight since each software agent is design to achieve a designated goal i.e. to

identify, assess, prioritize or monitor risk. This paper has led to use designated software agents to

facilitate the risk management process. Therefore, this work demonstrates the potential of

autonomous computing being applied to risk management where software agents have been used

to assist the human oriented and complex risk management process. In future, this work aimed to

comprehend the physical implementation of the ART model and tool support, where there is a

need to integrate this with existing Agile Project Management tools, perhaps as a plug-in, so that

automated risk management can be fully realised. This would allow more practical risk

management whereby while a project runs in the fore-ground, software agents are in the

background ready to manage risks.

5 References

[1] Cockburn, A. & Highsmith, J. 2001, "Agile software development, the people factor",

Computer, vol. 34, no. 11, pp. 131-133.

[2] Odzaly, E.E., Greer, D. & Sage, P. "Software risk management barriers: An empirical

study", Empirical Software Engineering and Measurement, 2009. ESEM 2009. 3rd Interlo-cation.

[3] Ropponen, J. & Lyytinen, K. 1997, "Can software risk management improve system devel-

opment: an exploratory study", European Journal of Information Systems, vol. 6, no. 1, pp. 41-50.

[4] Bandyopadhyay, K., Mykytyn, P.P. & Mykytyn, K. 1999, "A framework for integrated risk

management in information technology", Management Decision, vol. 37, no. 5, pp. 437-
4location.

[5] Ibbs, C.W. & Kwak, Y.H. 2000, "Assessing project management maturity", Project Man-

agement Journal, vol. 31, no. 1, pp. 32-43.

[6] Pfleeger, S.L. 2000, "Risky business: what we have yet to learn about risk management",

Journal of Systems and Software, vol. 53, no. 3, pp. 265-273.

[7] Bannerman, P.L. 2008, "Risk and risk management in software projects: A reassessment",

Journal of Systems and Software, vol. 81, no. 12, pp. 2118-2133.

[8] Nyfjord, J. & Kajko-Mattsson, M. 2008, "Integrating risk management with software devel-

opment: State of practice", Proceedings, IAENG International Conference on Software En-

gineering, BrownWalker Press, Boca Raton, USA Citeseer.

[9] Boehm, B. & Turner, R. 2005, "Management challenges to implementing agile processes in

traditional development organizations", Software, IEEE, vol. 22, no. 5, pp. 30-39.

[10] Deemer, P., Benefield, G., Larman, C. & Vodde, B. 2010, "The scrum primer", accessed 14

March 2014.

[11] Boehm, B. & Turner, R. 2003, "Using risk to balance agile and plan-driven methods",

Computer, vol. 36, no. 6, pp. 57-66.

[12] Melnik, G. & Maurer, F. 2006, "Comparative analysis of job satisfaction in agile and non-

agile software development teams" in Extreme Programming and Agile Processes in Soft-ware

Engineering Springer, pp. 32-42.

[13] Melo, C., Cruzes, D.S., Kon, F. & Conradi, R. 2011, "Agile team perceptions of productivi-

ty factors", Agile Conference (AGILE), 2011 IEEE, pp. 57.

[14] Hossain, E., Babar, M.A., Paik, H. & Verner, J. 2009, "Risk identification and mitigation

processes for using Scrum in global software development: A conceptual framework",

Software Engineering Conference, 2009. APSEC'09, Asia-Pacific, IEEE, pp. 457.

[15] Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., Tesoriero, R., Wil-

liams, L. & Zelkowitz, M. 2002, "Empirical findings in agile methods" in Extreme Pro-

gramming and Agile Methods—XP/Agile Springer, pp. 197-207.

[16] Odzaly, E.E., Greer, D. and Stewart, D., 2014. Lightweight Risk Management in Agile

Projects. In SEKE (pp. 576-581).

[17] Kontio, J. 1997, "The RISKIT method for software risk management, version 1.00", Com-

puter Science Technical Reports, University of Maryland, College Park, MD, USA.

[18] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. & Mylopoulos, J. 2002, "Modeling

early requirements in Tropos: a transformation based approach" in Agent-Oriented Software

Engineering II Springer, pp. 151-168.

[19] Dardenne, A., Van Lamsweerde, A. & Fickas, S. 1993, "Goal-directed requirements acqui-

sition", Science of computer programming, vol. 20, no. 1, pp. 3-50.

[20] Boehm, B.W. 1989, Tutorial: Software risk management, IEEE Computer Society Press.

[21] Bellifemine, F.L., Caire, G. & Greenwood, D. 2007, Developing multi-agent systems with

JADE, Wiley.com.

[22] Willams, T.M. 1994, "Using a risk register to integrate risk management in project defini-

tion", International Journal of Project Management, vol. 12, no. 1, pp. 17-22.

[23] Patterson, F.D. & Neailey, K. 2002, "A risk register database system to aid the management

of project risk", International Journal of Project Management, vol. 20, no. 5, pp. 365-374.

