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Abstract. The texture synthesis and design starts with an initial elements arrangement 

and expands it outward by using local and global growth, to obtain the new larger 

distribution of texture elements. There are two types of synthesized distributions, and 

their diversity consists in changing the layout of texture elements and decreasing or 

increasing the number of texture elements according to user’s creation. Furthermore, we 

apply a set of deformation operations to locally change the shapes of texture elements 

when placing the extracted texture elements into the synthesized distribution, in order to 

guarantee structure consistency in final synthesized textures. Experimental results show 

that our method creates a large variety of textures from a given texture sample. 

Keywords: Deterministic texture; Texture elements; Element distributions; Texture 

design; Texture synthesis. 

1   Introduction 

There has been a plethora of research towards texture synthesis in computer graphics and 

computer vision, of which example-based texture synthesis methods [1] has become the main 

threads. To a wide variety of textures ranged from stochastic to structured, we focus on 

deterministic textures that are formed by spatial repetition of texture elements. It would be 

very difficult to synthesize the repetitive elements adequately with most existing texture 

synthesis methods, such as local neighborhood matching-based methods [2-7] and 

optimization-based methods [8].  

Potential solutions [9-15] have been explored through imitating the element distributions 

in input exemplars. For example, Dischler et al. [9] generated 2D textures or textures on 

arbitrary surfaces by adding texture particles according to sets of co-occurrences. Barla et al. 

[10] proposed a method to synthesize 2D arrangements of seed points, and pasted input 

elements to those locations by local neighborhood matching. Ijiri et al. [11] synthesized 2D 

distributions by locally growing through rule-based heuristics. However, the above methods 

[9-11] cannot handle elements with complex shapes which are closely correlated with spatial 

distributions. Hurtut et al. [12] proposed a statistical model to learn spatial interactions 

between and within different categories. Passos et al. [13] presented an improved method for 

arrangement synthesis defined as 2D collection of elements, which provides control over local 

density of elements. Gui et al. [14] proposed a similar method for periodic pattern of texture 

analysis and synthesis based on texels distribution. Recently, Huang et al. [15] extend it to 

texture synthesis on arbitrary surfaces. However, these existing techniques mainly focus on 



 

 

 

 

texture reproduction, which maintains a visual similar to the original sample. It is observed 

that user manipulations are rarely provided over the fully automatic synthesis process, 

including the control of the positions and shapes of texture elements, and consistent transition 

among different texture elements, which can help synthesis a variety of textures. 

In this paper, we first extract distributions of texture elements from a large number of 

deterministic texture samples by constructing their connectivity. And then these distributions 

can be divided into near-regular or non-regular categories through quantifying the constructed 

connectivity. We thus can expand an initial elements arrangement in two different ways, by 

performing local or global growth of texture elements, in order to generate a new larger 

distribution of texture elements. By default, each texture element in distributions is 

represented by a discrete point, and the user may also optionally draw a shape contour for it. 

Once the distribution of texture elements is obtained, we arbitrarily use texture elements to 

replace each discrete point to synthesize the final textures, which the texture elements are 

extracted from the input deterministic textures. When pasting texture elements together, we 

apply a set of deformation operations, such as scaling, rotation, and thin-plate splines (TPS), 

to change the shapes of texture elements. Such deformation operations used in this paper are 

helpful to avoid large overlapping and holes between texture elements, in order to ensure 

structure consistency. As shown further, our method can create a wide variety of textures as 

we attempt to grant users more and more control to the positions and shapes of texture 

elements. 

2   Element Distributions Creation  

2.1   Connectivity Construction and Analysis  

 

Given a deterministic texture sample, the main task is to model the spatial neighborhood 

relationships among all texture elements. Each texture element in the texture sample can be 

represented by its bounding boxes, and the centers of these bounding boxes are used to define 

the element positions in the texture sample. According to the discrete positions information, 

the most suitable method used in [11, 14] is to extract the Delaunay triangulation in order to 

get a connectivity among all texture elements. The connectivity also can be called the 

distribution of texture elements. In addition, if there are texture elements with different classes 

in the texture sample, as shown in Figs. 1 (a2) and (b2), they are marked by using different 

colored points.   

To the constructed connectivity, our focus is on exploring whether they are near-regular 

or non-regular, which are of primary importance to characterize the spatial arrangements. For 

this purpose, we first define a neighborhood that is composed of all neighboring texture 

elements of each texture element. In each neighborhood, edges are connected between two 

adjacent texture elements. The neighborhood can form a ‘ring shape’ when the size of the 

neighborhood is equal to the number of edges. As Figs. 1 (a3) and (b3) show, the texture 

elements which having neighborhood with ring shape are marked by blue. Based on these 

neighborhoods, if they have the same sizes, and their ring shapes have more close appearance 

similarity that can be measured through the area of the neighborhood, the constructed 

connectivity is near-regular or regular (Fig. 1 (a2)), else is supposed to be non-regular (Fig. 1 

(b2)). Indeed, the key for analyzing the constructed connectivity is to describe the discrete or 

compact structure information among texture elements, as texture elements in texture samples 



 

 

 

 

are independent each other (Fig. 1 (b1)), or define a partitioning of textures, with each texture 

element having a non-overlapping, but adjoining spatial extent (Fig. 1 (a1)). 

 

Fig. 1. Near-regular and non-regular connectivity. 

 

2.2   Local and Global Growth  

 

By considering near-regular or non-regular connectivity, texture synthesis begins with an 

initial elements arrangement, and expands it outward by placing the new positions, in order to 

reproduce a new larger elements distribution. Given a regular elements arrangement (Fig. 2 

(a)), we need to decompose it into two types of sub-models, including horizontal model (Fig. 2 

(a1)) and vertical model (Fig. 2 (a2)), which can be used as the placement rules to guide the 

extension. For instance, to perform extension by using horizontal model, the position of a new 

texture element ( , )x yP P  is computed as xP Nrx ov xl    and 1yP Nry yr   , where 

( , )Nry Nrx  is the coordinate of and lower right corner of the bounding box; xl  and yr  

represent the shortest distance from the center to the bounding box (Figs. 2 (a1) and (a2)); ov  

is a user specified spacing between adjacent texels to avoid overlapping. Similarly, the 

position of a texture element in vertical direction can be computed based on vertical model. As 

shown in Fig. 2 (b), we reproduce the final element distribution through using the horizontal 

model and the vertical model alternatively. By default, each texture element in the synthesized 

element distributions is represented by a discrete point, and the user may also optionally draw 

a shape contour for texture elements. In addition, the class information for each new placed 

position can be recorded during the extension. 
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Fig. 2. Regular elements distribution extension. 

 To a non-regular elements arrangement (Fig. 3 (a)), we first need to provide a set of 

discrete points and then use Lloyd’s method [10, 11] to obtain a random distribution of 

(a1) (a2) (b1) (b2) (a3) (b3) 



 

 

 

 

positions (Fig. 3 (b)). Since the obtained distribution is close to uniformity because each point 

is located in the center of the Voronoi region, so we further perform an adjustment. Given a 

neighborhood ( )refe
 
taken from the initial elements arrangement and a neighborhood

 

( )tare  obtained from the synthesized random distribution, where 
refe  and tare  are the 

current selected position of the texels (as shown in Figs. 3 (a) and (b)). The adjustment process 

falls into three stages.  

Step 1: we find a matched 
refe  for the current selected tare . It is the one whose 

neighborhoods ( )refw e  has the most similar neighborhood condition to that of the selected 

position tare . We first sort position point ( )ref ref

ie e  and ( )tar tar

je e  in counter-

clockwise order simply, and then the differences can be measured by using following err 

function:  

                     
1 2

,

( ( ), ( )) ( , ) ( , ) , , {1,..., }ref tar ref tar ref tar

i j i j
i j

Err e e w e e w L e e i j N                  (1) 

where, N  is the number of texture elements in neighborhoods; ( , )ref tar ref tar

i j i je e     

measures differences in angles. 
ref

i  is angle between x-axis and edges (
ref

ie ,
refe ) ; similarly 

to define 
tar

j . ( , )ref tar ref tar

i j i jL e e L L   measures differences in length of edges. 
ref

iL  and 
tar

jL  

are the length of edges ( , )ref ref

ie e  and ( , )tar tar

je e  respectively. 1w  and 2w  are weights to 

balance the differences in angles and edge lengths. We can find the best matched 
refe

 
when 

minimizing the error function (Eq. 1). 

Step 2: we compute the reference shift vector refS  of the corresponding refe , which is the 

distance from the position refe  to the barycenter of the neighborhoods ( )refw e .  

Step 3: we translate the selected position tare  by ( ) / ( )tar ref tar refS S A nA , where tarA  and 

refA  are the area of the neighborhoods ( )tarw e  and ( )refw e
 
respectively, n  is the size of the 

neighborhoods ( )tarw e . The translated positions are marked by using blue (Fig. 3 (c)). 

 

Fig. 3. Non-regular elements distribution adjustment. 
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When all available positions in tarD
 
have been translated through repeating Step 1 to Step 

3, we can obtain the final elements distribution (Fig. 3 (d)), having the stochastic property. On 

the other hand, we can control the density of texture elements in the synthesized elements 

distribution through increasing and decreasing the number of the initial discrete points set. 

Note that the class information in such elements distribution can be ignored.  

3   Texture Elements Placement 

3.1   Texture Elements Extraction 

 

Existing state-of-the art image cutout techniques [16-18] can be used to extract individual 

texture elements. However, none of these segmentation methods can work well for arbitrary 

texture samples. In this setting, input texture sample is represented by a graph ,G P E  , 

with each pixel as one node p P  and pairwise adjacent pixels as edge ,p q E  . Based 

on appearance similarity between texture elements, their extraction is to optimize the 

following energy function: 

, ,
,

( ) ( ) ( , ) ( , )p p p q p q i j i j
p P p q N i j H

E f D f V f f U f f
   

                           (2) 

where the data item ( )p pD f  measures the conformity of node p  assigned label 
pf , the 

smooth item 
, ( , )p q p qV f f  is charged for adjacent nodes with different labels, and the repetition 

energy item 
, ( , )i j i jU f f  measures the labeling smoothness on the similar nodes; N  is an 

neighborhood system, joining adjacent nodes in 4-neighbor (or 8-neighbor); H  is an extended 

neighborhood systems based on the repetitive similarity. Unlike the optimization model in 

RepSnapping, the repetition energy item 
, ( , )i j i jU f f

 
can be modified based on a robust 

appearance similarity   among the repeated texels, which is defined as the following function: 

                                  
2

, ( , ) | | exp( ( , )) , ,i j i j i jU f f f f i j i j H                               (3) 

where,   is a trade-off weight, and   is a constant. Inspired by the texture samples with 

their own pattern feature, the appearance similarity measurement ( , )i j  in Eq. (3) is 

developed by considering both colors and pattern features: 

                                                          
( , ) i j i ji j c c T T                                                   (4) 

where, || ||i jc c  is used to measure the difference in color between nodes i  and j ; ic  

and 
jc  are the average color of nodes i  and j

 
respectively ; || ||i jT T  describes the 

difference in pattern feature between nodes i  and j ; iT  and jT  are the average feature vector 

of nodes i  and j
 
respectively, which is computed by using Gabor wavelet transform [19] in 

multiple scales and orientations. And the values of these differences are normalized in Eq. (3). 

The above energy function (Eq. 2) can be minimized by using max flow-min cut algorithm. As 

illustrated in Fig. 4, only with less user interactions (Figs. 4 (a1) and (b1)), all texture elements 

in the texture samples can be extracted simultaneously (Figs. 4 (a2) and (b2)).  

 

 

 



 

 

 

 

 

 

 

Fig. 4. Texture elements extraction. 

3.2   Texture Elements Deformation 

 

Since the extracted texture elements keep their original shapes, large overlapping and holes 

between adjacent texture elements can be found when performing texture elements placement, 

which no guarantee that texture structures is continuous in final textures. In order to alleviate 

such effects, deformation operations are applied to change the shapes of texture elements. 

Generally, we observed that it is easy to control texture elements with regular shape, which 

mainly consists in changing the size and orientation of the texture element by using linear 

transformation operations, such as scaling and rotation, to keep the structure consistency. 

Indeed, our motivation is to transform the irregular shapes of texture element. Given a 

reference shape and a texture element to be deformation, we first need to sample contour 

points sets respectively (Fig. 5 (b)), and then we determine the corresponding pairs of contour 

points between them by using shape matching [20]. As figure 5 shows, when the 

corresponding pairs of contour points are constructed, the texture element (Fig. 5 (a)) can be 

deformed to a rectangular region (Fig. 5 (c)). The TPS mapping used in our method not only 

maintains the shape contour, but also creates smooth and consistent warped content in the 

interior region of texture elements. Note that we use graph-cuts based segmentation method [5] 

to merge the conflicting regions and we use example-based completion algorithm [21] to fill 

holes explicitly.  

 

Fig. 5. Thin plate spline mapping. 

4   Experimental Results and Discussions 

Figure 6 demonstrates the capability of our method for creating a large variety of textures 

from a small sample (Figs. 6 (a1)-(d1)). If the initial elements arrangement conforms to 

element distribution of texture samples, the resulting textures have an appearance similar to 

(a) (b) (c) 

(a1) (a2) (b1) (b2) 



 

 

 

 

the texture samples (Figs. 6 (a2) and (b2)). Otherwise, the designed textures show various 

appearances (Figs. 6 (a3)-(a6) and Figs. 6 (b3)-(b6)). For last two examples, our presented 

method changes the elements density interactively, and the elements density increase 

gradually. In addition, we can interactively replace the initial elements arrangement (Fig. 6 

(c6)) and manipulate the scale or orientation of texture elements in order to generate various 

outputs (Figs. 6 (d5) and (d6)).   

 

Fig. 6. More results of our texture design and synthesis.  

In Fig. 7, we compare our approach with existing techniques of texels distribution based 

[14], appearance-space synthesis [7], near regular texture synthesis [6], Graph-cut [5], image 

quilting [4], patch-based [3] and jump-map based [2]. The texture sample in Fig. 7 (a) consists 

of oblique blocks, which has a near regular structural layout but irregular color appearance in 

individual blocks. So far, we have not yet seen an existing texture synthesis algorithm that 

preserves structural regularity as well as structure continuity in the synthesized texture. The 

results synthesized by these existing techniques are illustrated in Fig. 7 (c)-(d). We can find 

that the quality of the texture produced with patch-based methods [3-7] is superior to that of 

pixel-based method [2]. However, structure misalignments still remain because there are no 

exact copies at the overlapping region of adjacent patches. Our interactive controllable 

technique consists in deforming each single texture element by using TPS firstly. As 

demonstrated in Figs. 7 (b1) and (b2), we can see that our method performs better than these 

(a1) (a2) (a3) (a4) (a5) (a6) 

(b1) (b2) (b3) (b4) (b5) (b6) 

(c1) (c2) (c3) (c4) (c5) (c6) 

(d1) (d2) (d3) (d4) (d5) (d6) 



 

 

 

 

existing techniques. The structural regularity and structure continuity are preserved in our 

designed results. 

 

Fig. 7. Comparison with existing texture synthesis techniques [2-7, 14]. 

 

Fig. 8. A comparison with element distributions based texture synthesis [14]. 

Figure 8 shows two examples in which the element distributions based texture synthesis 

[14] fail to obtain an optimized stochastic distribution but which is handled well by our 

proposed method. In [14], neighborhood comparison they applied is the difficulty of 

expanding the distribution of positions infinitely because the error accumulates in each local 

growth step. As shown in Fig. 8 (a4), the synthesized distribution deviates greatly from the 

original distribution in samples, which cause large overlapping between adjacent texture 

elements (Fig. 8 (a3)). Although the synthesized distribution is desired shown in Fig. 8 (b4), 

the repetition in the resulting large textures (Fig. 8 (b3)) is not satisfying because the 

randomness. The advantage of our approach is that we obtain the new element distribution by 

controlling the total number of texture elements interactively (Figs. 8 (a6) and (b6)), so that 

our method produce high quality synthesis results (Figs. 8 (a5) and (b5)). In addition, we paste 

the synthesized textures onto arbitrary surfaces to add non-geometric details (Figs. 8 (a7) and 

(b7)). 
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(b1) 
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5   Conclusions  

The main contribution of this paper is to introduce an interactive and controllable scheme for 

semantic texture elements recombination whose success relies on a key factor: a flexible 

texture synthesis and design procedure. More specifically, more informative element 

distributions are produced according to user’s need and creation. By using all segmented 

texture elements and various element distributions, our technique can create a wide variety of 

textures, while the existing texture synthesis methods does not have such ability.  
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