
Texture Synthesis and Design based on Elements

Distribution Creation

Yan Gui
1, 2

, Yang Liu
1, 2

, Feng Li
1, 2

{guiyan122@163.com, ly_hn@foxmail.com, lifeng64@139.com }

Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation,

Changsha University of Science and Technology, Changsha, Hunan, P. R. China, 4101141, 2

Abstract. The texture synthesis and design starts with an initial elements arrangement

and expands it outward by using local and global growth, to obtain the new larger

distribution of texture elements. There are two types of synthesized distributions, and

their diversity consists in changing the layout of texture elements and decreasing or

increasing the number of texture elements according to user’s creation. Furthermore, we

apply a set of deformation operations to locally change the shapes of texture elements

when placing the extracted texture elements into the synthesized distribution, in order to

guarantee structure consistency in final synthesized textures. Experimental results show

that our method creates a large variety of textures from a given texture sample.

Keywords: Deterministic texture; Texture elements; Element distributions; Texture

design; Texture synthesis.

1 Introduction

There has been a plethora of research towards texture synthesis in computer graphics and

computer vision, of which example-based texture synthesis methods [1] has become the main

threads. To a wide variety of textures ranged from stochastic to structured, we focus on

deterministic textures that are formed by spatial repetition of texture elements. It would be

very difficult to synthesize the repetitive elements adequately with most existing texture

synthesis methods, such as local neighborhood matching-based methods [2-7] and

optimization-based methods [8].

Potential solutions [9-15] have been explored through imitating the element distributions

in input exemplars. For example, Dischler et al. [9] generated 2D textures or textures on

arbitrary surfaces by adding texture particles according to sets of co-occurrences. Barla et al.

[10] proposed a method to synthesize 2D arrangements of seed points, and pasted input

elements to those locations by local neighborhood matching. Ijiri et al. [11] synthesized 2D

distributions by locally growing through rule-based heuristics. However, the above methods

[9-11] cannot handle elements with complex shapes which are closely correlated with spatial

distributions. Hurtut et al. [12] proposed a statistical model to learn spatial interactions

between and within different categories. Passos et al. [13] presented an improved method for

arrangement synthesis defined as 2D collection of elements, which provides control over local

density of elements. Gui et al. [14] proposed a similar method for periodic pattern of texture

analysis and synthesis based on texels distribution. Recently, Huang et al. [15] extend it to

texture synthesis on arbitrary surfaces. However, these existing techniques mainly focus on

texture reproduction, which maintains a visual similar to the original sample. It is observed

that user manipulations are rarely provided over the fully automatic synthesis process,

including the control of the positions and shapes of texture elements, and consistent transition

among different texture elements, which can help synthesis a variety of textures.

In this paper, we first extract distributions of texture elements from a large number of

deterministic texture samples by constructing their connectivity. And then these distributions

can be divided into near-regular or non-regular categories through quantifying the constructed

connectivity. We thus can expand an initial elements arrangement in two different ways, by

performing local or global growth of texture elements, in order to generate a new larger

distribution of texture elements. By default, each texture element in distributions is

represented by a discrete point, and the user may also optionally draw a shape contour for it.

Once the distribution of texture elements is obtained, we arbitrarily use texture elements to

replace each discrete point to synthesize the final textures, which the texture elements are

extracted from the input deterministic textures. When pasting texture elements together, we

apply a set of deformation operations, such as scaling, rotation, and thin-plate splines (TPS),

to change the shapes of texture elements. Such deformation operations used in this paper are

helpful to avoid large overlapping and holes between texture elements, in order to ensure

structure consistency. As shown further, our method can create a wide variety of textures as

we attempt to grant users more and more control to the positions and shapes of texture

elements.

2 Element Distributions Creation

2.1 Connectivity Construction and Analysis

Given a deterministic texture sample, the main task is to model the spatial neighborhood

relationships among all texture elements. Each texture element in the texture sample can be

represented by its bounding boxes, and the centers of these bounding boxes are used to define

the element positions in the texture sample. According to the discrete positions information,

the most suitable method used in [11, 14] is to extract the Delaunay triangulation in order to

get a connectivity among all texture elements. The connectivity also can be called the

distribution of texture elements. In addition, if there are texture elements with different classes

in the texture sample, as shown in Figs. 1 (a2) and (b2), they are marked by using different

colored points.

To the constructed connectivity, our focus is on exploring whether they are near-regular

or non-regular, which are of primary importance to characterize the spatial arrangements. For

this purpose, we first define a neighborhood that is composed of all neighboring texture

elements of each texture element. In each neighborhood, edges are connected between two

adjacent texture elements. The neighborhood can form a ‘ring shape’ when the size of the

neighborhood is equal to the number of edges. As Figs. 1 (a3) and (b3) show, the texture

elements which having neighborhood with ring shape are marked by blue. Based on these

neighborhoods, if they have the same sizes, and their ring shapes have more close appearance

similarity that can be measured through the area of the neighborhood, the constructed

connectivity is near-regular or regular (Fig. 1 (a2)), else is supposed to be non-regular (Fig. 1

(b2)). Indeed, the key for analyzing the constructed connectivity is to describe the discrete or

compact structure information among texture elements, as texture elements in texture samples

are independent each other (Fig. 1 (b1)), or define a partitioning of textures, with each texture

element having a non-overlapping, but adjoining spatial extent (Fig. 1 (a1)).

Fig. 1. Near-regular and non-regular connectivity.

2.2 Local and Global Growth

By considering near-regular or non-regular connectivity, texture synthesis begins with an

initial elements arrangement, and expands it outward by placing the new positions, in order to

reproduce a new larger elements distribution. Given a regular elements arrangement (Fig. 2

(a)), we need to decompose it into two types of sub-models, including horizontal model (Fig. 2

(a1)) and vertical model (Fig. 2 (a2)), which can be used as the placement rules to guide the

extension. For instance, to perform extension by using horizontal model, the position of a new

texture element (,)x yP P is computed as xP Nrx ov xl   and 1yP Nry yr   , where

(,)Nry Nrx is the coordinate of and lower right corner of the bounding box; xl and yr

represent the shortest distance from the center to the bounding box (Figs. 2 (a1) and (a2)); ov

is a user specified spacing between adjacent texels to avoid overlapping. Similarly, the

position of a texture element in vertical direction can be computed based on vertical model. As

shown in Fig. 2 (b), we reproduce the final element distribution through using the horizontal

model and the vertical model alternatively. By default, each texture element in the synthesized

element distributions is represented by a discrete point, and the user may also optionally draw

a shape contour for texture elements. In addition, the class information for each new placed

position can be recorded during the extension.

xl

yr

 (Nry,Nrx)

 (Nry,Nrx)

yr

xl

horizontal model

v
ertical m

o
d

el

(a) (a1) (a2)

(b)

(Px,Py)

Fig. 2. Regular elements distribution extension.

 To a non-regular elements arrangement (Fig. 3 (a)), we first need to provide a set of

discrete points and then use Lloyd’s method [10, 11] to obtain a random distribution of

(a1) (a2) (b1) (b2) (a3) (b3)

positions (Fig. 3 (b)). Since the obtained distribution is close to uniformity because each point

is located in the center of the Voronoi region, so we further perform an adjustment. Given a

neighborhood ()refe

taken from the initial elements arrangement and a neighborhood

()tare obtained from the synthesized random distribution, where
refe and tare are the

current selected position of the texels (as shown in Figs. 3 (a) and (b)). The adjustment process

falls into three stages.

Step 1: we find a matched
refe for the current selected tare . It is the one whose

neighborhoods ()refw e has the most similar neighborhood condition to that of the selected

position tare . We first sort position point ()ref ref

ie e and ()tar tar

je e in counter-

clockwise order simply, and then the differences can be measured by using following err

function:

1 2

,

((), ()) (,) (,) , , {1,..., }ref tar ref tar ref tar

i j i j
i j

Err e e w e e w L e e i j N     (1)

where, N is the number of texture elements in neighborhoods; (,)ref tar ref tar

i j i je e   

measures differences in angles.
ref

i is angle between x-axis and edges (
ref

ie ,
refe) ; similarly

to define
tar

j . (,)ref tar ref tar

i j i jL e e L L  measures differences in length of edges.
ref

iL and
tar

jL

are the length of edges (,)ref ref

ie e and (,)tar tar

je e respectively. 1w and 2w are weights to

balance the differences in angles and edge lengths. We can find the best matched
refe

when

minimizing the error function (Eq. 1).

Step 2: we compute the reference shift vector refS of the corresponding refe , which is the

distance from the position refe to the barycenter of the neighborhoods ()refw e .

Step 3: we translate the selected position tare by () / ()tar ref tar refS S A nA , where tarA and

refA are the area of the neighborhoods ()tarw e and ()refw e

respectively, n is the size of the

neighborhoods ()tarw e . The translated positions are marked by using blue (Fig. 3 (c)).

Fig. 3. Non-regular elements distribution adjustment.

(a) (b) (c) (d)

When all available positions in tarD

have been translated through repeating Step 1 to Step

3, we can obtain the final elements distribution (Fig. 3 (d)), having the stochastic property. On

the other hand, we can control the density of texture elements in the synthesized elements

distribution through increasing and decreasing the number of the initial discrete points set.

Note that the class information in such elements distribution can be ignored.

3 Texture Elements Placement

3.1 Texture Elements Extraction

Existing state-of-the art image cutout techniques [16-18] can be used to extract individual

texture elements. However, none of these segmentation methods can work well for arbitrary

texture samples. In this setting, input texture sample is represented by a graph ,G P E  ,

with each pixel as one node p P and pairwise adjacent pixels as edge ,p q E  . Based

on appearance similarity between texture elements, their extraction is to optimize the

following energy function:

, ,
,

() () (,) (,)p p p q p q i j i j
p P p q N i j H

E f D f V f f U f f
   

     (2)

where the data item ()p pD f measures the conformity of node p assigned label
pf , the

smooth item
, (,)p q p qV f f is charged for adjacent nodes with different labels, and the repetition

energy item
, (,)i j i jU f f measures the labeling smoothness on the similar nodes; N is an

neighborhood system, joining adjacent nodes in 4-neighbor (or 8-neighbor); H is an extended

neighborhood systems based on the repetitive similarity. Unlike the optimization model in

RepSnapping, the repetition energy item
, (,)i j i jU f f

can be modified based on a robust

appearance similarity  among the repeated texels, which is defined as the following function:

2

, (,) | | exp((,)) , ,i j i j i jU f f f f i j i j H          (3)

where,  is a trade-off weight, and  is a constant. Inspired by the texture samples with

their own pattern feature, the appearance similarity measurement (,)i j in Eq. (3) is

developed by considering both colors and pattern features:

(,) i j i ji j c c T T     (4)

where, || ||i jc c is used to measure the difference in color between nodes i and j ; ic

and
jc are the average color of nodes i and j

respectively ; || ||i jT T describes the

difference in pattern feature between nodes i and j ; iT and jT are the average feature vector

of nodes i and j

respectively, which is computed by using Gabor wavelet transform [19] in

multiple scales and orientations. And the values of these differences are normalized in Eq. (3).

The above energy function (Eq. 2) can be minimized by using max flow-min cut algorithm. As

illustrated in Fig. 4, only with less user interactions (Figs. 4 (a1) and (b1)), all texture elements

in the texture samples can be extracted simultaneously (Figs. 4 (a2) and (b2)).

Fig. 4. Texture elements extraction.

3.2 Texture Elements Deformation

Since the extracted texture elements keep their original shapes, large overlapping and holes

between adjacent texture elements can be found when performing texture elements placement,

which no guarantee that texture structures is continuous in final textures. In order to alleviate

such effects, deformation operations are applied to change the shapes of texture elements.

Generally, we observed that it is easy to control texture elements with regular shape, which

mainly consists in changing the size and orientation of the texture element by using linear

transformation operations, such as scaling and rotation, to keep the structure consistency.

Indeed, our motivation is to transform the irregular shapes of texture element. Given a

reference shape and a texture element to be deformation, we first need to sample contour

points sets respectively (Fig. 5 (b)), and then we determine the corresponding pairs of contour

points between them by using shape matching [20]. As figure 5 shows, when the

corresponding pairs of contour points are constructed, the texture element (Fig. 5 (a)) can be

deformed to a rectangular region (Fig. 5 (c)). The TPS mapping used in our method not only

maintains the shape contour, but also creates smooth and consistent warped content in the

interior region of texture elements. Note that we use graph-cuts based segmentation method [5]

to merge the conflicting regions and we use example-based completion algorithm [21] to fill

holes explicitly.

Fig. 5. Thin plate spline mapping.

4 Experimental Results and Discussions

Figure 6 demonstrates the capability of our method for creating a large variety of textures

from a small sample (Figs. 6 (a1)-(d1)). If the initial elements arrangement conforms to

element distribution of texture samples, the resulting textures have an appearance similar to

(a) (b) (c)

(a1) (a2) (b1) (b2)

the texture samples (Figs. 6 (a2) and (b2)). Otherwise, the designed textures show various

appearances (Figs. 6 (a3)-(a6) and Figs. 6 (b3)-(b6)). For last two examples, our presented

method changes the elements density interactively, and the elements density increase

gradually. In addition, we can interactively replace the initial elements arrangement (Fig. 6

(c6)) and manipulate the scale or orientation of texture elements in order to generate various

outputs (Figs. 6 (d5) and (d6)).

Fig. 6. More results of our texture design and synthesis.

In Fig. 7, we compare our approach with existing techniques of texels distribution based

[14], appearance-space synthesis [7], near regular texture synthesis [6], Graph-cut [5], image

quilting [4], patch-based [3] and jump-map based [2]. The texture sample in Fig. 7 (a) consists

of oblique blocks, which has a near regular structural layout but irregular color appearance in

individual blocks. So far, we have not yet seen an existing texture synthesis algorithm that

preserves structural regularity as well as structure continuity in the synthesized texture. The

results synthesized by these existing techniques are illustrated in Fig. 7 (c)-(d). We can find

that the quality of the texture produced with patch-based methods [3-7] is superior to that of

pixel-based method [2]. However, structure misalignments still remain because there are no

exact copies at the overlapping region of adjacent patches. Our interactive controllable

technique consists in deforming each single texture element by using TPS firstly. As

demonstrated in Figs. 7 (b1) and (b2), we can see that our method performs better than these

(a1) (a2) (a3) (a4) (a5) (a6)

(b1) (b2) (b3) (b4) (b5) (b6)

(c1) (c2) (c3) (c4) (c5) (c6)

(d1) (d2) (d3) (d4) (d5) (d6)

existing techniques. The structural regularity and structure continuity are preserved in our

designed results.

Fig. 7. Comparison with existing texture synthesis techniques [2-7, 14].

Fig. 8. A comparison with element distributions based texture synthesis [14].

Figure 8 shows two examples in which the element distributions based texture synthesis

[14] fail to obtain an optimized stochastic distribution but which is handled well by our

proposed method. In [14], neighborhood comparison they applied is the difficulty of

expanding the distribution of positions infinitely because the error accumulates in each local

growth step. As shown in Fig. 8 (a4), the synthesized distribution deviates greatly from the

original distribution in samples, which cause large overlapping between adjacent texture

elements (Fig. 8 (a3)). Although the synthesized distribution is desired shown in Fig. 8 (b4),

the repetition in the resulting large textures (Fig. 8 (b3)) is not satisfying because the

randomness. The advantage of our approach is that we obtain the new element distribution by

controlling the total number of texture elements interactively (Figs. 8 (a6) and (b6)), so that

our method produce high quality synthesis results (Figs. 8 (a5) and (b5)). In addition, we paste

the synthesized textures onto arbitrary surfaces to add non-geometric details (Figs. 8 (a7) and

(b7)).

(a1)

(a3) (a4) (a2) (a5) (a6)

(b1)

(b3) (b4) (b5) (b2) (b6)

(a7)

(b7)

(e) (f) (g) (h) (i)

(a) (b1) (b2) (c) (d)

5 Conclusions

The main contribution of this paper is to introduce an interactive and controllable scheme for

semantic texture elements recombination whose success relies on a key factor: a flexible

texture synthesis and design procedure. More specifically, more informative element

distributions are produced according to user’s need and creation. By using all segmented

texture elements and various element distributions, our technique can create a wide variety of

textures, while the existing texture synthesis methods does not have such ability.

Acknowledgments. The project was supported by the National Science Foundation of China

(No. 61402053) and by the Scientific Research Fund of Hunan Provincial Education

Department (No. 16C0046).

References

[1] L. Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk, State of the Art in Example-based

Texture Synthesis, Eurographics 2009, State of the Art Report, EG-STAR.

[2] Zelinka S. and Garland M.: Towards Real-time Texture Synthesis with the Jump Map.

EGRW '02 Proceedings of the 13th Eurographics workshop on Rendering, pp. 99--104, (2002).

[3] Liang L., Liu C., Xu Y., Guo B., and Shum H. Y.: Real-time texture synthesis by patch-

based sampling. ACM Transaction on Graphics, 20, (3), pp. 127--150 (2001).

[4] Efros A. and Freeman W.: Image quilting for texture synthesis and transfer. In

SIGGRAPH 2001, Computer Graphics Proceedings, pp. 341--346 (2001).

[5] V. Kwatra, A. Schiodl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: image and

video synthesis using graph cuts, ACM Transactions on Graphics, 22(3), pp.277--286 (2003).

[6] Liu Y. X., Lin W. C., and Hays J.: Near-regular texture analysis and manipulation. In

SIGGRAPH ’04: ACM SIGGRAPH, pp. 368--376 (2004).

[7] Lefebvre S. and Hoppe H.: Appearance-space texture synthesis. In: SIGGRAPH ’06:

ACM SIGGRAPH, pp. 541--548 (2006).

[8] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture optimization for example based

synthesis, ACM Transactions on Graphics, 24(3), pp.795--802 (2005).

[9] J. M. Dischler, K. Maritaud, B. Levy, D. Ghazanfarpour. Texture particles, Computer

Graphics Forum, 21, pp.401--410 (2002).

[10] P. BARLA, S. BRESLAV, J. THOLLOT, F. SILLION, L. MARKOSIAN. Stroke

pattern analysis and synthesis, Computer Graphics Forum, 25, pp.663--671 (2006).

[11] T. IJIRI, R. MECH, T. IGARASHI, G. S. P. MILLER. An example-based procedural

system for element arrangement, Computer Graphics Forum, 27(2), pp.429--436 (2008).

[12] T. HURTUT, P. E. LANDES, J. THOLLOT, Y. GOUSSEAU, R. DROUILLHET, J. F.

COEURJOLLY, Appearance-guided synthesis of element arrangements by example, In

Proceedings of the Symposium on Non-Photorealistic Animation and Rendering, pp.51--60

(2009).

[13] V. ALVES DOS PASSOS, M. WALTER, M. SOUSA. Sample-based synthesis of

illustrative patterns, In Computer Graphics and Applications, PG 10, pp.109--116 (2010).

[14] Y. Gui, L. Z. Ma. Periodic Pattern of Texture Analysis and Synthesis based on Texels

Distribution, The Visual Computer, 26(6-8), pp.951--964 (2010).

[15] J. Huang, L. Zhang, Y. Gui. Surfaces Texture Synthesis Based on Texel Distribution,

Journal of Chinese Computer Systems, 2015 (Chinese).

[16] Y. Li, J. Sun, C. K. Tang, and H. Y. Shum. Lazy snapping , ACM Transactions on

Graphics, 23(3), pp.303--308 (2004).

[17] C. Rother, V. Kolmogorov, and A. Blake. Grabcut, interactive foreground extraction

using iterated graph cuts, ACM Transactions on Graphics, 23(3):309--314 (2004).

[18] H. Huang, L. Zhang, H. C. Zhang, RepSnapping: efficient image cutout for repeated

scene elements, Computer Graphics Forum, 30(7), pp.2059--2066 (2011).

[19] B. S. MANJUNATH, AND W. Y. MA, Texture features for browsing and retrieval of

image data [J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8),

pp.837--842 (1996).

[20] Belongie S., Malik J., and Puzicha J.: Shape matching and object recognition using

shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), pp.

509--522 (2002).

[21] A. Criminisi, P. Prez, and K. Toyama. Region filling and object removal by exemplar-

based image inpainting, IEEE Transactions on Image Processing, 13(1), pp.1200--1212 (2004).

