
Implementing the Honey Encryption for Securing
Public Cloud Data Storage

Edwin Mok1, Azman Samsudin2, Soo-Fun Tan3
{edwinmyp@gmail.com1, azman.samsudin@usm.edu.my2, soofun4818@yahoo.com3 }

School of Computer Sciences, Unversiti Sains Malaysia, Penang, 11800, Malaysia

Abstract. Recent security incidents on public cloud data storage had risen
concerns on cloud data security. Existing cloud data protection solutions that
primarily relying on the conventional password-based encryption cannot
efficiently resist password guessing and password cracking attacks. To address
this problem, this paper proposed an eXtended Honey Encryption (XHE) scheme
by adding an additional protection mechanism on the encrypted data. When the
attacker attempts to access these encrypted data by entering the incorrect
password, instead of rejecting the access, the HE algorithm generates an
indistinguishable bogus data, in which the attack could not determine whether the
guessed password is working correctly or not. Therefore, increasing the
complexity of password guessing and cracking attacks.

Keywords: Cloud, Data Centric Approach, Password-based Encryption, Honey
Encryption.

1 Introduction

Traditionally, the data encryption algorithms are considered as “computationally secure",
if the best known method of breaking the algorithms require an unreasonably large amount of
computer processing time [1]. However, with the advancement of computing processors,
parallelism techniques and distributed algorithms, existing cloud data protection that relies on
the conventional password-based data encryption algorithms (e.g. Advanced Encryption
Standard (AES) [2,3], RSA [4,5], etc.) are constantly at risk of being challenged and broken [6].
For instance, the recent attack reported in [7] can brute force any eight-characters-length
password that consists combination of any 95 characters in less than 5.5 hours.

To address this problem, Juels and Ristenpart [8,9] proposed a Honey Encryption (HE)
scheme to enhance the security of a password-based encrypted data. When the attacker attempts
to access the encrypted data with the incorrect password, instead of rejecting their data access,
the HE algorithm generates an indistinguishable bogus data that closely resemblance the actual
data. Subsequently, the attacker will be bewildered in determining whether the guessed
password is working correctly or not. Therefore, increasing the complexity of password
guessing and cracking process. This paper extends the HE scheme to enhance the security of the
cloud data storage, so called as eXtended Honey Encryption (XHE) scheme. The rest of this
paper is organized as follows. Section 2 describes preliminaries and some background works of

HE scheme. Section 3 presents the algorithm of XHE scheme. Section 4 demonstrates the
applicability of XHE scheme to enhance the data security on public cloud service providers.
Finally, this paper draws a conclusion in Section 5.

2 Preliminaries

Honey Encryption (HE) scheme [8,9] was firstly introduced by Juels and Ristenpart on
2014 to add the extra protection layer onto the password-based RSA encryption algorithm and
credit card applications. Subsequently, extended by Tyagi et al. [10] and Huang et al. [11] to
secure the basic text messaging and genomic data application respectively. More recently,
Joseph et al. [12] enhanced the security of HE scheme to resist the message recovery attacks.
This section introduces some concepts and background which will be used in the construction
of the extended HE scheme in Section 3.

Message Space (ℳ) [8,9]. Since HE deceives the attackers by providing ambiguous looking
messages, it requires a message space, ℳ, which contains all possible messages, M. The size
of ℳ has to be customized for each scenario and dependent on the type of contents that need
to be encrypted. The distribution over ℳ is denoted as ψm, subsequently, sampling according
to this distribution is denoted as M ←ψm ℳ.

Seed Space (S) [8,9]. Seed space, S, is the space of all n-bit binary strings for some
predetermined n. Each message in ℳ is mapped to a seed in S. The size of the seed is directly
proportional to how likely a particular message is to appear. The size also has to be large
enough at such even the least likely messages have to be mapped to at least 1 seed. Similar to
ℳ, S is predefined by developer which can be based on personal judgment, research or
sampling results. The distribution on set S is denoted as a map p: S → [0,1] such that Σs∈S p(s)
=1. Subsequently, sampling according to such distribution is denoted as s ←pS.

Distribution-Transforming Encoder (DTE) [8,9]. A DTE consists of a pair of algorithms,
such that DTE = (encode, decode). The encode algorithm takes as input a message M∈ℳ and
outputs a set of seed value, S from seed space, ࣭. The deterministic decode algorithm takes as
input a message S∈࣭ and outputs a message M∈ℳ. The correctness of DTE algorithm follows
as for any M∈ℳ, Pr[decode (encode (M)) =M] =1.

Inverse Sampling DTE (IS-DTE) [8,9]. A IS-DTE consists of a pair of algorithms, such that
IS-DTE = (IS-encode, IS-decode). The IS-encode algorithm runs the Cumulative Distribution
Function (CDF), Fm such that with a pre-defined message distribution ψm and ℳ = {M1, M2,
..., M|ℳ|}. Define Fm(M0) =0, subsequently generates Mi such that Fm(Mi-1)≤S<Fm(Mi), where
S←$ [0,1). Lastly, encodes the input message Mi by selecting a uniformly random value from
the range [Fm (Mi-1), Fm(Mi]. The IS-decode algorithm is the inverse of CDF, such that IS-
decode =Fm

-1(S).

DTE-then-Encrypt (HE [DTE, SE]) [8,9]. A HE [DTE, SE] algorithm is a pair of algorithms
(HEnc, HDec) that encrypts a message by using the DTE algorithm, subsequently re-encrypts
the output of DTE algorithm with Symmetric Encryption scheme (SE) as follows.

HEnc (K, M). Given the symmetric key, K and a message M, let the H be the hashing
algorithm and n is the number of random bits, select a uniformly random, s ←$ encode(M)
and R ←$ {0,1}n, outputs the ciphertext, C = H(R,K) ⨁ s. The process of HEnc (K, M) is
illustrated in Fig.1.

Fig. 1. The process of HEnc algorithm.

HDec (K, R, C). Given the K，R and C, computes s = C ⨁ H(R, K) and subsequently
outputs the ciphertext, M= decode(s). The seed, s, alone is insufficient to retrieve the
message, M, unless it is a one-to-one mapping. In most cases, a s falls into a seed range, S.
Therefore, Inverse sampling table comes into play for message lookup as illustrated in Fig.
2.

Fig. 2. The process of HDec algorithm.

3 EXtended Honey Encryption (XHE) Scheme

To be adapted for securing the public cloud file storage, this paper proposes an extended
version of the HE scheme [8,9], so called as eXtended Honey Encryption (XHE) scheme.
Similar to credit card applications, the length of the file name usually has a limit size. For
instance, Linux Ext4 file system has a maximum of 255 characters per file and most of the time,
these file and folder names do not exceed more than 50 characters [13]. Subsequently, the file
extension such as .exe, .bat, .sh, .txt, .docx, .pdf, .jpeg, etc., can be randomly assigned to a file
to increase the complexity against the password attacks. To achieve this, this paper proposed
XHE algorithm and subsequently divided it into 2-sub algorithms in order to protect the file’s
name and file’s extension respectively. Next, the construction of the extended HE scheme is
presented in the following.

Message Space (ℳ1, ℳ2). Given the message, M1 is a file name that consists of 36
alphanumeric characters with the maximum length of 50 characters [13-15]. With the total of
3650 possibilities, the distribution over ℳ1 is denoted as ψm1 and the sampling according to
such distribution is denoted as M1 ←ψm1 ℳ1, as illustrated in Fig. 3.

Fig. 3. The Message space, M1 of the Extended HE scheme.

Next, let M2 be the file extension that consists of alphabet with the maximum length
of 4 characters [16] as illustrated in Fig. 4. With a list of most common used file extensions
[16], the distribution over ℳ2 is denoted as ψm2 and the sampling according to such
distribution is denoted as M2 ←ψm2ℳ2.

Fig. 4. The Message space, M2 of the Extended HE scheme.

Seed Space (S1, S2). Seed space, consists of prefix seed, S1, and suffix seed, S2, over the n-bit
binary strings. Each message in ℳ1 and ℳ2 are mapped to a seed in S1 and S2 respectively
such that Σs1∈S1 p(s1) =1 and Σs2∈S2 p(s2) =1.

Distribution-Transforming Encoder (DTE). A DTE consists of a pair of algorithms, DTE_1
and DTE_2 algorithms as follows:

DTE_1(encode_1, decode_1). The encode_1 algorithm takes a file name as input, M1∈ℳ1
and outputs a set of prefix seed value, s1 from seed space, S1. The deterministic decode_1
algorithm takes as input a message s1∈ S2 and outputs a message M1∈ ℳ1.

DTE_2(encode_1, decode_2). The encode_2 algorithm takes a file extension as input, M2∈
ℳ2 and outputs a set of suffix seed value, s2 from seed space, S2. The deterministic
decode_2 algorithm takes as input a message s2∈S2 and outputs a message M2∈ ℳ2 by
running the binary search on the inverse sampling table and linear search on the message
space to locate the original file name and extension type.

Fig. 5. The DTE algorithm of the Extended HE scheme.

Inverse Sampling DTE (IS-DTE). A IS-DTE consists of a pair of algorithms, IS-DTE_1 and
IS-DTE_2 algorithms as follows:

IS-DTE_1(IS-encode_1, IS-decode_1). The IS-encode_1 algorithm runs the Cumulative
Distribution Function (CDF), Fm1, such that with a pre-defined message distribution, ψm1
and ℳ1 = {M1-1, M1-2, ..., M1-|ℳ|}. Define Fm1(M1-0) = 0, subsequently generates M1-i such
that Fm1(Mi-1) ≤ S1<Fm1(M1-i), where S1←$ [0,1). Lastly, encodes the input message M1-i by
selecting a uniformly random value from the range [Fm1(M(1-i)-1), Fm1(M1-i)]. The IS-
decode_1 algorithm is the inverse of CDF, such that IS-decode_1 = Fm1

-1(S1).

IS-DTE_2(IS-encode_2, IS-decode_2). The IS-encode_2 algorithm runs the Cumulative
Distribution Function (CDF), Fm2, such that with a pre-defined message distribution, ψm2
and ℳ2 = {M2-1, M2-2, ..., M2-|ℳ|}. Define Fm2(M2-0) = 0, subsequently generates M1-i such
that Fm2(Mi-1)≤ S2<Fm2(M2-i), where S2←$ [0,1). Lastly, encodes the input message M2-i by
selecting a uniformly random value from the range [Fm2(M(2-i)-1), Fm2(M2-i)]. The IS-
decode_2 algorithm is the inverse of CDF, such that IS-decode_2 = Fm2

-1(S2).

Fig. 6. The DTE and IS-DTE encoding algorithm of the Extended HE scheme.

Fig. 7. The DTE and IS-DTE decoding of the Extended HE scheme.

DTE-then-Encrypt (HE [DTE, SE]). A HE [DTE, SE] algorithm is a pair of algorithms
(HEnc, HDec) that encrypts a message by using the DTE algorithm, subsequently re-encrypts
the output of DTE algorithm with a Symmetric Encryption scheme (SE) as follows.

HEnc (K, M1, M2). Given the symmetric key K, and a file name M1, and its extension M2,
let the H be the hashing algorithm and n is the number of random bits, select a uniformly
random, s1 ←$ encode(M1), s2 ←$ encode(M2) and R ←$ {0,1}n, outputs the ciphertext, C1 =
H(R,K) ⨁ s1 and C2 = H(R,K) ⨁ s2.

HDec (K, R, C1, C2). Given the K, R, C2 and C2 computes s1 = C1 ⨁ H(R, K) and s2 = C2 ⨁
H(R, K). Subsequently outputs the file name, M1= decode(s1) and its extension, M2=
decode(s2) with the lookup inverse sampling tables.

4 Extended Honey Encryption in Securing Cloud Data Storage

This section describes the applicability of the XHE scheme to enhance the security of file
storage on public cloud environment as illustrated in Fig. 8. The application scenario is further
described in the following.

System Setup(λ). Given a security parameter, λ, define the distribution over the key space, ψk.
Subsequently, takes the user’s cloud account login password as an input, and outputs the shared
secret key, K.

Encrypt (K, F). Given the secret key, K and a file, f (e.g. word documents, images, etc.), takes
a f as an input, extract the file name, as a message space M1, and file extension as a message
space, M2. Subsequently, define the distribution over the messages space ψm1 and ψm2. Next,
generates the seed s1 with DTE_1 encode_1 algorithm and s2 with DTE_2 encode_2 algorithm.
Then, runs the IS-encode_1 algorithm to generate a series of fake file names and its contents
that looks like an original file M1, such that F1-i = {Fm1(M(1-i)-1), Fm1(M1-i). Subsequently,
executes the IS-encode_2 algorithm to generate a series of fake file extensions that close related
to an original file extension M2, such that F2-i = {Fm2(M(2-i)-1), Fm2(M2-i)}. Lastly, outputs the
encrypted file, fe =C1.C2 with HEnc (K, M1, M2) algorithm.

Data Transmission and Storage. The user uploads his encrypted files, fe, onto public cloud
service providers’ data centre. These files are transferred via the existing Transport Layer
Security (TLS) and stored onto public cloud with protection.

Decrypt (K,Fe). The user downloads his encrypted file, fe, from the public cloud service
provider and runs HDec algorithm to recover his plain file with his secret key, K.

The toy example is described as follow. The user encrypts her file, f = “2016.docx” under the
shared secret key, K = 0000. Next, the user defines the distribution over the messages space,
ψm1 = {2014, 2015, 2016, 2017} and ψm2 = {xlsx, docx, txt, ppt}. Next, generates the 2-bit
strings seed, S1 = {00, 01, 10, 11} and S2 = {00, 01, 10, 11} with DTE algorithm. Then, the user
encodes her file as encode (2016) = s1= 10 and encode (docx)= s2= 01. Next, the user selects
the random 2-bit strings, R and outputs the ciphertext, C1 = H(R,K) ⨁ s1 = H(R,0000) ⨁ 10 =
11⨁ 10 = 01 and C2 = H(R,0000) ⨁ 00 = 11⨁ 01 = 10. To recover the original file, the user
computes s1 = C1 ⨁ H(R,K)= 01 ⨁ 11= 10 and s2 = C2 ⨁ H(R,K)= 10 ⨁ 11= 01. Subsequently,
outputs the decode (s1) = decode(10) = 2016 and decode (s2) = decode(01) = docx.

Attack Scenario. Suppose that the adversary intercepts the encrypted file, fe, either from the
user’s device (e.g. desktop, tablets, mobile devices, etc.), public cloud data storage or during the
data transmission, and subsequently attempts to decrypt it. With his guessed password, the
Decrypt algorithm outputs a fake file in response to every incorrect guess of the user’s password
or shared symmetric key, K. These fake file is generated with the IS-encode algorithm in which
the fake file distribution is closed related to actual file distribution. Therefore, it is
indistinguishable from the attacker perspective, thus increases the complexity of determining
whether the attacker have guessed a password correctly or not. For instance, the adversary uses
the most popular password, K = 1234 and g = H(R,1234) = 01. The adversary computes s1 = C1
⨁ g = 01 ⨁ 01 = 00 and decode (00) = 2014. Subsequently, computes s2 = C2 ⨁ g = 10 ⨁ 01=
11 and decode (11) = ppt and obtain a valid file named “2014.ppt”.

Fig. 8. Secure Cloud File Storage with the Extended Honey Encryption.

5 Conclusions

While the existing file protection relies on password-based encryption, which is vulnerable
to password guessing attack such as brute-force, dictionary or rainbow table attack [6], this
paper proposed an eXtended Honey Encryption (XHE) scheme for securing the public cloud
file storage. The proposed XHE scheme provides an additional protection layer to existing
encrypted file. When the attacker attempts to access the encrypted data with his guessing
password, instead of rejecting their data access as conventional file encryption scheme, the
extended HE algorithm generates an indistinguishable bogus file that are closely related to the
original file. It is noticeable that the message space of the proposed scheme is pre-fixed and the
complexity and the size of inverse sampling tables is growing exponentially with the increase
of the file names and its extension sizes. In future, several aspects of this work can be further
explored, such as working with a flexible message space and further extends into folders
protection. Besides that, whether the proposed XHE scheme can be further adapted to work with
the recent advancement of cryptography algorithm such as Homomorphic Encryption [17] for
supporting the computation on encrypted data, as well as Attribute-Based Encryption (ABE)
[18] to fine grained control access on encrypted data are another interesting topic to be explored.

Acknowledgments. This work was by a research grant from Universiti Sains Malaysia (USM)
[1001/PKOMP/811334]. The authors also thank the anonymous reviewers of this manuscript
for their careful reviews and valuable comment

References

[1] W. Diffie and M. E. Hellman: New Directions in Crytography. IEEE Transactions on Information
Theory, vol. 22, no. 6, pp. 644 -654. IEEE Press, New Jersey. (1976).
[2] G. Irazoqui, M. S. Inci, T. Eisenbarth and B. Sunar: Wait a Minute! A Fast, Cross-VM Attacks on
AES. LNCS, vol. 8688, pp. 299-319, Springer, Switzerland, 2014.
[3] Y. Wei, J. Lu and Y. Hu: Meet-in-the-Middle Attack on 8 Rounds of the AES Block
Cipher under 192 Key Bits. LNCS, vol. 6672, pp. 222-232, Springer, Heidelberg. (2011)
[4] A. Nitaj, M. R. K. Ariffin, D. I. Nassar, H. M. Bahig: New Attacks on the RSA
Cryptosystem. LNCS, Progress in Cryptology – AFRICACRYPT, LNCS, vol. 8469, pp. 178-
-198. Springer, Swtizerland. (2014).
[5] Y. Lu, L. Peng, S. Sarkar.: Cryptanalysis of an RSA variant with Moduli N = prq. In: 9th
International Workshop on Coding and Cryptography 2015 WCC2015, Apr 2015, Paris,
France. 2016
[6] S.F. Tan and A. Samsudin: Enhanced Security for Public Cloud Storage with Honey
Encryption. Advanced Science Letters. Accepted Manuscript.
[7] J. M. Gosney: Password Cracking HPC. In: Pawword^12 Security Conference, Norway:
Olso (2012).
[8] A. Juels and T. Ristenpart.: Honey Encryption: Encryption Beyond the Brute-Force
Barrier. IEEE Security and Privacy, vol. 12, no.4, pp. 59--62. IEEE Press, New York. (2014)
[9] A. Juels and T. Ristenpart, Honey Encryption: Security Beyond the Brute-Force Bound.
Advances in Cryptology – Eurocrypt, LNCS, vol. 8841, pp. 293--310. Springer, Heidelberg.
(2014)

[10] N. Tyagi, J. Wang, K. Wen and D.Zuo.: Honey Encryption Applications. 6.857
Computer and Network Security, Massachusetts Institute of Technolog. (2015)
http://www.mit.edu/~ntyagi/papers/honey-encryption-cc.pdf
[11] Z. Huang, E.Ayday, J. Fellay, J-P. Hubuax and A. Juels.: GenoGuard: Protecting
Genomic Data Against Brute-Force Attacks. In: IEEE Symposium on Security and Privacy,
pp. 447--462. IEEE Press, California. (2015)
[12] J. Joseph, T. Ristenpart and Q.Tang.: Honey Encryption Beyond Message Recovery
Security, IACR Cryptology ePrint Archive, pp. 1—28. (2016).
[13] A. Mathur, M. Cao and S. Bhattacharya, Suparna. : The New Ext4 Filesystem: Current
Status and Future Plans. In: Linux Symposium, pp 21--34. Red Hat, Ontario (2007).
[14] MSDN.: Windows Naming Conventions. Retrieved 3 May 2016.
https://msdn.microsoft.com/en-us/library/aa365247.aspx#naming_conventions
[15] OS X: Cross-platform filename best practices and conventions. Retrieved 3 May 2016.
https://support.apple.com/en-us/HT202808
[16] FileExt.: File Extension. Retrieved 3 May 2016. http://www.fileext.com/
[17] S.F. Tan and A. Samsudin.: A Survey of Homomorphic Encryption for Outsourced Big
Data Computation, KSII Transaction on Internet and Information Systems, vol. 10, No. 8,
Aug. 2016.
[18] S. F. Tan and A. Samsudin.: Lattice Ciphertext Policy Attribute based Encryption from
Ring-LWE, In: 2nd International Symposium on Technology Management and Emerging
Technologies (ISTMET 2015) Langkawi, Malaysia. 25-27, pp. 282-286. (2015).

