
Experimental Performance Analysis of Job Scheduling 

Algorithms on Computational Grid using Real 

Workload Traces 

Syed Nasir Mehmood Shah1, *, Ahmad Kamil Mahmood2, Saddaf Rubab3, Mohd Fadzil Hassan4 

{dr.shah@kicsit.edu.pk1,*, kamilmh@petronas.com.my2, 

saddaf_g02754@utp.edu.my3, mfadzil_hassan@petronas.com.my4} 
 

Department of Computer Sciences, Dr. A. Q. Khan Institute of Computer Sciences & Information 

Technology, Kahuta, Pakistan1 

Department of Computer and Information Sciences,  

Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, 32610, Malaysia2, 3, 4 

 

Abstract.Grid, an infrastructure for resource sharing, currently has shown its importance 

in many scientific applications requiring tremendously high computational power. Grid 

computing, whose resources are distributed, heterogeneous and dynamic in nature, 

introduces a number of fascinating issues in job scheduling. Grid scheduler is the core 

component of a grid and is responsible for efficient and effective utilization of 

heterogeneous and distributed resources. This paper presents comparative performance 

analysis of our proposed job scheduling algorithm with other well known job scheduling 

algorithms considering the quality of service parameters. The main thrust of this work 

was to conduct a quality of service based experimental performance evaluation of job 

scheduling algorithms on computational Grid in true dynamic environment. Experimental 

evaluation confirmed that proposed scheduling algorithms possess a high degree of 

optimality in performance, efficiency and scalability.  This paper includes statistical 

analysis of real workload traces to present the nature and behavior of jobs. 

Keywords: Distributed systems, Cluster, Grid computing, Grid scheduling, Workload 

modeling, Performance evaluation, Simulation, Load balancing, Task synchronization, 

Parallel processing 

1   Introduction 

Job scheduling plays a vital role in an efficient and effective management of grid 

resources. Grid scheduling is divided into three phases; which are namely resource discovery, 

resource allocation and job execution. Resource discovery is a mechanism which generates a 

pool of available resources. Resource allocation deals with selection of best resources and the 

allocation of jobs to the selected resources accordingly. Job execution manages the execution 

of jobs on available resources. Resource allocation is an NP-complete problem[1, 2] 

In our previous research, we presented two Grid job scheduling algorithms which are 

Multilevel Dual Queue Scheduling Algorithm (MDQ) and the Multilevel Hybrid Scheduling 

Algorithm (MH) with objective of optimizing the performance of Grid[2, 3]. We also 

proposed dynamic variants of MH and MDQ to manage scheduling of high computing jobs in 

truly scalable and dynamic computational Grid environment in our recent work [4, 5]. 



 

 

 

 

Scalability testing is an important success factor in the design and development of a 

job scheduling algorithm for Grid computing environment. Scalability is measured by 

analyzing the application performance by increasing and decreasing the computing power 

provided to it in the form of cores or processors. In [4], the concept of performance and 

scalability is highlighted by the authors. The terms performance and scalability 

are usually grouped together. Performance is defined as a speed measure with which a single 

application can be processed by the computing system. While, the scalability measures  

the capability of a application to maintain its performance under increased processing power 

and workload. 

Two fundamental issues are addressed in performance analysis of new Grid scheduling 

algorithms. Firstly, representative workload traces are used to produce trustworthy results. 

Secondly, a good testing environment should be established. Simulation is the widely adopted 

strategy for evaluation of job scheduling algorithms[5]. 

Grid scheduling introduces a number of fascinating issues which makes the implementation 

of system in dynamic, scaleable and real time system a very difficult problem. The grid 

resources allocation is an NP-hard problem[6]. The near optimal solution for job scheduling 

has been presented as a heuristic in the literature [7-11]. The problem of scheduling in grid 

computing has been discussed in Section 2. Main focus of this research is to evaluate the 

performance, efficiency and scalability of scheduling algorithms in an optimized way. 

The structure of the paper is as follows: Section 2 provides a brief literature review of Grid 

scheduling methodologies. Section 3 presents the proposed scheduling algorithms and Section 

4 is about the statistical analysis of real workload traces. Section 5 illustrates the scheduling 

simulator design. In Section 6, the experimental setup is discussed and Section 7 describes the 

performance analysis of the Grid scheduling algorithms. Section 8 concludes the paper. 

2   Related Research 

The computation of grid resources is difficult to ensure throughout the job execution 

because of heterogeneous and dynamic nature of grid resources. The job scheduling for grid 

problem has already been discussed in the literature has attempted to minimize the makespan 

and computation cost. Among the most popular ones, Heterogeneous Earliest Finish Time 

(HEFT) [12, 13] is heuristic used to schedule the workflow applications on heterogeneous 

resources. HEFT assigns the tasks derived from workflow applications based on the individual 

task priorities. 

A multi-criteria based accelerated genetic algorithm has been used in [9]. The authors 

have selected job response time and success rate as scheduling criterions. There are a few 

other job scheduling heuristics proposed to achieve the high performance from grid, which 

includes, Max-Min[11, 14] , Min-Min[11, 14, 15], BHEFT [16] and GA[9, 17]. A comparison 

of many scheduling algorithms has been presented by Chandak et al. [18] and presented a 

classification of scheduling algorithms in groups such as economic, meta-heuristic and 

population based etc.  

A work presented in [19] developed three scheduling algorithms to schedule and 

reschedule the jobs on grid resources by considering dynamics of resources and applications. 

The three algorithms follow the incremental, divide and conquer and genetic algorithm 

principle. The study [19] suggests continuous monitoring of tasks in execution and resources 



 

 

 

 

executing the scheduled tasks, if the performance is degraded rescheduling of tasks will be 

performed. 

An adaptive scoring based job scheduling algorithm [20] has been proposed to 

schedule compute and data intensive independent tasks on grid resources. The status of grid 

resources is updated using the local and global scheduler before scheduling the new jobs but it 

does not reschedule the jobs already scheduled. 

3   Scheduling Algorithms 

In [2, 21, 22] we have proposed two scheduling algorithms- MH and MDQ. They are 

based on a fixed time quantum. The two flavors of MH have been introduced in [23] and two 

flavors of MDQ have been presented in [3]. In this paper we present a performance 

comparison of MH and MDQ scheduling algorithms on small scaled computational Grid using 

real workload traces.  

3.1   Multilevel Hybrid Scheduling Algorithm (MH) 

MH is based on master/slave architecture and uses the RR allocation strategy for job 

distribution among the slave processors; and the Hybrid Scheduling Algorithm (H) is used on 

each slave processor for computation. 

For MH the ready queue is maintained in order of CPU burst length, with the least burst length 

at the head of the queue. Two numbers are maintained. The first number,  
, shows the burst length of the largest process in the ready queue while the second one, 

, represents a running total of the execution time of all processes (since a reset was 

made). A new process submitted to the system is linked to the queue in accordance with its 

CPU burst length. MH dispatches processes from the head of the ready queue for execution by 

the CPU. Processes being executed are preempted on expiry of a time quantum, which is a 

system-defined variable. Following preemption, is updated as follows:  

    (1) 

The numbers are then compared. If then the preempted process is linked to the 

tail of the ready queue. The next process is then dispatched from the head of the ready queue. 

If then the process with the largest CPU burst length is given a turn for 

execution. Upon preemption, the ready queue is sorted on the basis of SJF. 

The value of is reset to the burst length of the largest PCB, which is lying at the tail of 

the queue, and is reset to 0. The next process is then dispatched from the head of the ready 

queue. When a process has completed its task it terminates and is deleted from the system. 

 is updated as follows: 

   (2) 

The numbers are then compared and the actions taken are the same as those for a preempted 

process. The two flavors of MHQ (i.e., Dynamic Multilevel Hybrid Scheduling Algorithm 

using Median (MHM) and Dynamic Multilevel Hybrid Scheduling Algorithm using Square 

Root (MHR)) and of MDQ (i.e., Dynamic Multilevel Dual Queue Scheduling Algorithm using 

Median (MDQM) and Dynamic Multilevel Dual Queue Scheduling Algorithm using Square 

Root (MDQR)) are discussed in [3, 23].  



 

 

 

 

3.2   Multilevel Dual Queue Scheduling Algorithm (MDQ) 

The MDQ algorithm operates similar to the MHQ where the only difference is maintaining 

two queues at ready queue. The ready queue comprises two queues – the waiting queue and 

the execution queue. The waiting queue is maintained as an FIFO queue. A new process 

submitted to the slave is linked to the tail of the waiting queue. Whenever the execution queue 

is empty, all processes in the waiting queue are moved to the execution queue, leaving the 

waiting queue empty. The execution queue is maintained in order of CPU burst length, with 

the shortest burst length at the head of the queue. The two numbers   and are 

maintained for MDQ as well and are updated using Eq. 1 and 2. If then the 

preempted process is linked to the tail of the execution queue and next process is dispatched 

from the head of the execution queue. If then the process with the largest CPU 

burst length is given a turn for execution. Upon preemption, all processes in the waiting queue 

are moved to the execution queue, leaving the waiting queue empty. The execution queue is 

then sorted on the basis of SJF. The value of is reset to the burst length of the largest 

PCB and  is reset to 0. The next process is then dispatched from the head of the execution 

queue. 

4   Statistical Analysis of Real Workload Traces 

[24] represents a comprehensive statistical analysis of real workload traces to study their 

dynamic behavior.  Real workload traces i.e.; LCG1 were collected from the CERN. We 

reproduced the graphs of[24]using our developed web-based simulator ; SyedWSim [28]; to 

study the behavior of ‘LCG1’ workload[25, 26]. The total numbers of jobs in LCG1 is 

188041. '64' second period is taken as job interval in our analysis. The number of jobs arriving 

in each interval is called ‘job count’. 

Figure 1 shows the division of job counts and run time processing demand for the real 

workload trace. Next we performed an autocorrelation of the job counts at different lags and 

then Fourier analysis, which are presented in Fig. 2. 

 

  

Fig. 1.  The sequence plot and run time demand for the count process of LCG1 



 

 

 

 

 

 

Fig. 2.  The autocorrelation function(ACF) and Fast Fourier transformation(FFT) 

for the count process of LCG1 

 

Fig 1 and 2 represent that job arrival show a diversity of correlation structures. Short range 

dependence, long range dependence, and pseudo periodicity are counted in analysis. If long 

range dependency is found in job arrival pattern then it predicts large performance 

degradation. Job pattern analysis is significant in evaluation of job scheduling algorithms. 

Fig 1 and 2 demonstrate that Grid workload LCG1 shows scaling behavior and rich 

correlation structures, which are different from workload produced by the conventional 

parallel machines.  Such types of behavior cannot be captured by simple models such as 

Poisson or other distribution based methods [24]. Fig 1 and 2 show that self-similarity and 

long range dependency are the characteristics of LCG1 jobs. LCG1 will be used in 

experiments for comparative performance analysis of proposed scheduling algorithms with 

other well-known job scheduling algorithms in truely Computational Grid environment. 

5   Scheduling Simulator Design and Development 

In this paper we used the same software development strategy for scheduling 

simulator, which was used in[2]. MPJ-express library is widely adopted Java API for parallel 

and distributed programming. This Java message passing library allows writing and 

implementing parallel applications for multicore and distributed systems.  

We designed and developed a Java based simulator using MPJ-express API to 

evaluate the performance and efficiency of our proposed scheduling algorithms. The metadata 

for each process includes its Process ID, its arrival time and CPU demand. This simulator 

works on Master-Slave model. This simulator takes the number of slaves (processing 

elements) as input; and then the job is divided among slaves accordingly. The simulator 

considers the arrival time for each process and then submits processes to the system. The 

software has two main modules. One module runs on the master node (SimM). The other 

module runs on each slave processor (SimS). 

A number of scheduling algorithms including the newly developed ones, MH, MHM, 

MHR, MDQ, MDQM and MDQR, as well as established ones, FCFS, SPN, SRTF, RR and P 

are programmed in the simulator. The user can select one from a range of scheduling 

algorithms as input. All slaves (compute nodes) use the same scheduling algorithm, which is 



 

 

 

 

input by the user. The purpose of the simulator is to produce performance measures against 

each scheduling algorithm for given real workload trace LCG1. 

6   Experimental Setup 

The experiments made use of a  Computational Grid of High Performance Cloud 

Computing Centre at Universiti Teknologi PETRONAS. We ran our experiment using a 

cluster of 16 to 32 processors. A detailed experimental setup is shown in Figure 3. 

 

 
Fig.  3 Experimental Setup 

7   Performance Analysis of Grid Scheduling Algorithms 

This section presents the comparative performance analysis of scheduling algorithms 

using LCG1. Our experiments include the scalability test of scheduling algorithms under an 

increasing number of processors. The ‘runtime’ attribute is given for each process in 

‘LCG1’.The ‘runtime’ is taken as CPU time in our experiment. We used ‘5’ units as the fixed 

time quantum. This section describes a comparative performance analysis of our proposed 

algorithms with the established ones. 

 



 

 

 

 

 

Fig.  4 Average Waiting Time 

 

Fig.  5 Average Turnaround Time 

 

Fig.  6 Average Response Time 



 

 

 

 

7.1   Average Waiting Times Analysis 

Fig 4 depicts that the average waiting times calculated by each scheduling algorithm on 

Computational Grid for given real workload trace of LCG1. SRTF, MH, MHR and MDQM 

scheduling algorithms result in the least average waiting times as compared to the other 

scheduling algorithms. The average waiting time computed by SRTF scheduling algorithm is 

slightly shorter than the value computed by the MH and MDQR scheduling algorithms. Under 

the increased number of processing elements (CPUs), each algorithm shows the relative 

improvement in performance. MHM demonstrate better results as compared to the FCFS, RR 

and MDQ algorithms. All scheduling algorithms show that the relative performance is 

independent of the job nature, the job demand and the number of CPUs used for computation. 

7.2   Average Turnaround Times Analysis 

Figure 5 shows the pictorial view of the average turnaround times computed on Computational 

Grid for the scheduling algorithms using real workload traces of LCG1. The average 

turnaround times computed by the SRTF, MH and MDQM scheduling algorithms are less than 

the values computed for the other scheduling algorithms. Under the increased number of 

CPUs, each algorithm has shown improved average turnaround time, and supports scalability. 

Experimental results present that SRTF, MH and MHR are at the same performance level in 

terms of average turnaround times. Figure 5 also shows that the average turnaround times 

computed for MHM and MDQM are better than the values computed for the MDQ, RR and 

FCFS but slightly longer than those for the MHR and SJF scheduling algorithms. Moreover, 

all scheduling algorithms show that the relative performance, which is independent of the job 

nature, the job size and the number of CPUs used for the computation. 

7.3   Average Response Times Analysis 

Figure 6 presents that MDQ and MDQR result in the least average response times as 

compared to the MH and MHR scheduling algorithms. The average response times computed 

by MDQ are slightly longer than the values computed for RR and slightly shorter than those 

for MH and MHR. The SPN and SRTF scheduling algorithms show poor response times as 

compared to all other scheduling algorithms. Moreover, all scheduling algorithms present that 

the relative performance is independent of the nature of jobs,  the job size and the number of 

CPUs used in experimentation. MDQ gives consistently good response time measures for 

given workload of LCG1 under increased numbers of processors. 

8   Conclusion 

In this paper we performed comparative performance analysis of job scheduling 

algorithms on campus based Computational Grid using LCG1 real workload traces.  Our 

proposed algorithms introduce new dynamic time quantum strategy. Proposed algorithms 

generate the time quantum based on nature of jobs and execute the processes accordingly.  We 

evaluated our proposed and existing job scheduling algorithms on a simulator running on 

Computational Grid using LCG1 workload traces under the increased number of CPUs. 

Statistical analysis of LCG1 workload traces is also conducted in this work to study the 

dynamic nature of jobs. 



 

 

 

 

     We conclude that MH and MDQM are scheduling policies from the system 

perspective; they satisfy the system requirements (i.e. less Average Waiting Time and less 

Turnaround Time). MDQ and MDQR are scheduling policies from the user perspective due to 

their shorter Average Response Time. Moreover, proposed MH, MDQR, MDQM and MDQ 

are scalable, i.e. the relationship between each performance measure (e.g. average turnaround 

time) and the workload size is almost linear. 

References 

[1] D. Fernández-Baca, "Allocating modules to processors in a distributed system," IEEE 

Transactions on Software Engineering, vol. 15, pp. 1427-1436, 1989. 

[2] S. N. M. Shah, A. K. B. Mahmood, and A. Oxley, "Development and Performance 

Analysis of Grid Scheduling Algorithms," in International Conference on Advances 

in Information Technology, 2009, pp. 170-181. 

[3] S. N. M. Shah, A. K. B. Mahmood, and A. Oxley, "Dynamic multilevel dual queue 

scheduling algorithms for grid computing," in International Conference on Software 

Engineering and Computer Systems, 2011, pp. 425-440. 

[4] S. Haines, Pro Java EE 5 Performance Management and Optimization: Apress, 

2006. 

[5] H. Li and R. Buyya, "Model-driven simulation of grid scheduling strategies," in e-

Science and Grid Computing, IEEE International Conference on, 2007, pp. 287-294. 

[6] M. R. Garey and D. S. Johnson, Computers and intractability vol. 29: wh freeman 

New York, 2002. 

[7] F. Xhafa and A. Abraham, "Computational models and heuristic methods for Grid 

scheduling problems," Future generation computer systems, vol. 26, pp. 608-621, 

2010. 

[8] H. Izakian, A. Abraham, and B. T. Ladani, "An auction method for resource 

allocation in computational grids," Future Generation Computer Systems, vol. 26, pp. 

228-235, 2// 2010. 

[9] K. Z. Gkoutioudi and H. D. Karatza, "Multi-criteria job scheduling in grid using an 

accelerated genetic algorithm," Journal of Grid Computing, vol. 10, pp. 311-323, 

2012. 

[10] Y.-H. Lee, S. Leu, and R.-S. Chang, "Improving job scheduling algorithms in a grid 

environment," Future generation computer systems, vol. 27, pp. 991-998, 2011. 

[11] M.-Y. Tsai, P.-F. Chiang, Y.-J. Chang, and W.-J. Wang, "Heuristic Scheduling 

Strategies for Linear-Dependent and Independent Jobs on Heterogeneous Grids," in 

Grid and Distributed Computing: International Conference, GDC 2011, Held as Part 

of the Future Generation Information Technology Conference, FGIT 2011, Jeju 

Island, Korea, December 8-10, 2011. Proceedings, T.-h. Kim, H. Adeli, H.-s. Cho, 

O. Gervasi, S. S. Yau, B.-H. Kang, et al., Eds., ed Berlin, Heidelberg: Springer Berlin 

Heidelberg, 2011, pp. 496-505. 

[12] H. Topcuoglu, S. Hariri, and M.-y. Wu, "Performance-effective and low-complexity 

task scheduling for heterogeneous computing," IEEE transactions on parallel and 

distributed systems, vol. 13, pp. 260-274, 2002. 

[13] D. M. Abdelkader and F. Omara, "Dynamic task scheduling algorithm with load 

balancing for heterogeneous computing system," Egyptian Informatics Journal, vol. 

13, pp. 135-145, 2012. 



 

 

 

 

[14] H. Hussain, S. U. R. Malik, A. Hameed, S. U. Khan, G. Bickler, N. Min-Allah, et al., 

"A survey on resource allocation in high performance distributed computing 

systems," Parallel Computing, vol. 39, pp. 709-736, 2013. 

[15] K. Etminani and M. Naghibzadeh, "A min-min max-min selective algorihtm for grid 

task scheduling," in Internet, 2007. ICI 2007. 3rd IEEE/IFIP International 

Conference in Central Asia on, 2007, pp. 1-7. 

[16] W. Zheng and R. Sakellariou, "Budget-deadline constrained workflow planning for 

admission control," Journal of grid computing, vol. 11, pp. 633-651, 2013. 

[17] J. Yu and R. Buyya, "Scheduling scientific workflow applications with deadline and 

budget constraints using genetic algorithms," Scientific Programming, vol. 14, pp. 

217-230, 2006. 

[18] A. V. Chandak, B. Sahoo, and A. K. Turuk, "Heuristic task allocation strategies for 

computational grid," 2011. 

[19] H. Sanjay and S. S. Vadhiyar, "Strategies for rescheduling tightly-coupled parallel 

applications in multi-cluster grids," Journal of Grid Computing, vol. 9, pp. 379-403, 

2011. 

[20] R.-S. Chang, C.-Y. Lin, and C.-F. Lin, "An adaptive scoring job scheduling algorithm 

for grid computing," Information Sciences, vol. 207, pp. 79-89, 2012. 

[21] S. N. M. Shah, A. K. B. Mahmood, and A. Oxley, "Hybrid scheduling and dual queue 

scheduling," in Computer Science and Information Technology, 2009. ICCSIT 2009. 

2nd IEEE International Conference on, 2009, pp. 539-543. 

[22] S. N. Mehmood Shah, A. K. B. Mahmood, and A. Oxley, "Analysis and evaluation of 

grid scheduling algorithms using real workload traces," in Proceedings of the 

International Conference on Management of Emergent Digital EcoSystems, 2010, pp. 

234-239. 

[23] S. N. M. Shah, A. K. B. Mahmood, and A. Oxley, "Dynamic multilevel hybrid 

scheduling algorithms for grid computing," Procedia Computer Science, vol. 4, pp. 

402-411, 2011. 

[24] H. Li, "Workload dynamics on clusters and grids," The Journal of Supercomputing, 

vol. 47, pp. 1-20, 2009. 

[25] (24 Oct 2011). Worldwide LHC Computing Grid. Available: 

http://lcg.web.cern.ch/lcg/  

[26] (25 December 2016). Trace analysis report LCG. Available: 

http://gwa.ewi.tudelft.nl/datasets/gwa-t-11-lcg/report/ 

 

http://lcg.web.cern.ch/lcg/
http://gwa.ewi.tudelft.nl/datasets/gwa-t-11-lcg/report/

