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Abstract. This article introduces a novel hybrid approach between two of the 

meta-heuristic algorithms to solve global optimization problems. The proposed 

hybrid algorithm uses the butterfly adjusting operator in Monarch Butterfly Op-

timization (MBO) algorithm as a mutation operator to replace the employee 

phase of the Artificial Bee Colony (ABC) algorithm. The novel Hybrid 

ABC/MBO (HAM) algorithm addresses the issues of trapping in local optimal 

solutions, slow convergence, and low precision by improving the balance be-

tween the characteristics of exploration and exploitation. The proposed HAM al-

gorithm is validated on eight benchmark functions, and is compared with ABC 

and MBO algorithms. The experimental results show that the HAM algorithm is 

clearly superior to both the standard ABC and MBO algorithms. 

Keywords: Artificial bee colony algorithm; Monarch butterfly optimization al-

gorithm; Global Optimization problem; Computation Intelligence. 

1 Introduction 

There are a lot of problems in the real world that involve a set of potential solutions, 

from which the one with the best quality is termed as the optimal solution, and the 

method of searching for such a solution is known as mathematical optimization. The 

quality of solutions is represented by the ability to maximize or minimize a certain 

function, called the objective function, while the pool of possible solutions that can 

satisfy the required objective is called the search space. One can traverse all possible 

solutions, examine the result of the objective function in each case, and select the best 

solution. However, many real problems are intractable using this exhaustive search 

strategy. In these problems, the search space expands exponentially with the input size, 

and exact optimization algorithms are impractical. The historical alternative in such 

situations is to resort to heuristics, similar to simple rules of thumb that humans would 

utilize in a search process. Heuristic algorithms implement such heuristics to explore 

the otherwise prohibitively large search space, but they do not guarantee finding the 



actual optimal solution, since not all areas of the space are examined. However, a close 

solution to the optimal is returned, which is “good enough” for the problem at hand. 

  

The next step would be to generalize those heuristics in higher level algorithmic frame-

works that are problem independent, and that provide strategies to develop heuristic 

optimization algorithms. The latter are known as metaheuristics [1]. Early metaheuris-

tics were based on the concept of evolution, where the best solutions among a set of 

candidate solutions are selected in successive iterations, and new solution are generated 

by applying genetic operators such as crossover and mutation to the parent solutions.  

Similar to and including evolutionary algorithms, many metaheuristics were based on 

a metaphor, inspired by some physical or biological processes. Many recent metaheu-

ristics mimic the biological swarms in performing their activities; in particular, the im-

portant tasks of foraging, preying and migration. Popular examples of developed me-

taheuristic algorithms in this category include Particle Swarm Optimization (PSO) [2], 

which is inspired by the movement of swarms of birds or fishes; Ant Colony Optimi-

zation (ACO) [3, 4], which is inspired by the foraging behavior of ants, where ants 

looking for food sources in parallel employ the concept of pheromone to indicate the 

quality of the found solutions; and Artificial Bee Colony (ABC) algorithm, inspired by 

the intelligent foraging behavior of honey bees [5, 6]. 

 

The idea of deriving metaheuristics from natural-based metaphors proved so appealing 

that much more of such algorithms have been, and continue to be developed. A few 

more examples include Cuckoo Search (CS) [7, 8], Biogeography-Based Optimization 

(BBO) [9], Animal Migration Optimization (AMO) [10], Chicken Swarm Optimization 

(CSO) [11], Grey Wolf Optimization (GWO) [12], Krill Herd (KH) [13], and Monarch 

Butterfly Optimization (MBO) [14], which is inspired by the migration behavior of 

monarch butterfly. The Bat Algorithm (BA) [15] also belongs to the metaheuristics that 

are based on animal behavior; inspired by the echolocation behavior of bats in nature. 

On the other hand, several metaphor-based metaheuristics are derived from physical 

phenomena such as Simulated Annealing (SA) [16] which is inspired by the annealing 

process of a crystalline solid.  

 

The aforementioned metaheuristics are classified as stochastic optimization techniques. 

To avoid searching the whole solution space, they include a randomization component 

to explore new solution areas. Though these random operators are essential, they can 

introduce two types of problems. First, if the randomization is too strong, the metaheu-

ristic algorithm might keep moving between candidate solutions, loosely examining 

each localized region and failing to exploit promising solutions and find the best solu-

tion. Second, if the search process is too localized, exploiting the first found good so-

lutions very well but failing to explore more regions, the algorithm might indeed miss 

the real optimal solution (called the global optimum), and trap into some local optima.  

The perfect balance between exploitation and exploration is essential to all metaheuris-

tics. In fact, it is whether and how this balance is achieved that distinguishes most me-

taheuristics from each other, and forms a source of new attempts to improve existing 
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algorithms, possibly by hybridizing ideas from more than one metaheuristic strategy 

[18].  

 

In this paper, we follow this path and introduce a new hybrid metaheuristic that aug-

ments the popular ABC algorithm with a feature from the MBO algorithm so as to make 

the correct balance between randomization of local search and global search.  

The rest of this article is organized as follows. Section 2 describes the proposed HAM 

method, while Section 3 explains the setup of experimental evaluation. Section 4 pre-

sents and discusses the obtained results, and finally Section 5 concludes the paper. 

2 Hybrid Algorithm Based on Artificial Bee Colony and 

Monarch Butterfly Optimization 

This section introduces the (HAM) algorithm, which is based on the standard ABC 

[5,6] and MBO [14] algorithms. The ABC algorithm was proposed by Karaboga for 

optimizing numerical problems in 2005, and several developments were based on this 

algorithm [19, 20, and 21]. The MBO algorithm was proposed by Gai-Ge, Suash and 

Zhihua in 2015. It is a new nature-inspired metaheuristic optimization algorithm that 

works by simplifying and idealizing the migration behavior of monarch butterfly indi-

viduals between two distinct lands, namely (northern USA (Land1) and southern Can-

ada (Lnad2)). For more details about the two algorithm please refer to [5, 14]. 

The most important factors in metaheuristic algorithms are the exploitation and explo-

ration search mechanisms. A good metaheuristic algorithm has the ability to strike a 

balance between these two mechanisms, thereby enhancing the solving of low and high-

dimensional optimization problems. The exploitation mechanism is based on the pre-

sent knowledge to seek better solutions, while the exploration mechanism is based on 

fully searching the problem space for an optimal solution. 

In general, by analyzing the standard MBO algorithm, we notice that it has the ability 

to explore the search space very effectively; however, it has a poor ability to exploit the 

search space due to the occasional use of Levy flight by the updating operators, which 

leads to large random steps or moves. On the other side, we notice that the ABC algo-

rithm has the ability to explore the search space well, but has better ability in finding 

local optima through the employee and onlooker phases, which are considered local 

search processes. ABC is mostly based on selecting the solutions that improve the local 

search. Global search, on the other hand, is implemented in the ABC algorithm by the 

scout phase, which results in reducing the convergence speed during the search process. 

The core idea of the new hybrid approach is based on two improvements; firstly, to 

modify the butterfly adjusting operator in the MBO algorithm in order to improve the 

exploitation versus exploration balance, by increasing the search diversity and counter-

balance the shortfall of ABC algorithm in global search efficacy. The modified version 

of the operator is show in algorithm 1. The second improvement is to integrate the 

modified butterfly adjusting operator from MBO in place of the first phase in the stand-
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ard ABC algorithm (the employee phase). The improved operator is named as “em-

ployee bee adjusting operator” and the resulting modified phase is called the “employee 

bee adjusting phase”. 

 

The employee bee adjusting phase is very simple and is used to update all the solutions 

in the bee population, where each solution is a D-dimensional vector. In the Initializa-

tion phase, we need to define all the variables that would be defined in the standard 

ABC algorithm and assign them suitable values. The HAM algorithm adopts all param-

eters from the original ABC algorithm, and adds three new control parameters: limit1, 

limit2 and the maximum walk step parameter Smax; these three parameters are used in 

the employee bee adjusting phase. 

 

Algorithm1: Employee bee adjusting phase 

Begin 

For i = 1 to SN do 

 Calculate the walk step dx by Equation (1); 

 Calculate the weighting factor by Equation (2); 

 For j = 1 to D do 

  If rand ≥ limit1 then 

   Generate the jth element by Equation (3); 

  Else  

   Randomly select a food Source (r) by Equation (4); 

   If rand < limit2 then   

    Generate the jth element by Equation (5); 

   Else  

    Generate the jth element by Equation (6); 

    If rand < BAR then 

      Generate the jth element by Equation (7); 

    End if 

   End if 

  End if 

 End for j 

Evaluate the fitness value of the candidate solution xi. 

Apply a greedy selection process between xi and xbest 

If solution xi does not improve, triali = triali + 1,  

Otherwise triali = 0. 

End for i 

End 

In Algorithm 1, each employee bee is assigned to its food source and in turn generates 

a new one either by using Levy flight or through mutation operators, which are based 

on the two control parameters (limit1 and limit2). These parameters are used to fine-

tune the exploitation versus exportation by improving the global search diversity. The 

first step is to calculate a walk step “𝑑𝑥” for the ith bee using the Levy flight in Equation 

1, and calculate the weighting factor“∝” by Equation 2, where 𝑆𝑚𝑎𝑥 represents the 



max walk step that a bee individual can move in one step, and t is the current generation. 

Then, for each element j of the D dimensions, if (rand ≥  limit1), the algorithm uses 

Equation 3 to update the solution element: 

𝑑𝑥𝑘 = 𝑙𝑒𝑣𝑦(𝑥𝑗
𝑡)  (1) 

∝  = 𝑆𝑚𝑎𝑥/𝑡2  (2) 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑏𝑒𝑠𝑡,𝑗

𝑡   (3) 

where 𝑥𝑖,𝑗
𝑡+1 is the jth element of solution 𝑥𝑖 at generation t+1, which represents the lo-

cation of the solution i, while 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡  is the jth element of 𝑥𝑏𝑒𝑠𝑡  at generation t, which 

represents the best location among the food sources so far with respect to the ith bee. 

On the contrast, if (rand < limit1) then another set of updates are performed. First, a 

random food source (equivalent to a random solution or bee) is selected from the current 

population using Equation 4. Then, depending on whether a randomly generated value 

is smaller than limit2, Equation 5 is used to update the solution elements, as follows: 

𝑟 = 𝑟𝑜𝑢𝑛𝑑((𝑆𝑁 ∗ 𝑟𝑎𝑛𝑑) + 0.5)  (4) 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑟,𝑗

𝑡 + 0.5 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑥𝑤𝑜𝑟𝑠𝑡,𝑗
𝑡 − 𝑥𝑟2,𝑗

𝑡 − 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡 ) (5) 

where 𝑥𝑖,𝑗
𝑡+1 is the jth element of solution 𝑥𝑖 at generation t+1, which represents the lo-

cation of the solution i, 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡  is the jth element of 𝑥𝑏𝑒𝑠𝑡 at generation t, which repre-

sents the best location among the food sources so far; 𝑥𝑤𝑜𝑟𝑠𝑡,𝑗
𝑡  is the jth element of 

𝑥𝑤𝑜𝑟𝑠𝑡 at generation t, which represents the worst location among the food sources so 

far; and 𝑥𝑟,𝑗
𝑡  is the jth element of 𝑥𝑟  at generation t, which represents the location of the 

solution r calculated by Equation 4. The t in Equation 5 is the current generation num-

ber. 

On the other hand, if the randomly generated value was bigger than limit2, the solution 

elements are updated by Equation 6, where 𝑥𝑖,𝑗
𝑡+1 is the jth element of solution 𝑥𝑖 at gen-

eration t+1, which represents the location of the solution i; 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡  is the jth element of 

𝑥𝑏𝑒𝑠𝑡  at generation t, which represents the best location among the food sources so far; 

𝑥𝑤𝑜𝑟𝑠𝑡,𝑗
𝑡  is the jth element of 𝑥𝑤𝑜𝑟𝑠𝑡  at generation t, which represents the worst location 

among the food sources so far, while 𝑥𝑟,𝑗
𝑡  is the jth element of 𝑥𝑟  at generation t, which 

represents the location of the solution r calculated by Equation 4. 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑟,𝑗

𝑡 + 0.5 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡 − 𝑥𝑟3,𝑗

𝑡  −  𝑥𝑤𝑜𝑟𝑠𝑡,𝑗
𝑡 ) (6) 

The Levy flight step from the MBO algorithm is adopted here with a smaller probability 

of execution to reduce its impact on the exploitation process. Assuming the execution 

path passed the test of limit1 and limit2 control parameters, yet another random check 

against the BAR parameter is performed, right after the update by Equation 6 to further 

change the value of 𝑥𝑖,𝑗
𝑡+1 occasionally by the amount ∝ × (dxk − 0.5), as per Equation 

7. 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡+1+ ∝ × (𝑑𝑥𝑘 − 0.5)  (7) 



Finally, the employee bee adjusting phase tests the boundary for the new solution to 

make sure the newly generated solution is within the allowed boundaries for the opti-

mization problem at hand, and then evaluates the fitness value of the new solution in 

order to apply a greedy selection process between the new and the best solutions to 

select the better one. If the solution does not improve then a trial counter is increased 

by one. As for the onlooker bee and scout phases, the algorithm adopts their implemen-

tation from the original ABC algorithm without any change, which can be found in 

[22]. 

3 Experimental Evaluation 

In this section, we layout the experimental setup through which we have evaluated the 

proposed algorithm, HAM. 

3.1 General setup 

Hardware and software implementation.  

All the experiments were conducted on a laptop with an Intel Core 5i processor running 

at 2.4 GHz, and 8 GB of RAM. The software implementation of the proposed HAM 

algorithm was based on the implementation of ABC and MBO. All software is com-

piled using MATLAB R2009b (V7.9.0.529) running under Windows 7. 

Parameters.  

For a fair comparison, we set all the common control parameters for all methods to the 

same values, including the population size SN, and the dimensionality of the search 

space D. The SN for our experiments in this work was set to 50 and the number of 

dimensions D was set to 10 for all methods. The parameters of all methods used in this 

work are presented below: 

 

The variables of the proposed HAM algorithm have been set in all experiments as fol-

lows: Smax = 1.0, migration period peri = 1.2, the migration ratio p = 0.4167, limit1 = 

0.8 and limit2 = 0.5. ABC parameter settings: The number of colony size is 50 em-

ployed bees and 50 onlooker bees because the colony size is 100; limit is set to 100. 

MBO parameter settings: There are many parameters for MBO method. In this work, 

we followed the setup in the original work of MBO [14], and set the butterfly adjusting 

rate BAR = 0.4167, max step Smax = 1.0, migration period peri = 1.2, the migration ratio 

p = 0.4167 and the population size NP is the same as the colony size, which is 50. 

3.2 Benchmark Function 

This paper uses a set of 8 test functions for global numerical optimization. These func-

tions are listed in Table 1 alongside their respective equations and properties.  



Table 1. Benchmark global numerical functions used for evaluating optimization methods 

No. Name Equation Low Up 

1 Sphere 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 -100 100 

2 Schwefel 2.22 𝑓(𝑥) = ∑ |𝑥𝑖|
𝑛

𝑖=1
+ ∏ |𝑥𝑖|

𝑛

𝑖=1
 -1.28 1.28 

3 Schwefel 1.2 𝑓(𝑥) = ∑ (∑ 𝑥𝑗

𝑖

𝑗=1
)

2𝑛

𝑖=1
 -5.12 5.12 

4 Schwefel 2.21 𝑓(𝑥) = ∑ |𝑥𝑖|
𝑛

𝑖=1
+ ∏ |𝑥𝑖|

𝑛

𝑖=1
 -600 600 

5 Schwefel 2.26 𝑓(𝑥) =  −418.983 ∑ [𝑥𝑖 sin (√|𝑥𝑖|)]
𝑛

𝑖=1
 -50 50 

6 Rosenbrock 𝑓(𝑥) = ∑ [100√|𝑥𝑖 − 𝑥𝑖
2| + (1 − 𝑥𝑖)2]

𝑛−1

𝑖=1
 -100 100 

7 Step 𝑓(𝑥) =  ∑ ⌊|𝑥𝑖|⌋
𝑛

𝑖=1
 0 3.1416 

8 Quartic 𝑓(𝑥) =  ∑ 𝑖𝑥𝑖
4

𝑛

𝑖=1
+ 𝑟𝑎𝑛𝑑[0,1) -5 10 

4 Results  

Table 2 lists the optimization results when applying the 8 optimization test functions to 

ABC, MBO and our HAM methods. The listed values are the optimal values of the 

objective function achieved by each algorithm after iterating over 50 generations. The 

mean values in the table are averaged over 20 runs (each run constitutes 50 iterations) 

and listed along the standard deviation. The min values, however, are the best results 

achieved by each algorithm at all. By the “best result” we mean the closest result to the 

actual optimal value of the function. 

 

It is evident from Table 2 that the HAM algorithm can reach a better optimum on aver-

age; at least with respect to the set of benchmark functions used in the experiments 

(HAM has better average results in the case of 7 out of 8 test functions). For ease of 

recognition, the best average result is marked with bold font and shaded in a grey cell. 

The min values are bold font to identify the absolute best minimum achieved for each 

function. Note that this value is meaningful because it happened that the minimum 

achieved values by the algorithms for the selected benchmark functions are closest to 

the real optimum. With respect to the set of test functions used in our evaluations, HAM 

could achieve the best result in 6 out of 8 cases. 

 

On another perspective, we also graphed the optimization process of each algorithm 

(for each benchmark function) as the value of the so-far best solution versus the current 

iteration, which shows the search path in terms of selected best solution per iteration. 

The curve of this kind is expected to decline overall at a slope that reflects the conver-

gence speed of the algorithm (there is no degradation during the process of any included 



metaheuristic algorithm, as the best solution is either improved or kept unchanged at 

all iterations). Therefore, these graphs can be called the convergence plots of the algo-

rithms. Because of the large number of plots, we include hereby representative samples 

of the convergence plots in Figure 1, which compares the convergence of HAM with 

the two most related metaheuristic techniques: ABC and MBO.   

Table 2. The min, mean and standard deviation of test function values found by ABC, MBO and 

the proposed HAM algorithms, averaged over 20 experimental runs. The Dimensions set to 10. 

ABC MBO HAM 

Best Mean Std. dev Best Mean Std. dev Best Mean Std. dev 

4.13E-04 1.01E-02 9.37E-03 5.14E-04 8.67E-01 2.73E+00 3.57E-05 9.37E-05 6.24E-05 

1.07E-01 2.64E-01 1.21E-01 3.79E-02 2.18E+00 4.08E+00 7.14E-03 1.70E-02 8.60E-03 

6.66E+02 2.11E+03 1.00E+03 7.61E-03 4.18E+03 3.20E+03 6.72E-03 2.97E+00 1.16E+01 

9.89E+00 2.14E+01 7.13E+00 2.35E-02 1.68E+01 1.57E+01 5.84E-03 1.22E-02 4.64E-03 

2.45E+02 6.47E+02 1.89E+02 1.29E-04 1.22E+03 6.79E+02 1.13E+03 1.55E+03 1.85E+02 

2.31E+01 1.78E+02 2.33E+02 8.91E+00 7.14E+04 1.54E+05 8.20E+00 8.56E+00 1.24E-01 

3.44E+00 5.30E+00 1.85E+00 6.52E-06 1.29E+03 2.43E+03 2.51E+00 2.52E+00 6.70E-03 

2.02E+00 2.97E+00 4.55E-01 1.83E+00 3.31E+00 1.34E+00 1.54E+00 2.19E+00 2.43E-01 

 

Figures 1 (a-d) show that the HAM algorithm enjoys not only a superior overall perfor-

mance in terms of the quality of the found optimal solution, but also a faster conver-

gence especially in the earlier stages. Although the starting points of the algorithms are 

close to each other in the plots of the four testing functions in the figure, the proposed 

HAM method does not trap into a quick local optimum, unlike the original ABC and 

MBO algorithms for example. 

 

 
(a) 

 
(b) 



 
(c) 

 
(d) 

Fig. 1. Performance of ABC, MBO and HAM algorithms for (a) F1, (b) F2, (c) F3 and (d) F4 

benchmark functions. 

5 Conclusion  

In this article, a Hybrid algorithm of Artificial Bee Colony and Monarch Butterfly Op-

timization algorithms (HAM) was proposed for solving numerical optimization prob-

lems. This method is based on a modified version of the adjusting operator in MBO 

algorithm, integrated as a first phase in the standard ABC algorithm, in place of the 

employee bee phase. In the HAM method, the improved diversification of MBO was 

used to augment the good intensification ability of ABC to find better global solutions 

and increase the convergence speed. As a future work, we plan to use the new method 

in training artificial neural networks (ANN) for various purposes, and to extend the 

method for solving multi-objective optimization problems 
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