
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

A Novel Hybrid Artificial Bee Colony with Monarch

Butterfly Optimization for Global Optimization Problems

Waheed Ali H. M. Ghanem1, 2, 3 and Aman Jantan1

1School of Computer Science, Universiti Sains Malaysia, Pulau Pinang, Malaysia
2Faculty of Education-Saber, University of Aden, Aden, Yemen

3Faculty of Engineering, University of Aden, Aden, Yemen

Email: waheed.ghanem@gmail.com

Email: aman@cs.usm.my

Abstract. This article introduces a novel hybrid approach between two of the

meta-heuristic algorithms to solve global optimization problems. The proposed

hybrid algorithm uses the butterfly adjusting operator in Monarch Butterfly Op-

timization (MBO) algorithm as a mutation operator to replace the employee

phase of the Artificial Bee Colony (ABC) algorithm. The novel Hybrid

ABC/MBO (HAM) algorithm addresses the issues of trapping in local optimal

solutions, slow convergence, and low precision by improving the balance be-

tween the characteristics of exploration and exploitation. The proposed HAM al-

gorithm is validated on eight benchmark functions, and is compared with ABC

and MBO algorithms. The experimental results show that the HAM algorithm is

clearly superior to both the standard ABC and MBO algorithms.

Keywords: Artificial bee colony algorithm; Monarch butterfly optimization al-

gorithm; Global Optimization problem; Computation Intelligence.

1 Introduction

There are a lot of problems in the real world that involve a set of potential solutions,

from which the one with the best quality is termed as the optimal solution, and the

method of searching for such a solution is known as mathematical optimization. The

quality of solutions is represented by the ability to maximize or minimize a certain

function, called the objective function, while the pool of possible solutions that can

satisfy the required objective is called the search space. One can traverse all possible

solutions, examine the result of the objective function in each case, and select the best

solution. However, many real problems are intractable using this exhaustive search

strategy. In these problems, the search space expands exponentially with the input size,

and exact optimization algorithms are impractical. The historical alternative in such

situations is to resort to heuristics, similar to simple rules of thumb that humans would

utilize in a search process. Heuristic algorithms implement such heuristics to explore

the otherwise prohibitively large search space, but they do not guarantee finding the

actual optimal solution, since not all areas of the space are examined. However, a close

solution to the optimal is returned, which is “good enough” for the problem at hand.

The next step would be to generalize those heuristics in higher level algorithmic frame-

works that are problem independent, and that provide strategies to develop heuristic

optimization algorithms. The latter are known as metaheuristics [1]. Early metaheuris-

tics were based on the concept of evolution, where the best solutions among a set of

candidate solutions are selected in successive iterations, and new solution are generated

by applying genetic operators such as crossover and mutation to the parent solutions.

Similar to and including evolutionary algorithms, many metaheuristics were based on

a metaphor, inspired by some physical or biological processes. Many recent metaheu-

ristics mimic the biological swarms in performing their activities; in particular, the im-

portant tasks of foraging, preying and migration. Popular examples of developed me-

taheuristic algorithms in this category include Particle Swarm Optimization (PSO) [2],

which is inspired by the movement of swarms of birds or fishes; Ant Colony Optimi-

zation (ACO) [3, 4], which is inspired by the foraging behavior of ants, where ants

looking for food sources in parallel employ the concept of pheromone to indicate the

quality of the found solutions; and Artificial Bee Colony (ABC) algorithm, inspired by

the intelligent foraging behavior of honey bees [5, 6].

The idea of deriving metaheuristics from natural-based metaphors proved so appealing

that much more of such algorithms have been, and continue to be developed. A few

more examples include Cuckoo Search (CS) [7, 8], Biogeography-Based Optimization

(BBO) [9], Animal Migration Optimization (AMO) [10], Chicken Swarm Optimization

(CSO) [11], Grey Wolf Optimization (GWO) [12], Krill Herd (KH) [13], and Monarch

Butterfly Optimization (MBO) [14], which is inspired by the migration behavior of

monarch butterfly. The Bat Algorithm (BA) [15] also belongs to the metaheuristics that

are based on animal behavior; inspired by the echolocation behavior of bats in nature.

On the other hand, several metaphor-based metaheuristics are derived from physical

phenomena such as Simulated Annealing (SA) [16] which is inspired by the annealing

process of a crystalline solid.

The aforementioned metaheuristics are classified as stochastic optimization techniques.

To avoid searching the whole solution space, they include a randomization component

to explore new solution areas. Though these random operators are essential, they can

introduce two types of problems. First, if the randomization is too strong, the metaheu-

ristic algorithm might keep moving between candidate solutions, loosely examining

each localized region and failing to exploit promising solutions and find the best solu-

tion. Second, if the search process is too localized, exploiting the first found good so-

lutions very well but failing to explore more regions, the algorithm might indeed miss

the real optimal solution (called the global optimum), and trap into some local optima.

The perfect balance between exploitation and exploration is essential to all metaheuris-

tics. In fact, it is whether and how this balance is achieved that distinguishes most me-

taheuristics from each other, and forms a source of new attempts to improve existing

file:///E:/2016/Original-HBH.docx%23_ENREF_1
file:///E:/2016/Original-HBH.docx%23_ENREF_10
file:///E:/2016/Original-HBH.docx%23_ENREF_11
file:///E:/2016/Original-HBH.docx%23_ENREF_12
file:///E:/2016/Original-HBH.docx%23_ENREF_13
file:///E:/2016/Original-HBH.docx%23_ENREF_14
file:///E:/2016/Original-HBH.docx%23_ENREF_16
file:///E:/2016/Original-HBH.docx%23_ENREF_17
file:///E:/2016/Original-HBH.docx%23_ENREF_18
file:///E:/2016/Original-HBH.docx%23_ENREF_19
file:///E:/2016/Original-HBH.docx%23_ENREF_20
file:///E:/2016/Original-HBH.docx%23_ENREF_21
file:///E:/2016/Original-HBH.docx%23_ENREF_22
file:///E:/2016/Original-HBH.docx%23_ENREF_23
file:///E:/2016/Original-HBH.docx%23_ENREF_24

algorithms, possibly by hybridizing ideas from more than one metaheuristic strategy

[18].

In this paper, we follow this path and introduce a new hybrid metaheuristic that aug-

ments the popular ABC algorithm with a feature from the MBO algorithm so as to make

the correct balance between randomization of local search and global search.

The rest of this article is organized as follows. Section 2 describes the proposed HAM

method, while Section 3 explains the setup of experimental evaluation. Section 4 pre-

sents and discusses the obtained results, and finally Section 5 concludes the paper.

2 Hybrid Algorithm Based on Artificial Bee Colony and

Monarch Butterfly Optimization

This section introduces the (HAM) algorithm, which is based on the standard ABC

[5,6] and MBO [14] algorithms. The ABC algorithm was proposed by Karaboga for

optimizing numerical problems in 2005, and several developments were based on this

algorithm [19, 20, and 21]. The MBO algorithm was proposed by Gai-Ge, Suash and

Zhihua in 2015. It is a new nature-inspired metaheuristic optimization algorithm that

works by simplifying and idealizing the migration behavior of monarch butterfly indi-

viduals between two distinct lands, namely (northern USA (Land1) and southern Can-

ada (Lnad2)). For more details about the two algorithm please refer to [5, 14].

The most important factors in metaheuristic algorithms are the exploitation and explo-

ration search mechanisms. A good metaheuristic algorithm has the ability to strike a

balance between these two mechanisms, thereby enhancing the solving of low and high-

dimensional optimization problems. The exploitation mechanism is based on the pre-

sent knowledge to seek better solutions, while the exploration mechanism is based on

fully searching the problem space for an optimal solution.

In general, by analyzing the standard MBO algorithm, we notice that it has the ability

to explore the search space very effectively; however, it has a poor ability to exploit the

search space due to the occasional use of Levy flight by the updating operators, which

leads to large random steps or moves. On the other side, we notice that the ABC algo-

rithm has the ability to explore the search space well, but has better ability in finding

local optima through the employee and onlooker phases, which are considered local

search processes. ABC is mostly based on selecting the solutions that improve the local

search. Global search, on the other hand, is implemented in the ABC algorithm by the

scout phase, which results in reducing the convergence speed during the search process.

The core idea of the new hybrid approach is based on two improvements; firstly, to

modify the butterfly adjusting operator in the MBO algorithm in order to improve the

exploitation versus exploration balance, by increasing the search diversity and counter-

balance the shortfall of ABC algorithm in global search efficacy. The modified version

of the operator is show in algorithm 1. The second improvement is to integrate the

modified butterfly adjusting operator from MBO in place of the first phase in the stand-

file:///E:/2016/Original-HBH.docx%23_ENREF_23
file:///E:/2016/Original-HBH.docx%23_ENREF_25

ard ABC algorithm (the employee phase). The improved operator is named as “em-

ployee bee adjusting operator” and the resulting modified phase is called the “employee

bee adjusting phase”.

The employee bee adjusting phase is very simple and is used to update all the solutions

in the bee population, where each solution is a D-dimensional vector. In the Initializa-

tion phase, we need to define all the variables that would be defined in the standard

ABC algorithm and assign them suitable values. The HAM algorithm adopts all param-

eters from the original ABC algorithm, and adds three new control parameters: limit1,

limit2 and the maximum walk step parameter Smax; these three parameters are used in

the employee bee adjusting phase.

Algorithm1: Employee bee adjusting phase

Begin

For i = 1 to SN do

 Calculate the walk step dx by Equation (1);

 Calculate the weighting factor by Equation (2);

 For j = 1 to D do

 If rand ≥ limit1 then

 Generate the jth element by Equation (3);

 Else

 Randomly select a food Source (r) by Equation (4);

 If rand < limit2 then

 Generate the jth element by Equation (5);

 Else

 Generate the jth element by Equation (6);

 If rand < BAR then

 Generate the jth element by Equation (7);

 End if

 End if

 End if

 End for j

Evaluate the fitness value of the candidate solution xi.

Apply a greedy selection process between xi and xbest

If solution xi does not improve, triali = triali + 1,

Otherwise triali = 0.

End for i

End

In Algorithm 1, each employee bee is assigned to its food source and in turn generates

a new one either by using Levy flight or through mutation operators, which are based

on the two control parameters (limit1 and limit2). These parameters are used to fine-

tune the exploitation versus exportation by improving the global search diversity. The

first step is to calculate a walk step “𝑑𝑥” for the ith bee using the Levy flight in Equation

1, and calculate the weighting factor“∝” by Equation 2, where 𝑆𝑚𝑎𝑥 represents the

max walk step that a bee individual can move in one step, and t is the current generation.

Then, for each element j of the D dimensions, if (rand ≥ limit1), the algorithm uses

Equation 3 to update the solution element:

𝑑𝑥𝑘 = 𝑙𝑒𝑣𝑦(𝑥𝑗
𝑡) (1)

∝ = 𝑆𝑚𝑎𝑥/𝑡2 (2)

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑏𝑒𝑠𝑡,𝑗

𝑡 (3)

where 𝑥𝑖,𝑗
𝑡+1 is the jth element of solution 𝑥𝑖 at generation t+1, which represents the lo-

cation of the solution i, while 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡 is the jth element of 𝑥𝑏𝑒𝑠𝑡 at generation t, which

represents the best location among the food sources so far with respect to the ith bee.

On the contrast, if (rand < limit1) then another set of updates are performed. First, a

random food source (equivalent to a random solution or bee) is selected from the current

population using Equation 4. Then, depending on whether a randomly generated value

is smaller than limit2, Equation 5 is used to update the solution elements, as follows:

𝑟 = 𝑟𝑜𝑢𝑛𝑑((𝑆𝑁 ∗ 𝑟𝑎𝑛𝑑) + 0.5) (4)

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑟,𝑗

𝑡 + 0.5 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑥𝑤𝑜𝑟𝑠𝑡,𝑗
𝑡 − 𝑥𝑟2,𝑗

𝑡 − 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡) (5)

where 𝑥𝑖,𝑗
𝑡+1 is the jth element of solution 𝑥𝑖 at generation t+1, which represents the lo-

cation of the solution i, 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡 is the jth element of 𝑥𝑏𝑒𝑠𝑡 at generation t, which repre-

sents the best location among the food sources so far; 𝑥𝑤𝑜𝑟𝑠𝑡,𝑗
𝑡 is the jth element of

𝑥𝑤𝑜𝑟𝑠𝑡 at generation t, which represents the worst location among the food sources so

far; and 𝑥𝑟,𝑗
𝑡 is the jth element of 𝑥𝑟 at generation t, which represents the location of the

solution r calculated by Equation 4. The t in Equation 5 is the current generation num-

ber.

On the other hand, if the randomly generated value was bigger than limit2, the solution

elements are updated by Equation 6, where 𝑥𝑖,𝑗
𝑡+1 is the jth element of solution 𝑥𝑖 at gen-

eration t+1, which represents the location of the solution i; 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡 is the jth element of

𝑥𝑏𝑒𝑠𝑡 at generation t, which represents the best location among the food sources so far;

𝑥𝑤𝑜𝑟𝑠𝑡,𝑗
𝑡 is the jth element of 𝑥𝑤𝑜𝑟𝑠𝑡 at generation t, which represents the worst location

among the food sources so far, while 𝑥𝑟,𝑗
𝑡 is the jth element of 𝑥𝑟 at generation t, which

represents the location of the solution r calculated by Equation 4.

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑟,𝑗

𝑡 + 0.5 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡 − 𝑥𝑟3,𝑗

𝑡 − 𝑥𝑤𝑜𝑟𝑠𝑡,𝑗
𝑡) (6)

The Levy flight step from the MBO algorithm is adopted here with a smaller probability

of execution to reduce its impact on the exploitation process. Assuming the execution

path passed the test of limit1 and limit2 control parameters, yet another random check

against the BAR parameter is performed, right after the update by Equation 6 to further

change the value of 𝑥𝑖,𝑗
𝑡+1 occasionally by the amount ∝ × (dxk − 0.5), as per Equation

7.

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡+1+ ∝ × (𝑑𝑥𝑘 − 0.5) (7)

Finally, the employee bee adjusting phase tests the boundary for the new solution to

make sure the newly generated solution is within the allowed boundaries for the opti-

mization problem at hand, and then evaluates the fitness value of the new solution in

order to apply a greedy selection process between the new and the best solutions to

select the better one. If the solution does not improve then a trial counter is increased

by one. As for the onlooker bee and scout phases, the algorithm adopts their implemen-

tation from the original ABC algorithm without any change, which can be found in

[22].

3 Experimental Evaluation

In this section, we layout the experimental setup through which we have evaluated the

proposed algorithm, HAM.

3.1 General setup

Hardware and software implementation.

All the experiments were conducted on a laptop with an Intel Core 5i processor running

at 2.4 GHz, and 8 GB of RAM. The software implementation of the proposed HAM

algorithm was based on the implementation of ABC and MBO. All software is com-

piled using MATLAB R2009b (V7.9.0.529) running under Windows 7.

Parameters.

For a fair comparison, we set all the common control parameters for all methods to the

same values, including the population size SN, and the dimensionality of the search

space D. The SN for our experiments in this work was set to 50 and the number of

dimensions D was set to 10 for all methods. The parameters of all methods used in this

work are presented below:

The variables of the proposed HAM algorithm have been set in all experiments as fol-

lows: Smax = 1.0, migration period peri = 1.2, the migration ratio p = 0.4167, limit1 =

0.8 and limit2 = 0.5. ABC parameter settings: The number of colony size is 50 em-

ployed bees and 50 onlooker bees because the colony size is 100; limit is set to 100.

MBO parameter settings: There are many parameters for MBO method. In this work,

we followed the setup in the original work of MBO [14], and set the butterfly adjusting

rate BAR = 0.4167, max step Smax = 1.0, migration period peri = 1.2, the migration ratio

p = 0.4167 and the population size NP is the same as the colony size, which is 50.

3.2 Benchmark Function

This paper uses a set of 8 test functions for global numerical optimization. These func-

tions are listed in Table 1 alongside their respective equations and properties.

Table 1. Benchmark global numerical functions used for evaluating optimization methods

No. Name Equation Low Up

1 Sphere 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 -100 100

2 Schwefel 2.22 𝑓(𝑥) = ∑ |𝑥𝑖|
𝑛

𝑖=1
+ ∏ |𝑥𝑖|

𝑛

𝑖=1
 -1.28 1.28

3 Schwefel 1.2 𝑓(𝑥) = ∑ (∑ 𝑥𝑗

𝑖

𝑗=1
)

2𝑛

𝑖=1
 -5.12 5.12

4 Schwefel 2.21 𝑓(𝑥) = ∑ |𝑥𝑖|
𝑛

𝑖=1
+ ∏ |𝑥𝑖|

𝑛

𝑖=1
 -600 600

5 Schwefel 2.26 𝑓(𝑥) = −418.983 ∑ [𝑥𝑖 sin (√|𝑥𝑖|)]
𝑛

𝑖=1
 -50 50

6 Rosenbrock 𝑓(𝑥) = ∑ [100√|𝑥𝑖 − 𝑥𝑖
2| + (1 − 𝑥𝑖)2]

𝑛−1

𝑖=1
 -100 100

7 Step 𝑓(𝑥) = ∑ ⌊|𝑥𝑖|⌋
𝑛

𝑖=1
 0 3.1416

8 Quartic 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
4

𝑛

𝑖=1
+ 𝑟𝑎𝑛𝑑[0,1) -5 10

4 Results

Table 2 lists the optimization results when applying the 8 optimization test functions to

ABC, MBO and our HAM methods. The listed values are the optimal values of the

objective function achieved by each algorithm after iterating over 50 generations. The

mean values in the table are averaged over 20 runs (each run constitutes 50 iterations)

and listed along the standard deviation. The min values, however, are the best results

achieved by each algorithm at all. By the “best result” we mean the closest result to the

actual optimal value of the function.

It is evident from Table 2 that the HAM algorithm can reach a better optimum on aver-

age; at least with respect to the set of benchmark functions used in the experiments

(HAM has better average results in the case of 7 out of 8 test functions). For ease of

recognition, the best average result is marked with bold font and shaded in a grey cell.

The min values are bold font to identify the absolute best minimum achieved for each

function. Note that this value is meaningful because it happened that the minimum

achieved values by the algorithms for the selected benchmark functions are closest to

the real optimum. With respect to the set of test functions used in our evaluations, HAM

could achieve the best result in 6 out of 8 cases.

On another perspective, we also graphed the optimization process of each algorithm

(for each benchmark function) as the value of the so-far best solution versus the current

iteration, which shows the search path in terms of selected best solution per iteration.

The curve of this kind is expected to decline overall at a slope that reflects the conver-

gence speed of the algorithm (there is no degradation during the process of any included

metaheuristic algorithm, as the best solution is either improved or kept unchanged at

all iterations). Therefore, these graphs can be called the convergence plots of the algo-

rithms. Because of the large number of plots, we include hereby representative samples

of the convergence plots in Figure 1, which compares the convergence of HAM with

the two most related metaheuristic techniques: ABC and MBO.

Table 2. The min, mean and standard deviation of test function values found by ABC, MBO and

the proposed HAM algorithms, averaged over 20 experimental runs. The Dimensions set to 10.

ABC MBO HAM

Best Mean Std. dev Best Mean Std. dev Best Mean Std. dev

4.13E-04 1.01E-02 9.37E-03 5.14E-04 8.67E-01 2.73E+00 3.57E-05 9.37E-05 6.24E-05

1.07E-01 2.64E-01 1.21E-01 3.79E-02 2.18E+00 4.08E+00 7.14E-03 1.70E-02 8.60E-03

6.66E+02 2.11E+03 1.00E+03 7.61E-03 4.18E+03 3.20E+03 6.72E-03 2.97E+00 1.16E+01

9.89E+00 2.14E+01 7.13E+00 2.35E-02 1.68E+01 1.57E+01 5.84E-03 1.22E-02 4.64E-03

2.45E+02 6.47E+02 1.89E+02 1.29E-04 1.22E+03 6.79E+02 1.13E+03 1.55E+03 1.85E+02

2.31E+01 1.78E+02 2.33E+02 8.91E+00 7.14E+04 1.54E+05 8.20E+00 8.56E+00 1.24E-01

3.44E+00 5.30E+00 1.85E+00 6.52E-06 1.29E+03 2.43E+03 2.51E+00 2.52E+00 6.70E-03

2.02E+00 2.97E+00 4.55E-01 1.83E+00 3.31E+00 1.34E+00 1.54E+00 2.19E+00 2.43E-01

Figures 1 (a-d) show that the HAM algorithm enjoys not only a superior overall perfor-

mance in terms of the quality of the found optimal solution, but also a faster conver-

gence especially in the earlier stages. Although the starting points of the algorithms are

close to each other in the plots of the four testing functions in the figure, the proposed

HAM method does not trap into a quick local optimum, unlike the original ABC and

MBO algorithms for example.

(a)

(b)

(c)

(d)

Fig. 1. Performance of ABC, MBO and HAM algorithms for (a) F1, (b) F2, (c) F3 and (d) F4

benchmark functions.

5 Conclusion

In this article, a Hybrid algorithm of Artificial Bee Colony and Monarch Butterfly Op-

timization algorithms (HAM) was proposed for solving numerical optimization prob-

lems. This method is based on a modified version of the adjusting operator in MBO

algorithm, integrated as a first phase in the standard ABC algorithm, in place of the

employee bee phase. In the HAM method, the improved diversification of MBO was

used to augment the good intensification ability of ABC to find better global solutions

and increase the convergence speed. As a future work, we plan to use the new method

in training artificial neural networks (ANN) for various purposes, and to extend the

method for solving multi-objective optimization problems

Acknowledgments.

This research was funded by Universiti Sains Malaysia under USM Fellowship 2016

[APEX (1002/CIPS/ ATSG4001)], Also partially supported by the Fundamental

Rsearch Grant Scheme (FRGS) for “Content Based Analysis Framework for Better

Email Forensic and Cyber Investigation” [203/PKOMP/6711426].

REFERENCE

1. Sörensen, K. and F.W. Glover, Metaheuristics, in Encyclopedia of Operations Research and

Management Science. 2013, Springer. p. 960-970.

2. Eberhart, R.C. and J. Kennedy. A new optimizer using particle swarm theory. in Proceedings

of the sixth international symposium on micro machine and human science. 1995. New

York, NY.

3. Dorigo, M., M. Birattari, and T. Stützle, Ant colony optimization. Computational

Intelligence Magazine, IEEE, 2006. 1(4): p. 28-39.

4. Dorigo, M., V. Maniezzo, and A. Colorni, Ant system: optimization by a colony of

cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, 1996. 26(1): p. 29-41.

5. Karaboga, D., An idea based on honey bee swarm for numerical optimization. 2005,

Technical report-tr06, Erciyes university, engineering faculty, computer engineering

department.

6. Karaboga, D. and B. Basturk, A powerful and efficient algorithm for numerical function

optimization: artificial bee colony (ABC) algorithm. Journal of global optimization, 2007.

39(3): p. 459-471.

7. Yang, X.-S., Nature-inspired metaheuristic algorithms. 2010: Luniver press.

8. Yang, X.-S. and S. Deb. Cuckoo search via Lévy flights. in Nature & Biologically Inspired

Computing, 2009. NaBIC 2009. World Congress on. 2009. IEEE.

9. Simon, D., Biogeography-based optimization. Evolutionary Computation, IEEE

Transactions on, 2008. 12(6): p. 702-713.

10. Li, X., J. Zhang, and M. Yin, Animal migration optimization: an optimization algorithm

inspired by animal migration behavior. Neural Computing and Applications, 2014. 24(7-8):

p. 1867-1877.

11. Meng, X., et al., A new bio-inspired algorithm: chicken swarm optimization, in Advances in

swarm intelligence. 2014, Springer. p. 86-94.

12. Mirjalili, S., S.M. Mirjalili, and A. Lewis, Grey wolf optimizer. Advances in Engineering

Software, 2014. 69: p. 46-61.

13. Gandomi, A.H. and A.H. Alavi, Krill herd: a new bio-inspired optimization algorithm.

Communications in Nonlinear Science and Numerical Simulation, 2012. 17(12): p. 4831-

4845.

14. Wang, G.-G., S. Deb, and Z. Cui, Monarch butterfly optimization. Neural Computing and

Applications, 2015: p. 1-20.

15. Yang, X.-S., A new metaheuristic bat-inspired algorithm, in Nature inspired cooperative

strategies for optimization (NICSO 2010). 2010, Springer. p. 65-74.

16. Kirkpatrick, S. and M.P. Vecchi, Optimization by simmulated annealing. science, 1983.

220(4598): p. 671-680.

17. Gandomi, Amir Hossein, Xin-She Yang, SiamakTalatahari, and Amir Hossein Alavi, eds.

Metaheuristic applications in structures and infrastructures. Newnes, 2013.

18. Črepinšek, Matej, Shih-Hsi Liu, and Marjan Mernik. "Exploration and exploitation in

evolutionary algorithms: A survey." ACM Computing Surveys (CSUR) 45, no. 3 (2013):

35.

19. Ghanem, Waheed Ali HM, and Aman Jantan. "Novel Multi-Objective Artificial Bee Colony

Optimization for Wrapper Based Feature Selection in Intrusion Detection." International

Journal of Advances in Soft Computing & Its Applications 8, no. 1 (2016).

20. Karaboga, Dervis, and Celal Ozturk. "Neural networks training by artificial bee colony

algorithm on pattern classification." Neural Network World 19, no. 3 (2009): 279.

21. Ghanem, Waheed Ali HM, and Aman Jantan. "using hybrid artificial bee colony algorithm

and particle swarm optimization for training feed-forward neural networks." Journal of

Theoretical and Applied Information Technology 67, no. 3 (2014).

22. Bolaji, A. L. A., khader, A. T., Al-Betar, M. A., & Awadallah, M. A. (2013). Artificial bee

colony algorithm, its variants and applications: A survey. Journal of Theoretical & Applied

Information Technology, 47(2).

