
A Complete Behavioral Measurement and Reporting:
Optimized for Mobile Devices

Toqeer Ali1, Megat Farez Azril Zuhairi1, Jawad Ali2, Shahrulniza Musa1,
Mohammad Nauman3

1 {toqeer@iu.edu.sa, megatfarez@unikl.edu.my, jawad2k3@gmail.com}
Malaysian Institute of Information Technology,

Universiti Kuala Lumpur
2 Islamic University of Madinah,

Madinah, Saudi Arabia
3 Max Planck Institute for Software Systems,

Germany,

Abstract. Security is an important factor in today’s IT infrastructure due to complex
and vast variety of malware threats. One way to tackle these malware is via signature-
based techniques. However, this requires human effort in identification of threats and
is not scalable. The second way is to detect malware via behavior-based reference
monitor so called ‘O-Day’ malware. In this paper, we have optimized behavior-based
tech-nique for a specific use-case, based on today’s enterprise requirement. We have
built behavior-based light-weight reference monitor to measure and report a complete
system call sequences as well as its arguments. The measurements are stored into
Trusted Platform Module (TPM) pro-tected location. The reference monitor splits
the sequences of system calls and its arguments. Arguments and their verification is
performed inde-pendent of each other via machine learning techniques. The behavior
monitor is designed and developed on the core Linux Security Module (LSM). The
same monitor is also designed and developed for Android-based platform via a newly
built architecture called Android Security Module (ASM).

1 Introduction

The growing rate of attacks on software applications makes it infeasible to rely only on
hash based detection techniques [6, 8, 31]. Similar is the case for large sets of
applications running on remote devices which are even not in control of the corporate.
For monitoring these remote applications, plenty of work has been carried out [10, 15, 17,
28, 30]. Software can also monitor and report behavior of the application to remote
devices. However, on a compromised system, behavior monitor itself can be infected.

In this regard, Trusted Computing Group (TCG) has provided a specifi-cation, that
provides a way to monitor remote applications known as remote attestation. Manufacturers
have made co-processor on these specifications called TPM [1]. Based on this core, apart
from hash based attestation [24] a number

2 .

of dynamic behavior attestation techniques have also been proposed. The prob-lem with
existing dynamic behavior attestation [2,13,26] based on TPM is that, some solutions
suffer from performance of behavior locking in the hardware while others lack the ability to
cover the broad range of malicious behavior [4, 27]. In this paper, we propose a solution to
balance the performance problem as well as to report every aspect of applications behavior.

Additionally, existing solutions have been proposed for commodity hardware.
However, there is a need for this solution to be shifted on mobile devices. Specifi-cally,
Android has received immense popularity due to its open source nature. A large number of
users shifted to use Android and it is worth mentioning that the numbers of malware
writers are also shifted towards Android to get the secret information from mobile users,
such as, credit card numbers or password etc. In this paper, we focused on Android OS to
provide dynamic measurement and reporting of an enterprise application.

2 Use Case

Large number of enterprise applications are running on mobile devices, e.g,(CIMB Clicks).
They are solely depending on the operating system’s own secu-rity mechanism.
Enterprises, don’t have a mechanism in place to monitor their own application’s behavior
running on smartphones. The existing solutions, to report the behavior remotely, are
either software-backed or even if they are hard-ware supported then they can report static
behavior of the applications [21] only. Software-backed solutions are it-self vulnerable to
attack in an effected operating system environment. The static techniques that can report
static hashes are not even able to detect attacks that do not change code of the
applications, such as, the infamous recent ’glibc’ and ’Heartbleed’ attack. The solution
provided in this paper is for those enterprises that would like to monitor their own
application’s health on the remote smartphone devices. The solution measures and reports
minimal though complete behavior of application running on IOT devices as well as
smartphones.

The contribution of this paper is as follows:

– Monitored all the aspects of an applications behavior and measured according
to the TCG specification.

– Optimized the state-of-the-art detection mechanisms that is suitable for
software-based behavior monitor, however, not applicable directly in a re-
mote attestation scenario.

– Modified attestation protocol for the behavior reporting and verification of a
new technique.

– Designed architecture of an existing TCG-based reference monitor for Mobile
platforms

. 3

Outline The rest of the paper is organized as follows: Section 3 we discuss both the
state of the art techniques for enterprises as well as for android platform. In section 4 we
provide our problem statement for the proposed research. Section 4 describes the design
goals and Section 5 discuss proposed architecture in terms of Linux based behavior
monitor in detail. Finally, in Section 6 an attestation architecture is designed for
Android platform that can capture and report the behavior of an applications in a
trusted way.

3 Remote Attestation: State of the Art

To verify either the complete operating system or target application, two ma-jor steps
have to be performed in every remote attestation scenario. First, the static hashes or
dynamic behavior should be measured and stored in the TPM. Secondly, on request, this
behavior should be reported in a secured way so that it can be verified. For understanding
of problem statement and our contribution we have shortly described the past work.

Initially, TCG has given solution to measure the boot process from BIOS till the boot-
loader. The work being done in [24] has built the chain-of-trust from BIOS to kernel and
kernel is able to measure the complete operating system including all the applications and
configuration files. The problem with this work is that it is similar to hash-based intrusion
detection, that is, it only takes hashes of every executable and stores it into the TPM’s
Platform Configuration Register(PCR). Although, a hash-based IDS does not have the
capability to securely store hashes and verify at the remote system.

It has been realized that a corporate can be interested in a single application
verification instead of complete operating system measurement and reporting. The work
done in [16] has come with the solution to measure and report a single targeted application
and all the related application that communicates with it. This work reduces the
overhead, however, it only report the static hashes of the application and its information
flow.

Apart from hash-based techniques, researchers have moved towards dynamic behavior
attestation techniques. In the traditional OS environment, either on hand-held devices or
PCs, system call is generated to request a resource or ser-vice. The work being done in [13]
has measured every system call and reported to the remote party for behavior verification.
However, according to our experi-ments it was not a feasible solution to implement.
Because it creates bottleneck on the TPM while performing SHA-1 hash and PCR Extend
operations on every system call. Also, the solutions are not able to detect malicious
behavior with system calls only.

Another approach towards DBA is LKIM [18] which tends to measure kernel data
structures at runtime and represent graph to detect anomaly. The problem with this
technique is measuring data structures at runtime creates a bottleneck on the client
platform and sending this data to the remote platform is also an overhead on the
network.

4 .

Some of the solutions directly took work being done as an IDS technique and
implemented in remote attestation scenario [3], [19]. The problem with these techniques
are that the solutions are implemented as it is in Linux kernel that were developed for
Host-based IDS. Remote attestation differs in a way that it needs to securely measure
behavior of the operating system as well behavior should be as minimal as a malicious
behavior can be detected. However, these techniques only considered detection
mechanism instead of performance issue related to remote attestation.

Remote attestation on smartphones: Nauman et al. [21] proposed and
implemented an attestation mechanisms in Android security framework on both the
operating system level and on top of Virtual Machine. The mechanism is based on two
level of granularity i.e. Either Application level attestation or Class-level attestation.
Both of these attestation required root-of-trust by im-plementing TPM hardware or
emulator (software) on a device. As smartphones have lack of TPM hardware so the
chain-of-trust is established by Mobile Trusted Module (MTM) according to TCG
specification. To help-out the architecture for presence of a root-of-trust they have
created a simplified lightweight TPM em-ulator that can only provide the functionalities
of proposed solution. This will lead to low computation charges and battery consumption
as much as possible.

After measurement by either application level or class-level the attestation token that
contains PCR Quote and measurement logs are sent to challenger to check the state of
remote smartphone. The challenger first validates TPM authenticity by verifying digital
signatures included in the Quote. Afterwards, the measurement (hashes) of each loaded
executable reported in the log is verified in database of known-good and known-bad
hashes. This is the first and foremost adopted solution on the smartphones based on TCG
specification, however, it takes static hashes of applications and classes running on
Android OS. Thus, in this solution the mentioned motivating use case cannot be covered.

3.1 Android: State of the Art Software-based Behavior Monitors

CopperDroid: is a framework [23] that introduces an idea to analyze and classify low-level
as well as high-level Android-specific behaviors. The technique retrieved behavior of an
applications through system calls interception by IPC and RPC communication.
CopperDroid is built over the famous emulator called QEMU that can automatically
carry out analysis of dynamic behavior of malware run-ning on Android platform. The
author enhances Android emulator that is able to track system calls. They have developed
a behavior analyzer to verify these system calls. The reason to mention this work is that,
it intercepts system calls at the kernel level and performs analysis. There should be a
generic solution that can capture system calls at the kernel level so any technique can
build their own reference monitor on top of that. Aurasium [29] is a novel and deployable
technique as well as tool that enables dynamic and fine-grained policy enforce-ment of
Android applications. To intercept relevant events, Aurasium operates only on a
application level rather than interacting with system-level hooks or acquiring access to
root and re-flashing device.

. 5

Similarly the CrowDroid is a framework that relies on malware detection systems in
mobile devices [7]. Main idea in this framework is to dedicate a central remote server for
analysis of applications running on mobile devices. This server is specifically responsible to
characterize suspicious or normal activities of the client device. For this, the author
developed Crowdroid which is a lightweight client which can easily be made available on
Google Playstore. This application when installed on any mobile device is capable to
monitor the behavior of ap-plication by collecting system calls using strace utility at user-
space and send it to the central remote server. The remote server will then parse data and
cre-ate a behavior profile on the basis of these system calls for further verification. More
generally, the framework makes a remote verification mechanism between client and
central server. However, the main problem with this solution is that, and which is of our
interest, the behavior monitor is running in user-space and intercepting system calls vis
strace utility. The problem is that, Crowdroid ap-plication itself is vulnerable to attack
and malware may harm its integrity, thus we cannot rely on its behavior capturing and
reporting. And software based solu-tions are more prone and vulnerable to several kinds of
attack. More importantly their solution is a remote verification scenario, via which they
are evaluating ap-plication. The standard way provided to verify remote application is via
TCG’s provided remote attestation solution. In short, a solution should be provided that
instead of intercepting system calls in user-space it should be captured in the kernel level.
Most importantly the behavior monitor itself should be trusted.

4 Problem Statement

The work being done in [15] has considered the performance issues related to remote
attestation. According to them, they have measured unique sequence of system calls
instead of every system call produced by an application. They have reduced the
measurement and reporting log and performed verification-based automated machine
learning modules. For further details reader can refer to [15]. Currently, this technique
considers only system call to monitor and re-port, however, there are recent attacks that
are based on arguments of system call instead of system call alone [22]. These attacks can
go un-noticed by the ex-isting techniques. Now a solution is required that can measure
unique sequence of system calls as well as unique arguments of system calls. The same
problem can occur again if we measure and report every system call arguments, in result,
it will be a bottleneck on the TPM (cf. Figure 1). In this paper, the author considered this
issue to monitor and report sequence of system call as well as the arguments related to it.
The existing behavior monitors are updated to split unique sequences of system calls and
its related arguments. On the challenger side verification is performed on machine
learning algorithms and the arguments are verified with standard paths of the target
application.

The above mentioned solution is designed and developed on Linux kernel based
on Linux Security Module(LSM). The reference monitor is developed to

6 .

split sequence of system calls and its arguments and measured in the respected PCR.
However, this solution is directly ported to the smarphones because of its architecture
differences. Although, Android is based on the Linux kernel. One of the contributions of
this paper is to embed existing PC-based behavior monitor into the Android Platform.

App-1 App-2

Behavior
Monitor

PCRsKey Storage
Hashing Algo-
rithm | RNG

User-Space

Kernel-Space

Hardware (TPM)

[Requests for
Resource]

(i) SHA-1
(ii) PCR-
Extend

System Calls as
behavior

Arguments ?
[Measurement Over-
head problem on the
device]

[Need to reduce
measurements]

Fig. 1: Performance Problem While Measuring Every
System Call and Its arguments

5 Design Goals

Following are the design goals which are essential to be fulfilled while designing the

architecture.

1. Efficiency: The first goal of the proposed architecture is that it should be efficient.
Main focus of the target architecture is to collect the parameters (also called as
measurement of the parameters). The architecture should have the ability to measure
these parameters in an optimized way.

2. Dynamism: As discussed earlier, the current techniques are efficient but the problem
with them is that they cannot measure run time behavior of an application. Along
with efficiency the other most important goal of the ar-chitecture is to measure
dynamic behavior of application [25].

3. Plugability: The design should be pluggable at both the client and challenger ends.

4. Testability and implementability : The design of the attestation mechanism should
be implementable and testable in the real environment.

. 7

5. Reporting verses protection: Generally, remote attestation in Trusted Com-puting
provides reporting only as apposed to protection of target plat-form [24]. The
design should be considered to report credentials securely to the challenger, so
that if there is an increased rate of unknown behavior, the challenger should not
provide any secrete information to this platform anymore.
Apart from the above, design goals are adopted, specific to attestation, from the guide
provided by Justin et al. of the MITRE corporation in [9]. Justin et al. pointed out few
general principles for attestation that ought to be satisfied while designing the
architecture.

6. Fresh Information: The information about the target should be fresh and
timely, so that it can well represent the running system.

7. Comprehensive Information: The attestation mechanism should be de-
signed in such a way that it should collect detailed verifiable information about the
target. Besides this, the measurement tool has to have access to internal state of
target system. With this comprehensive information comes the issue of privacy as
well as another issue that can be confronted i.e if an attacker gets the information
that opens vulnerability for adversary. To cover this, the following objective is
determined.

8. Constrained Disclosure: The targets platforms should enforce policies that
can monitor and govern information/measurements sent to each challenger. The
attestation mechanism should be able to identify the challenger. It can do so by
many ways, for example, either it can ask the challenger to send some
information strictly relating to it, so that the target can identify or it should send
some secret code that would distinguish the challenger.

9. Semantic explicitness: The semantic content of attestation should be clearly defined.
For example, how many measurements of semantic data are required for the
challenger to identify behavior of target. Further, the content should be uniformed,
so that it can determine in the form of logical functions.

10. Trustworthy mechanism: Finally, the attestation architecture should be de-
signed in such a way that it assures trustworthiness to both the target and
challenger.

6 Proposed Solution

As the future is going to be about the Internet of Things (IOT) and industry is rapidly
moving towards it. As per Gartner research the very next year is going to see 5.5
million new devices going to be the IOT. The core operating system of these devices
would be Linux. In short, IOT devices uses Linux as an operating system while
Android also uses the same. And the market share of Android is the highest of all in
smartphones. Keeping this thing in mind we designed and implemented the reference
monitor for both, that is, for core Linux operating system as well as for Android. In
the following sections we are describing the proposed solution.

8 .

Reference
Monitor

Sequences of System-Calls
(Open, Read, Write, Close)

Open, Read, Write, Socket, Close
Read, Write, Socket, Close, Read,
Write, Socket, Close, Read, Write

Open (path, flag, mode),
Read(fd, buf, count),
Write(fd1, buf, strlen(buf)),
Socket(domain, type, prtl),
Close(fd)

PCR-11 PCR-12

Unique-Sequences
(Virtual File System)

Unique-Arguments
(Virtual File System)

App-1 App-2

[Resource
Requests]

Split the system-calls
and its arguments

Open (path,flag,mode)

User-Space

Kernel-Space

Hardware (TPM)

Fig. 2: Proposed Reference Monitor Designed For
Efficient TPM Measurement

6.1 Linux-Based Behavior Monitor

In this paper we proposed a generic reference monitor for intercepting system-calls with
arguments at kernel level. As shown in Figure 2, our reference monitor records behavior of
applications. The operation of reference monitor is: When an application wants to access
any resource, the reference monitor monitors ap-plications behavior and stores it. The
behavior profile of an application is stored in two forms i.e. System-calls and its
arguments. The system calls will be stored in form of fixed unique size windows in a
virtual file system and their arguments will be stored separately in another virtual file
system. Reference monitor will also be able to neglect or ignore repeated system with
same arguments that was called previously. This way our framework will not be
overburdened by the storage of same behavior again and again e.g. open called 5 times
with same arguments, so it will be stored once in a log file. Furthermore, it is necessary to
store the same system-call with different arguments in order to populate a strengthen
profile for behavior of an application. Finally the reference monitor will also own an
ability to store aggregated measurement of these system calls windows and their
arguments in PCR. The measurement of system-calls win-dows will be stored in PCR-11
and their arguments will be stored in PCR-12. These PCR measurements along with logs
(system calls log & arguments log) will further be used in verification at remote end.

. 9

Now, when a challenger would like to verify target application, it should send their
credentials i.e. stored measurements in PCRs and measurement log. As we discussed
earlier that system calls and its arguments are measured separately that can help to store
complete behavior in the form of unique sequences as well as unique arguments.
Furthermore the PCR-measurements must be truly signed by TPM key that can show its
source authenticity. An attestation protocol is designed according to TCG specification
that can ensure trusted communication between the end-nodes and verifier-nodes.

When challenger starts verification process, it will first verify TPM-signatures of the
source. Afterwards, the PCR verification will be started that can prove integrity of data
for any modification while transmission. After successful verifi-cation of PCR, the actual
behavior of the application, that is, unique windows and its arguments are verified. The
behavior dataset is fed into the trained classi-fier for normal and abnormal behavior. For
more reading about machine learning that how it can identify normal or malicious
behavior, we refer the reader to [15].

As stated earlier, the arguments of each system call is also stored in form of SML in a
separate log file and its measurements are also stored in in TPM’s PCR. The benefit of
storing these arguments for behavior profile will prevent attacks which do not modify or
alter the contents of system calls, however, just affects and causes anomaly in their
arguments. Normally, every system call has four different types of arguments:
pathnames, filenames, discrete numeric values and arguments used in execution of
program. We investigate the arguments that are used more frequently in system calls i.e.
pathnames and filenames. We build a separate verification model for each argument used
by system call in the training phase. For this, we populate a normal behavior profile by a
model SyscallAnomaly in an isolated environment on a challenger platform, known as
pristine profiling environment. Afterwards, we denote the pathname of the files in cluster
with a probabilistic tree structure, that contains the likelihood of all the involved
directories along with their probability weights. For instance, in Figure 3 (a) the
directory depth for test.sh is three, we note this tree as a normal activity for the particular
case. While in Figure 3 (b) the directory depth for the same location is 4, we identify and
store it into malicious class.

In order to identify arguments, the proposed architecture is able to verify applications
profile of arguments along with their measurement sent by client end to the challenger
end. In the first step PCR-measurements that contains the arguments information will be
verified. After successful verification of PCR, the arguments log are matched in
probabilistic models that were made during train-ing phase of behavior profiling. We
specify a threshold value for each arguments in according to their directory depth for
normal or anomalous.

6.2 Android-Based Reference Monitor for Remote Attestation

In the above section, we have introduced an architecture to measure complete and
optimized dynamic behavior of application in terms of system calls and its arguments.
The solution given is designed and built on top of LSM. The same solution is highly
required for smart-phones as according to our literature, we

10 .

/usr

/local

/hadoop

/sbin

star-all.sh

/tmp

test.sh

/local

/apache

/cond

http.conf

(a) Normal Tree

/usr

/local

/hadoop

/sbin

star-all.sh

/tmp

/lib

test.sh

/local

/apache

/conf

http.conf

(b) Malicious Tree

Fig. 3: Normal and Malicious System Call Arguments

were unable to find such an architecture. Below we have discussed few solutions that
intercepted system calls for behavior monitoring. Although, the solutions are not
considering hardware-backed security. That motivated us to design and implement an
architecture for Android platform.

As Android is one of the most popular among the mobile operating systems and
because of its open-source nature we are enticed to design behavior monitor to verify
corporate’s applications remotely. The need of security in terms of malware
detection is also of utmost importance. Malware detection tools and software
programs are used for security in computer systems but they are not practicable on
Android OS.

Different implementations in regard of Android security frameworks have been
proposed [5, 11, 12, 20]. Each of them developed a security framework in different aspects
according to their objectives. In particular, each framework inserts and retrieves same
kind of hooks in Android. Furthermore, it is considered to be difficult for anyone to do
changes inside Android security framework.

To resolve this issue, Android Security Modules (ASM) [14] framework pro-vides a
standard programmable interface that allows users to define their own behavior monitor.
The prime feature included in this framework is that: It pro-vides generic hooks that are
pluggable to all the existing frameworks. If a user wants to specify reference monitor, so
ASM-Bridge provides related hooks ac-cording to need. It is not required for user to
change the internal framework while declaring reference monitor.

Based on ASM, we have built our behavior monitor that can capture the system
call hooks in kernel and store into the related PCR. Also the same be-havior is stored
in application level as SML (cf. Figure 4) measurement of the application.

. 11

Android

ASM Bridge

TPM PCR-11,PCR-12....PCR-24

open()
exec()

socket ()

ASM LSMSE-Linux LSM
Custom Behav-

ior Monitor

Activity Manager
Service

System Content
Provider

System Services

Enterprise-ASM
aware App

Enterprise
Behavior
Monitor
ASM-Enabled

xxxxxxxx
xxxxxxxx
xxxxxxxx

Attestation
Agent

open()
exec()

socket()

Fig. 4: Proposed Android Framework

Like mainstream Linux kernel where the system call behavior of an applica-tion is
captured directly through LSM hooks and stored measurement of behavior in TPM. In
our proposed Android architecture ASM-LSM provides a superset of these hooks that
contain LSM hooks as well as Android specific hooks. On Android OS when application
runs, the proposed framework captures behavior at two levels: User-space and kernel-
space. ASM does not allow user to directly interact with ASM-LSM, for this ASM-Bridge
is used as a mediator between kernel-space and user-space. The measurements of
behavior will be stored in form of unique windows of specified size. The main purpose of
using ASM-LSM is to communicate with TPM and ensure the chain-of-trust by enabling
IMA [24]. As shown in Figure 4 the ASM-Bridge stores all log entries of each application
behavior while their corresponding aggregated hashes are stored in TPM via our custom
behavior monitor.

In order to perform attestation process, the attestation agent collects creden-tials i.e.
PCR-Quote and log of system calls and its arguments. As we provide detail of attestation
mechanisms regarding system calls and arguments in Section 6.1, so we implement
similar mechanism to the Android architecture. An attes-tation protocol is developed
that can ensure trusted state of the device. Upon a challenger’s request for verifications,
the framework starts preparing a response for verification. The response contains final
measurement from PCR along with

12 .

their log. The challenger verifies credentials and knows state of platform whether it
behaves in trusted manner or malicious.

7 Conclusion

Mobile and IOT devices are emerging and the applications running on these devices are
vulnerable to various attacks. A plenty of buffer-overflow attacks are there, such as,
’glibc’ and ’Hearbleed’ that actually do not change code rather the behavior is changed.
Many solutions have been presented to monitor system calls as behavior of application.
The solution of this paper is to efficiently and securely report behavior to remote
platform. Moreover, major contribution of this paper is two fold. Firstly, a Linux-based
behavior monitor is enhanced to measure system-call arguments along with the system
calls. Secondly, reference monitor has been modified for Android platform. An ASM-
LSM aware application has been developed and tested in the Android emulator while
verification of behavior is out of scope of this paper.

References

1. “Tcg. trusted computing group, http://www.trustedcomputinggroup.org/.”
2. T. Ali, M. Alam, M. Nauman, T. Ali, M. Ali, and S. Anwar, “A scalable and

privacy preserving remote attestation mechanism,” Information-An International
Interdisciplinary Journal, vol. 14, no. 4, 1193–1203(2011).

3. T. Ali, M. Nauman, and X. Zhang, “On leveraging stochastic models for remote
attestation,” in Trusted Systems. Springer, 290–301(2011).

4. T. Ali, J. Ali, T. Ali, M. Nauman, and S. Musa, “Efficient, scalable and pri-
vacy preserving application attestation in a multi stakeholder scenario,” in Inter-
national Conference on Computational Science and Its Applications. Springer,
407–421(2016).

5. A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: trading privacy
for application functionality on smartphones,” in Proceedings of the 12th Workshop
on Mobile Computing Systems and Applications. ACM, 49–54(2011).

6. A. Bianchi, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Blacksheep: detect-
ing compromised hosts in homogeneous crowds,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 341–352(2012).

7. I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-based mal-
ware detection system for android,” in Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices. ACM, 15–26(2011).

8. D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“A quantitative study of accuracy in system call-based malware detection,” in Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis.
ACM, 122–132(2012).

9. G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. OHanlon, J. Ramsdell,
A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote attestation,” Interna-
tional Journal of Information Security, vol. 10, no. 2, 63–81(2011).

. 13

10. Z. Dawei, H. Zhen, J. Yichen, D. Ye, and L. Meihong, “Protocol for trusted channel
based on portable trusted module,” Communications, China, vol. 10, no. 11, pp.
1–14, 1-14(2013).

11. M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire: Lightweight
provenance for smart phone operating systems.” in USENIX Security Symposium,
vol. 31, (2011).

12. W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” ACM Transactions on Computer
Systems (TOCS), vol. 32, no. 2, p. 5, 5(2014), publisher=ACM.

13. L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei, “Remote attestation on program
execution,” in Proceedings of the 3rd ACM workshop on Scalable trusted computing,
ser. STC ’08. New York, NY, USA: ACM, 11–20(2008).

14. S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi, “Asm: A programmable in-
terface for extending android security,” in Proc. 23rd USENIX Security Symposium
(SEC14), (2014).

15. R. Ismail, T. A. Syed, and S. Musa, “Design and implementation of an efficient
framework for behaviour attestation using n-call slides,” in Proceedings of the 8th
International Conference on Ubiquitous Information Management and Communi-
cation. ACM, 36(2014).

16. T. Jaeger, R. Sailer, and U. Shankar, “Prima: policy-reduced integrity measure-
ment architecture,” in Proceedings of the eleventh ACM symposium on Access con-
trol models and technologies. ACM, 19–28(2006).

17. M. LeMay and C. A. Gunter, “Cumulative attestation kernels for embedded sys-
tems,” Smart Grid, IEEE Transactions on, vol. 3, no. 2, 744-760(2012).

18. P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and C. D. McDonell, “Linux
kernel integrity measurement using contextual inspection,” in Proceedings of the
2007 ACM workshop on Scalable trusted computing, ser. STC ’07. New York, NY,
USA: ACM, 21–29(2007).

19. F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through system
call sequence and argument analysis,” Dependable and Secure Computing, IEEE
Transactions on, vol. 7, no. 4, 381–395(2010).

20. M. Nauman, S. Khan, and X. Zhang, “Apex: extending android permission model
and enforcement with user-defined runtime constraints,” in Proceedings of the
5th ACM Symposium on Information, Computer and Communications Security.
ACM, 328–332(2010).

21. M. Nauman, S. Khan, X. Zhang, and J.-P. Seifert, “Beyond kernel-level integrity
measurement: enabling remote attestation for the android platform,” in Trust and
Trustworthy Computing. Springer, 1–15(2010).

22. C. Parampalli, R. Sekar, and R. Johnson, “A practical mimicry attack against
powerful system-call monitors,” in Proceedings of the 2008 ACM symposium on
Information, computer and communications security. ACM, 156–167(2008).

23. A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis and stimula-
tion technique to automatically reconstruct android malware behaviors,” EuroSec,
April, (2013).

24. R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn, “Design and implementation of
a tcg-based integrity measurement architecture.”

25. H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc with-
out function calls (on the x86),” in Proceedings of the 14th ACM conference on
Computer and communications security. ACM, 552–561(2007).

14 .

26. T. A. Syed, R. Ismail, S. Musa, M. Nauman, and S. Khan, “A sense of others: be-
havioral attestation of unix processes on remote platforms,” in Proceedings of the
6th International Conference on Ubiquitous Information Management and Com-
munication, ser. ICUIMC ’12. New York, NY, USA: ACM, 51:1–51:7(2012).

27. T. A. Syed, S. Jan, S. Musa, and J. Ali, “Providing efficient, scalable and privacy
preserved verification mechanism in remote attestation.”

28. C. Wang, C. Liu, B. Liu, and Y. Dong, “Div: Dynamic integrity validation frame-
work for detecting compromises on virtual machine based cloud services in real
time,” Communications, China, vol. 11, no. 8, pp. 15–27, 15-27(2014).

29. R. Xu, H. Säıdi, and R. Anderson, “Aurasium: Practical policy enforcement for
android applications.” in USENIX Security Symposium, 539–552(2012).

30. W. Xu, X. Zhang, H. Hu, G.-J. Ahn, and J.-P. Seifert, “Remote attestation with
domain-based integrity model and policy analysis,” Dependable and Secure Com-
puting, IEEE Transactions on, vol. 9, no. 3, 429–442(2012).

31. H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: capturing
system-wide information flow for malware detection and analysis,” in Proceedings
of the 14th ACM conference on Computer and communications security. ACM,
116–127(2007).

