
1

Dynamic Difficulty Adjustment through a Learning

Analytics Model in a Casual Serious Game for Computer

Programming Learning

Adilson Vahldick1,2,*, António José Mendes1 and Maria José Marcelino1

1CISUC, Department of Informatics Engineering, University of Coimbra, Portugal
2Universidade do Estado de Santa Catarina, Ibirama, Brasil

Abstract

Teachers have used games as a support tool to engage students in learning tasks. As they often record student’s performance

as learning progresses, it is interesting and useful to discuss how that information can be used to assess learning and to

improve the learning experience. For instance, teachers can use that information to give personalized attention in classes and

the game can use it to provide challenges of the “right” difficulty. In computer programming learning, games can provide

an alternative way to introduce concepts and, mainly, to practice them. This paper proposes a model to identify the students’

progress considering their performance in programming tasks. The model is demonstrated by an implementation in a casual

computer programming serious game. We illustrate how this game could use this model to personalize its challenges.

Keywords: Novice programmers, learning analytics, dynamic difficulty adjustment, fuzzy systems.

Received on 1 November 2016, accepted on 13 December 2017, published on 27 December 2017

Copyright © 2017 Adilson Vahldick et al., licensed to EAI. This is an open access article distributed under the terms of the

Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.27-12-2017.153509

1. Introduction

Initial programming learning is known to be complex for

many students. Games have been proposed to help students

in their initial learning stages, namely to increase their

motivation and engagement with the learning process [1].

Two approaches have been used: creating and playing games.

In the first approach students are asked to develop small

games in order to apply the programming concepts [2]. In the

second approach the students play games to reinforce and

practice concepts and programming skills [3]. The main idea

is to motivate students to the learning activities, shortening

the time between theory and practice, and bringing together

abstract concepts and concrete activities.

Digital educational environments generate vast amounts of

track data that could be used for the development of learning

theories and applications [4]. Learning Analytics (LA) rely

*Corresponding author. Email:adilson.vahldick@udesc.br

on data generated by the user’s interaction with these

environments. LA approach applied in educational games is

an alternative to more traditional forms to evaluate learning

[5] and it avoids to brake the game-flow experience risking to

lose student’s interest [6]. We only found in literature one

study with LA applied in programming learning games [7]. It

proposed a framework with six axes. A mathematical model,

relating each axis to a variable, was created to implement this

framework. The game rates the student considering each

variable and normalizes the data based on a teacher defined

ideal behaviour.

One way to adjust the game experience based on student

achievements is through Dynamic Difficulty Adjustment

(DDA) techniques [8]. Considering the data collected, the

game changes the behaviour of game elements (enemies,

items, bonus, environment, sound, …) [9, 10]. Also it is

possible to define difficulty levels associating each of them to

a game configuration set [11, 12]. For instance, in the easiest

EAI Endorsed Transactions on
Serious Games

12 2016 - 12 2017 | Volume 4 | Issue 13 | e1

EAI Endorsed Transactions
on Serious Games Research Article

http://creativecommons.org/licenses/by/3.0/

Adilson Vahldick, António José Mendes and Maria José Marcelino

2

level, the opponent seldom shoots, its velocity is very slow,

and the items are easy to find. However, in the hardest level,

there are two very fast enemies and the items are hard to find.

This kind of adaptation can keep the player engaged longer,

avoid boring or frustrating situations.

In this paper, we propose a LA model applied in computer

programming games focused in the student’s performance,

rating them automatically based on the performance of their

classmates. This output can be used to identify if the game

should give more feedback and/or define a different mission

sequence. The model was designed as a Fuzzy Logic

Controller (FLC). Fuzzy Logic is closer to human thinking

and natural language than other artificial intelligence

approaches [13]. The system is modelled using linguistic

terms and thus it is easy to represent human knowledge [14].

Casual games usually have smooth learning curves and

their assignments are often short [15]. These aspects should

also be considered in the design of serious games reducing

the time needed to learn the game features and mechanics,

and freeing more time to learn [16]. We developed a casual

serious game for initial computer programming learning,

called NoBug’s Snack Bar, using a Blocks-Based

Programming (BBP) approach. In BBP the program is

constructed through assembling functional blocks [17]. The

LA model was tested in this game.

Section 2 presents the design principles followed and the

architecture of the FLC to design and implement the LA

model. Section 3 describes briefly the developed game and

section 4 explains the proposed model. Section 5

demonstrates its implementation and the data gathered by this

model. The final section concludes the paper.

2. Fuzzy Logic Controller & Design

The essential part of a FLC is a set of linguistic control

strategies based on expert knowledge mapped into an

automatic control strategy [14]. A basic configuration of a

FLC is depicted by a block diagram such as that shown in

Figure 1.

Figure 1. Configuration of a FLC [14].

The controlled system represents a process that is

regulated through a control action. The fuzzification interface

is responsible for converting the input data (current state of

the controlled system) into suitable linguistic values (fuzzy

sets). The knowledge base module contains knowledge about

all the input and output fuzzy partitions. The inference

module simulates the human decision-making procedure

based on fuzzy concepts, inferring fuzzy control actions to

employ fuzzy implications and linguistic rules. The

defuzzification interface converts the range of output values

into the corresponding universe of discourse.

The design procedure of a FCL is divided in several steps

as follows [13, 14]: 1-identification of the variables (states

and controls); 2-normalization and partition of the variables

space; 3-determination of the shapes of the fuzzy sets and

their membership functions; 4-construction of the fuzzy rule

base; 5-definition of the inference method; 6-determination

of the defuzzification strategy.

There are many Fuzzy Logic software packages, as the

MATLAB Fuzzy Toolbox and jFuzzyLogic [18].

jFuzzyLogic is an open source library written in Java that

supports a Fuzzy Control Language (FCL) defined in the

IEC-1131 specification. This specification defines the syntax

and semantic of the FCL’s components. jFuzzyLogic

provides an API that interprets and executes a FCL program.

It is also possible to define some or all members of a FLC

through Java programming.

3. NoBug’s SnackBar

NoBug’s Snack Bar game mechanics are inspired in time

management games. The player controls an attendant of a

snack bar. Customers require some combination of foods and

drinks, and the attendant must go to places where they are

prepared, fetch them and serve them. The mission ends when

the player meets all requests.

Figure 2 shows the game’s interface. The animation area

(on the left) shows the mission situation and shows the

attendant behaviour controlled by the player solution. The

central area allows the construction of the mission solution.

The player can run or debug her/his code. If she/he debugs,

then the game shows the list of variables (at the right side of

the figure) and runs one block at a time after each click of the

debug button.

The game covers the initial topics usually included in

introductory computer programming courses. It is divided in

five levels with 55 missions: 1-Sequence actions (10

missions); 2-Variable manipulation (8 missions); 3-

Conditionals (13 missions); 4-Loops (14 missions) and 5-

Functions and arrays (10 missions). The first four missions in

level one serve only to familiarize the student with basic

interface of the game.

EAI Endorsed Transactions on
Serious Games

12 2016 - 12 2017 | Volume 4 | Issue 13 | e1

Definition of DDA through a LA Model in a Casual Serious Game for Computer Programming Learning

3

Figure 2. Game interface.

4. LA Model in Computer Programming
Learning Games

Following the FLC design procedure described in section

2, our initial concerns were the definition of state and

control variables, their partition in fuzzy subsets and the

assignment of a membership function for each of them. The

input variables of the proposed model are the missions’

level and the time spent to solve them:

 Mission: classify the mission as introductory,

development or mastery level.

 Time Spent (TS): is the accumulated time spent

by the student to solve the last three missions. In our first

experiments, we used the total time spent in the missions.

However, after some tests, we verified that once a student

had a bad performance in any previous mission, this was

propagated for a very long time. Then we constrained it to

the last three missions. This variable is partitioned into five

subsets: very fast, fast, normal, slow and very slow. The

subsets very fast and very slow are trapezoidal

asymmetrical membership functions and the other three are

trapezoidal symmetrical. The universe of discourse range

varies according to students’ experience. The students’

performance in the game depends on several factors, such

as the teaching methodology (learning content,

assignments, etc.) and the previous programming

knowledge or literacy (according to the region or country

where the game is being used). To have a general model it

is necessary to consider these divergences. We created a

Time Normalization module to deal with these issues. This

module assigns the membership function parameters

dynamically, before it fuzzifies the input variables,

performing 5 steps (Figure 3). In the first step, the module

retrieves from the game database the time spent in the

previous three missions of each student using the Equation

1:

𝑇𝑆(𝑖,𝑚) =
𝑇(𝑖,𝑚−1)+𝑇(𝑖,𝑚−2)+ 𝑇(𝑖,𝑚−3)

3
 . (1)

where i denotes the student identification, i=1 denotes the

current player which the system is computing for, m

denotes the current mission, T(x, y) denotes the time spent on

mission y by student x, and TS(i, m) denotes the average time

spent on the three missions before the mth mission of

student i. Thus, TS(i, m) is the crisp value of the input

variable TS. The second step identifies and removes

students (i >= 2) with average time spent that are at least

moderate outliers. The third step aims to create five

clusters, one for each subset, of average times using the

process of hierarchical cluster analysis (HCA) with the

complete-linkage method [19]. The fourth step identifies

the lowest (l) and the highest (g) values on each cluster (c1,

c2, c3, c4, c5) where c1 has the lowest average time values

and c5 the highest values. The final step defines each

membership function parameters (veryfast, fast, normal,

slow and veryslow) as described in Equations 2, 3, 4, 5 and

6:

𝑢𝑣𝑒𝑟𝑦𝑓𝑎𝑠𝑡(𝑥) = 𝑡𝑟𝑎𝑝𝑒 (𝑥, 0, 0, 𝑐1(𝑔), 𝑐2(𝑙) +
𝑐2(𝑔)−𝑐2(𝑙)

2
). (2)

𝑢𝑓𝑎𝑠𝑡(𝑥) = 𝑡𝑟𝑎𝑝𝑒(𝑥, 𝑐1(𝑔), 𝑐2(𝑙), 𝑐2(𝑔), 𝑐3(𝑙)). (3)

𝑢𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) = 𝑡𝑟𝑎𝑝𝑒(𝑥, 𝑐2(𝑔), 𝑐3(𝑙), 𝑐3(𝑔), 𝑐4(𝑙)). (4)

𝑢𝑠𝑙𝑜𝑤(𝑥) = 𝑡𝑟𝑎𝑝𝑒(𝑥, 𝑐3(𝑔), 𝑐4(𝑙), 𝑐4(𝑔), 𝑐5(𝑙)). (5)

𝑢𝑣𝑒𝑟𝑦𝑠𝑙𝑜𝑤(𝑥) = 𝑡𝑟𝑎𝑝𝑒 (𝑥, 𝑐4(𝑙) +
𝑐4(𝑔)−𝑐4(𝑙)

2
, 𝑐5(𝑙), 𝑐5(𝑔), 𝑐5 (𝑔)) . (6)

EAI Endorsed Transactions on
Serious Games

12 2016 - 12 2017 | Volume 4 | Issue 13 | e1

Adilson Vahldick, António José Mendes and Maria José Marcelino

4

where cn(g) denotes the greatest value of cluster n, cn(l)

denotes the lowest value of cluster n, and x denotes the

parameter that is converted to a membership degree

(umembership(x)).

Figure 3. Time Normalization module.

Figure 4 exemplifies the membership functions when

c1(l)=50, c1(g)=100, c2(l)=130, c2(g)=170, c3(l)=210 and

c3(g)=300.

Figure 4. Examples of membership function of
variable time spent.

The output variable is the knowledge level of the student.

This variable is partitioned into three subsets (bad, good

and excellent) and their membership function are triangles

as defined in Table 1.

Table 1. Membership functions of the output variable
knowledge level.

Subsets Membership functions

Bad trian (0, 0, 11)

Good trian (10, 14, 18)

Excellent trian (17, 20, 20)

The next step of the FLC design is to define the

inference method and form the rule base. The Mamdami

inference method was adopted because it does not have

nonlinear dynamic equations. The system rates a student

according to the time she/he spends to solve the missions.

Table 2 summarizes the rule-base, the relation between the

two input variables and the output variable. When the

player takes a long time to finish a mission, the model

assumes that she/he has bad knowledge. On the other hand,

the model rates the player as excellent when she/he finishes

the mission very fast. In the other rules, the student

classification varies according to the mission level. As the

introductory missions presents new concepts and do not

present challenges, it is expected that the player finishes

them quickly. Yet the mastering missions are harder and

full of constraints, really challenging the player.

Table 2. Fuzzy rule-base.

Mission
Time spent

Very
slow

Slow Normal Fast Very fast

Introductory Bad Bad Bad Good Excellent

Development Bad Bad Good Good Excellent

Mastering Bad Good Good Good Excellent

Centre of Gravity is defined as the defuzzification

method. Figure 5 shows the components relation of the

proposed LA model. The ellipses are the input variables.

The Time Normalization module accesses the database of

the game and the current mission to define which is the

time spent by the student and updates the knowledge base.

The diamond designates the output variable.

Figure 5. LA Architecture.

5. Implementation & discussion

The proposed model was instantiated as a FLC in Java with

jFuzzyLogic. The code below exemplifies the fuzzy rule-

base by FCL. Nine rules were created to cover all the cells

in Table 2. The variables definition was suppressed in the

code because they were explained in the previous section.

LA model defined by IEC-FCL

FUNCTION_BLOCK nobugs_usecode

...

RULEBLOCK OnlyThis

 AND : MIN; OR : MAX; ACT : MIN; ACCU : MAX;

 RULE 1 : IF TimeSpent IS verySlow THEN

KnowledgeLevel IS bad;

 RULE 2 : IF TimeSpent IS fast THEN

KnowledgeLevel IS good;

 RULE 3 : IF TimeSpent IS veryFast THEN

KnowledgeLevel IS

excellent;

 RULE 4 : IF Mission IS introductory AND

TimeSpent IS slow THEN

KnowledgeLevel IS bad;

 RULE 5 : IF Mission IS introductory AND

TimeSpent IS normal THEN

KnowledgeLevel IS bad;

 RULE 6 : IF Mission IS development AND

EAI Endorsed Transactions on
Serious Games

12 2016 - 12 2017 | Volume 4 | Issue 13 | e1

Definition of DDA through a LA Model in a Casual Serious Game for Computer Programming Learning

5

TimeSpent IS slow THEN

KnowledgeLevel IS bad;

 RULE 7 : IF Mission IS development AND

TimeSpent IS normal THEN

KnowledgeLevel IS good;

 RULE 8 : IF Mission IS mastering AND

TimeSpent IS slow THEN

KnowledgeLevel IS good;

 RULE 9 : IF Mission IS mastering AND

TimeSpent IS normal THEN

 KnowledgeLevel IS normal;

END_RULEBLOCK

END_FUNCTION_BLOCK

We tested our game with 52 students. Figure 6 shows

how many students completed the first 19 missions. Only

two students progressed beyond mission 19.

Figure 6. Distribution of the missions finished by
students.

Figure 7 shows the results obtained in the first 15

missions, divided in introductory (1-7), development (8-

11) and mastery (12-15).

Figure 7. Distribution of the students’ knowledge
classification.

The above two figures confirm that students have their

own learning and studying pace. Also, when they fail they

often give up playing.

About 30% of students struggled in introductory

missions. Using this information without considering a

DDA component, this number could alert the teacher or the

game designers to review the missions. As the quantity of

bad performing students is stable in introductory missions,

maybe the teacher should address individually those

students. As the students advance in the game, less of them

are classified as excellent. This also happens frequently in

the classroom: the very well performing students are a

small part of the class. Therefore, these seldom students

keep playing.

For adding a DDA component in the game, the students

classified as bad need to repeat more times the same kind

of challenges, offer them more support in the content and

show them hints to achieve the mission. To good students,

the challenges also can repeat with little variations, and

continue to support them by content. However, for the

excellent students (because in our experiment we only had

two of them), it is not necessary change something in the

game: we can keep how it is developed.

6. Conclusions

Serious games are played in computer programming

classes to motivate students overcome the initial natural

barriers. However, to maximize the adoption of games in

educational settings, it is important that teachers could

track the overall progress of the students.

In this paper, we presented a LA model based essentially

on the time spent by the student to finish each mission. The

model classifies the student (as bad, good or excellent)

taking into consideration each mission level. This

classification can be used to adjust the difficulty of the next

missions, and to adjust the support given to a particular

student.

The model uses a fuzzy system’s approach. It was easier

to represent the teacher knowledge as linguistic variables:

humans can read and interpret the fuzzy rules, and this

facilitates the system maintenance. It may ease the rules

adaption by teachers want to personalize them to their

instructional requirements and preferences. The Time

Normalization module identifies the student’s performance

in relation to their classmates. We cannot previously

determine the range of time to classify each set of students.

Therefore, that module computes dynamically the student’s

knowledge in relation of their classmates. Students are

classified according to their performance in the last three

missions. It is expected that this measure gives a good

indicator of the student level.

We tested the model during a first experiment. We found

out that initially most students were classified as bad or

excellent. However, as students advanced in the game, they

had a more similar performance and more students were

classified as good. Although more experiments are

necessary to evolve and validate the model, we believe

teachers and the game can use this information to adapt

their lessons or missions giving special attention to less

performing students. In addition, game designers should

analyse this data to review the challenges and learning

tasks.

During this experiment it was possible to conclude that

it was not necessary to increase the challenges difficulty

level. However, we needed to enhance the game to adjust

EAI Endorsed Transactions on
Serious Games

12 2016 - 12 2017 | Volume 4 | Issue 13 | e1

Adilson Vahldick, António José Mendes and Maria José Marcelino

6

it to the poor performance students, this can be achieved

through a DDA component.

Acknowledgements.
AV acknowledges the doctoral scholarship supported by

CNPq/CAPES – Programa Ciência sem Fronteiras – CsF (6392-

13-0) and authorized retirement by UDESC (688/13). We also

want to thank the students that played the game and their teachers

that allowed us to try it with them.

References

[1] VAHLDICK, A.; MENDES, A. J.; and MARCELINO, M. J.

(2014) A review of games designed to improve

introductory computer programming competencies. In:

Proceedings of 44th Annu. Front. Educ. Conf. Madrid,

Spain, 781–787

[2] BAYLISS, J. D.; and STROUT, S. (2006) Games as a “flavor”

of CS1. In: Proceedings of 37th SIGCSE Tech. Symp.

Comput. Sci. Educ. Houston, Texas, 500–504

[3] BARNES, T.; POWELL, E.; CHAFFIN, A.; GODWIN, A.; and

RICHTER, H. (2007) Game2Learn: Building CS1 learning

games for retention. In: Proceedings of 12th SIGCSE

Conf. Innov. Technol. Comput. Sci. Educ. Dundee,

Scotland, 121–125

[4] GRELLER, W.; and DRACHSLER, H. (2012) Translating

Learning into Numbers: A Generic Framework for

Learning Analytics. Educ Technol Soc 15 (3): 42–57.

[5] SHUTE, V. J.; and KE, F. (2012) Assessment in Game-

Based Learning. Assess game-based Learn Found Innov

Perspect 43–58.

[6] CHEN, J. (2007) Flow in games (and everything else).

Commun ACM 50 (4): 31.

[7] MALLIARAKIS, C.; SATRATZEMI, M.; and XINOGALOS, S.

(2014) Integrating learning analytics in an educational

MMORPG for computer programming. In: Proceedings of

14th Int. Conf. Adv. Learn. Technol. ICALT 2014. 233–

237

[8] MISSURA, O.; and GÄRTNER, T. (2009) Player Modeling

for Intelligent Difficulty Adjustment. In: Proceedings of

12th Int. Conf. Discov. Sci. Bled, Slovenia, 108–122

[9] SHA, L.; HE, S.; WANG, J.; YANG, J.; GAO, Y.; ZHANG, Y.;

and YU, X. (2010) Creating appropriate challenge level

game opponent by the use of dynamic difficulty

adjustment. In: Proceedings of 6th Int. Conf. Nat. Comput.

ICNC 2010. Valencia, Spain, 3897–3901

[10] OSMAN, Z. M.; DUPIRE, J.; MADER, S.; CUBAUD, P.; and

NATKIN, S. (2016) Monitoring player attention : A non-

invasive measurement method applied to serious games

(In press). Entertain Comput 14 33–43.

[11] JENNINGS-TEATS, M.; SMITH, G.; and WARDRIP-FRUIN, N.

(2010) Polymorph : Dynamic Difficulty Adjustment

Through Level Generation. In: Proceedings of Work.

Proced. Content Gener. Games PCGames. Monterey,

California,

[12] NAGLE, A.; NOVAK, D.; WOLF, P.; and RIENER, R. (2014)

The effect of different difficulty adaptation strategies on

enjoyment and performance in a serious game for memory

training. In: Proceedings of IEEE 3rd Int. Conf. Serious

Games Appl. Heal. Rio de Janeiro, Brasil, 120–128

[13] JANTZEN, J. (2007) Foundations of Fuzzy Control. John

Wiley & Sons, Chichester.

[14] LEE, K. H. (2005) First Course on Fuzzy Theory and

Applications. Springer Berlin Heidelberg, Berlin.

[15] JUUL, J. (2010) A casual revolution: Reinventing video

games and their players. MIT Press, Cambridge, MA.

[16] LANDERS, R. N.; and CALLAN, R. C. (2011) Casual social

games as serious games: The psychology of gamification

in undergraduate education and employee training. Serious

Games Edutainment Appl 399–423.

[17] NOR, S.; MOHAMAD, H.; PATEL, A.; LATIH, R.; QASSIM, Q.;

NA, L.; and TEW, Y. (2011) Block-based programming

approach : Challenges and benefits. In: Proceedings of Int.

Conf. Electr. Eng. Informatics. Bandung, Indonesia, 4–8

[18] CINGOLANI, P.; and ALCALÁ-FDEZ, J. (2012) jFuzzyLogic :

A Robust and Flexible Fuzzy-Logic Inference System

Language Implementation. In: Proceedings of IEEE World

Congr. Comput. Intell. Brisbane, 1090–1097

[19] JOHNSON, S. C. (1967) Hierarchical clustering schemes.

Psychometrika 32 (3): 241–254.

EAI Endorsed Transactions on
Serious Games

12 2016 - 12 2017 | Volume 4 | Issue 13 | e1

