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Abstract 

Teachers have used games as a support tool to engage students in learning tasks. As they often record student’s performance 

as learning progresses, it is interesting and useful to discuss how that information can be used to assess learning and to 

improve the learning experience. For instance, teachers can use that information to give personalized attention in classes and 

the game can use it to provide challenges of the “right” difficulty. In computer programming learning, games can provide 

an alternative way to introduce concepts and, mainly, to practice them. This paper proposes a model to identify the students’ 

progress considering their performance in programming tasks. The model is demonstrated by an implementation in a casual 

computer programming serious game. We illustrate how this game could use this model to personalize its challenges. 
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1. Introduction

Initial programming learning is known to be complex for 

many students.  Games have been proposed to help students 

in their initial learning stages, namely to increase their 

motivation and engagement with the learning process [1]. 

Two approaches have been used: creating and playing games. 

In the first approach students are asked to develop small 

games in order to apply the programming concepts [2]. In the 

second approach the students play games to reinforce and 

practice concepts and programming skills [3]. The main idea 

is to motivate students to the learning activities, shortening 

the time between theory and practice, and bringing together 

abstract concepts and concrete activities. 

Digital educational environments generate vast amounts of 

track data that could be used for the development of learning 

theories and applications [4]. Learning Analytics (LA) rely 
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on data generated by the user’s interaction with these 

environments. LA approach applied in educational games is 

an alternative to more traditional forms to evaluate learning 

[5] and it avoids to brake the game-flow experience risking to 

lose student’s interest [6]. We only found in literature one 

study with LA applied in programming learning games [7]. It 

proposed a framework with six axes. A mathematical model, 

relating each axis to a variable, was created to implement this 

framework. The game rates the student considering each 

variable and normalizes the data based on a teacher defined 

ideal behaviour. 

One way to adjust the game experience based on student 

achievements is through Dynamic Difficulty Adjustment 

(DDA) techniques [8]. Considering the data collected, the 

game changes the behaviour of game elements (enemies, 

items, bonus, environment, sound, …) [9, 10]. Also it is 

possible to define difficulty levels associating each of them to 

a game configuration set [11, 12]. For instance, in the easiest 
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level, the opponent seldom shoots, its velocity is very slow, 

and the items are easy to find. However, in the hardest level, 

there are two very fast enemies and the items are hard to find. 

This kind of adaptation can keep the player engaged longer, 

avoid boring or frustrating situations. 

In this paper, we propose a LA model applied in computer 

programming games focused in the student’s performance, 

rating them automatically based on the performance of their 

classmates. This output can be used to identify if the game 

should give more feedback and/or define a different mission 

sequence. The model was designed as a Fuzzy Logic 

Controller (FLC). Fuzzy Logic is closer to human thinking 

and natural language than other artificial intelligence 

approaches [13]. The system is modelled using linguistic 

terms and thus it is easy to represent human knowledge [14].  

Casual games usually have smooth learning curves and 

their assignments are often short [15]. These aspects should 

also be considered in the design of serious games reducing 

the time needed to learn the game features and mechanics, 

and freeing more time to learn [16]. We developed a casual 

serious game for initial computer programming learning, 

called NoBug’s Snack Bar, using a Blocks-Based 

Programming (BBP) approach. In BBP the program is 

constructed through assembling functional blocks [17]. The 

LA model was tested in this game. 

Section 2 presents the design principles followed and the 

architecture of the FLC to design and implement the LA 

model. Section 3 describes briefly the developed game and 

section 4 explains the proposed model. Section 5 

demonstrates its implementation and the data gathered by this 

model. The final section concludes the paper. 

2. Fuzzy Logic Controller & Design

The essential part of a FLC is a set of linguistic control 

strategies based on expert knowledge mapped into an 

automatic control strategy [14]. A basic configuration of a 

FLC is depicted by a block diagram such as that shown in 

Figure 1. 

Figure 1. Configuration of a FLC [14]. 

The controlled system represents a process that is 

regulated through a control action. The fuzzification interface 

is responsible for converting the input data (current state of 

the controlled system) into suitable linguistic values (fuzzy 

sets). The knowledge base module contains knowledge about 

all the input and output fuzzy partitions. The inference 

module simulates the human decision-making procedure 

based on fuzzy concepts, inferring fuzzy control actions to 

employ fuzzy implications and linguistic rules. The 

defuzzification interface converts the range of output values 

into the corresponding universe of discourse. 

The design procedure of a FCL is divided in several steps 

as follows [13, 14]: 1-identification of the variables (states 

and controls); 2-normalization and partition of the variables 

space; 3-determination of the shapes of the fuzzy sets and 

their membership functions; 4-construction of the fuzzy rule 

base; 5-definition of the inference method; 6-determination 

of the defuzzification strategy. 

There are many Fuzzy Logic software packages, as the 

MATLAB Fuzzy Toolbox and jFuzzyLogic [18]. 

jFuzzyLogic is an open source library written in Java that 

supports a Fuzzy Control Language (FCL) defined in the 

IEC-1131 specification. This specification defines the syntax 

and semantic of the FCL’s components. jFuzzyLogic 

provides an API that interprets and executes a FCL program. 

It is also possible to define some or all members of a FLC 

through Java programming. 

3. NoBug’s SnackBar

NoBug’s Snack Bar game mechanics are inspired in time 

management games. The player controls an attendant of a 

snack bar. Customers require some combination of foods and 

drinks, and the attendant must go to places where they are 

prepared, fetch them and serve them. The mission ends when 

the player meets all requests. 

Figure 2 shows the game’s interface. The animation area 

(on the left) shows the mission situation and shows the 

attendant behaviour controlled by the player solution. The 

central area allows the construction of the mission solution. 

The player can run or debug her/his code. If she/he debugs, 

then the game shows the list of variables (at the right side of 

the figure) and runs one block at a time after each click of the 

debug button. 

The game covers the initial topics usually included in 

introductory computer programming courses. It is divided in 

five levels with 55 missions: 1-Sequence actions (10 

missions); 2-Variable manipulation (8 missions); 3-

Conditionals (13 missions); 4-Loops (14 missions) and 5-

Functions and arrays (10 missions). The first four missions in 

level one serve only to familiarize the student with basic 

interface of the game. 
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Figure 2. Game interface. 

4. LA Model in Computer Programming
Learning Games 

Following the FLC design procedure described in section 

2, our initial concerns were the definition of state and 

control variables, their partition in fuzzy subsets and the 

assignment of a membership function for each of them. The 

input variables of the proposed model are the missions’ 

level and the time spent to solve them: 

 Mission: classify the mission as introductory,

development or mastery level. 

 Time Spent (TS): is the accumulated time spent

by the student to solve the last three missions. In our first 

experiments, we used the total time spent in the missions. 

However, after some tests, we verified that once a student 

had a bad performance in any previous mission, this was 

propagated for a very long time. Then we constrained it to 

the last three missions. This variable is partitioned into five 

subsets: very fast, fast, normal, slow and very slow. The 

subsets very fast and very slow are trapezoidal 

asymmetrical membership functions and the other three are 

trapezoidal symmetrical. The universe of discourse range 

varies according to students’ experience. The students’ 

performance in the game depends on several factors, such 

as the teaching methodology (learning content, 

assignments, etc.) and the previous programming 

knowledge or literacy (according to the region or country 

where the game is being used). To have a general model it 

is necessary to consider these divergences. We created a 

Time Normalization module to deal with these issues. This 

module assigns the membership function parameters 

dynamically, before it fuzzifies the input variables, 

performing 5 steps (Figure 3). In the first step, the module 

retrieves from the game database the time spent in the 

previous three missions of each student using the Equation 

1: 

𝑇𝑆(𝑖,𝑚) =
𝑇(𝑖,𝑚−1)+𝑇(𝑖,𝑚−2)+ 𝑇(𝑖,𝑚−3)

3
 .    (1) 

where i denotes the student identification, i=1 denotes the 

current player which the system is computing for, m 

denotes the current mission, T(x, y) denotes the time spent on 

mission y by student x, and TS(i, m)  denotes the average time 

spent on the three missions before the mth mission of 

student i. Thus, TS(i, m) is the crisp value of the input 

variable TS. The second step identifies and removes 

students (i >= 2) with average time spent that are at least 

moderate outliers. The third step aims to create five 

clusters, one for each subset, of average times using the 

process of hierarchical cluster analysis (HCA) with the 

complete-linkage method [19]. The fourth step identifies 

the lowest (l) and the highest (g) values on each cluster (c1, 

c2, c3, c4, c5) where c1 has the lowest average time values 

and c5 the highest values. The final step defines each 

membership function parameters (veryfast, fast, normal, 

slow and veryslow) as described in Equations 2, 3, 4, 5 and 

6: 

𝑢𝑣𝑒𝑟𝑦𝑓𝑎𝑠𝑡(𝑥) = 𝑡𝑟𝑎𝑝𝑒 (𝑥, 0, 0, 𝑐1(𝑔), 𝑐2(𝑙) +
𝑐2(𝑔)−𝑐2(𝑙)

2
).    (2) 

𝑢𝑓𝑎𝑠𝑡(𝑥) =  𝑡𝑟𝑎𝑝𝑒(𝑥, 𝑐1(𝑔), 𝑐2(𝑙), 𝑐2(𝑔), 𝑐3(𝑙)).    (3) 

𝑢𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) =  𝑡𝑟𝑎𝑝𝑒(𝑥, 𝑐2(𝑔), 𝑐3(𝑙), 𝑐3(𝑔), 𝑐4(𝑙)).    (4) 

𝑢𝑠𝑙𝑜𝑤(𝑥) =  𝑡𝑟𝑎𝑝𝑒(𝑥, 𝑐3(𝑔), 𝑐4(𝑙), 𝑐4(𝑔), 𝑐5(𝑙)).   (5) 

𝑢𝑣𝑒𝑟𝑦𝑠𝑙𝑜𝑤(𝑥) = 𝑡𝑟𝑎𝑝𝑒 (𝑥, 𝑐4(𝑙) + 
𝑐4(𝑔)−𝑐4(𝑙)

2
, 𝑐5(𝑙), 𝑐5(𝑔), 𝑐5 (𝑔)) . (6)
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where cn(g) denotes the greatest value of cluster n, cn(l) 

denotes the lowest value of cluster n, and x denotes the 

parameter that is converted to a membership degree 

(umembership(x)).  

Figure 3. Time Normalization module. 

Figure 4 exemplifies the membership functions when 

c1(l)=50, c1(g)=100, c2(l)=130, c2(g)=170, c3(l)=210 and 

c3(g)=300. 

Figure 4. Examples of membership function of 
variable time spent. 

The output variable is the knowledge level of the student. 

This variable is partitioned into three subsets (bad, good 

and excellent) and their membership function are triangles 

as defined in Table 1. 

Table 1. Membership functions of the output variable 
knowledge level. 

Subsets Membership functions 

Bad trian (0, 0, 11) 

Good trian (10, 14, 18) 

Excellent trian (17, 20, 20) 

The next step of the FLC design is to define the 

inference method and form the rule base. The Mamdami 

inference method was adopted because it does not have 

nonlinear dynamic equations. The system rates a student 

according to the time she/he spends to solve the missions. 

Table 2 summarizes the rule-base, the relation between the 

two input variables and the output variable. When the 

player takes a long time to finish a mission, the model 

assumes that she/he has bad knowledge. On the other hand, 

the model rates the player as excellent when she/he finishes 

the mission very fast. In the other rules, the student 

classification varies according to the mission level. As the 

introductory missions presents new concepts and do not 

present challenges, it is expected that the player finishes 

them quickly. Yet the mastering missions are harder and 

full of constraints, really challenging the player. 

Table 2. Fuzzy rule-base. 

Mission 
Time spent 

Very 
slow 

Slow Normal Fast Very fast 

Introductory Bad Bad Bad Good Excellent 

Development Bad Bad Good Good Excellent 

Mastering Bad Good Good Good Excellent 

Centre of Gravity is defined as the defuzzification 

method. Figure 5 shows the components relation of the 

proposed LA model. The ellipses are the input variables. 

The Time Normalization module accesses the database of 

the game and the current mission to define which is the 

time spent by the student and updates the knowledge base. 

The diamond designates the output variable.  

Figure 5. LA Architecture. 

5. Implementation & discussion

The proposed model was instantiated as a FLC in Java with 

jFuzzyLogic. The code below exemplifies the fuzzy rule-

base by FCL. Nine rules were created to cover all the cells 

in Table 2. The variables definition was suppressed in the 

code because they were explained in the previous section. 

LA model defined by IEC-FCL 

FUNCTION_BLOCK nobugs_usecode 

... 

RULEBLOCK OnlyThis 

  AND : MIN; OR  : MAX; ACT : MIN; ACCU : MAX; 

  RULE 1 : IF TimeSpent IS verySlow THEN 

KnowledgeLevel IS bad; 

  RULE 2 : IF TimeSpent IS fast THEN  

KnowledgeLevel IS good; 

  RULE 3 : IF TimeSpent IS veryFast THEN  

KnowledgeLevel IS 

excellent; 

  RULE 4 : IF Mission IS introductory AND 

TimeSpent IS slow THEN 

KnowledgeLevel IS bad; 

  RULE 5 : IF Mission IS introductory AND  

TimeSpent IS normal THEN 

KnowledgeLevel IS bad; 

  RULE 6 : IF Mission IS development AND  
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TimeSpent IS slow THEN 

KnowledgeLevel IS bad; 

  RULE 7 : IF Mission IS development AND  

TimeSpent IS normal THEN 

KnowledgeLevel IS good; 

  RULE 8 : IF Mission IS mastering AND  

TimeSpent IS slow THEN 

KnowledgeLevel IS good; 

  RULE 9 : IF Mission IS mastering AND  

TimeSpent IS normal THEN 

 KnowledgeLevel IS normal; 

END_RULEBLOCK 

END_FUNCTION_BLOCK 

We tested our game with 52 students. Figure 6 shows 

how many students completed the first 19 missions. Only 

two students progressed beyond mission 19. 

Figure 6. Distribution of the missions finished by 
students. 

Figure 7 shows the results obtained in the first 15 

missions, divided in introductory (1-7), development (8-

11) and mastery (12-15).

Figure 7. Distribution of the students’ knowledge 
classification. 

The above two figures confirm that students have their 

own learning and studying pace. Also, when they fail they 

often give up playing.  

About 30% of students struggled in introductory 

missions. Using this information without considering a 

DDA component, this number could alert the teacher or the 

game designers to review the missions. As the quantity of 

bad performing students is stable in introductory missions, 

maybe the teacher should address individually those 

students. As the students advance in the game, less of them 

are classified as excellent. This also happens frequently in 

the classroom: the very well performing students are a 

small part of the class. Therefore, these seldom students 

keep playing. 

For adding a DDA component in the game, the students 

classified as bad need to repeat more times the same kind 

of challenges, offer them more support in the content and 

show them hints to achieve the mission. To good students, 

the challenges also can repeat with little variations, and 

continue to support them by content. However, for the 

excellent students (because in our experiment we only had 

two of them), it is not necessary change something in the 

game: we can keep how it is developed. 

6. Conclusions

Serious games are played in computer programming 

classes to motivate students overcome the initial natural 

barriers. However, to maximize the adoption of games in 

educational settings, it is important that teachers could 

track the overall progress of the students.  

In this paper, we presented a LA model based essentially 

on the time spent by the student to finish each mission. The 

model classifies the student (as bad, good or excellent) 

taking into consideration each mission level. This 

classification can be used to adjust the difficulty of the next 

missions, and to adjust the support given to a particular 

student. 

The model uses a fuzzy system’s approach. It was easier 

to represent the teacher knowledge as linguistic variables: 

humans can read and interpret the fuzzy rules, and this 

facilitates the system maintenance. It may ease the rules 

adaption by teachers want to personalize them to their 

instructional requirements and preferences. The Time 

Normalization module identifies the student’s performance 

in relation to their classmates. We cannot previously 

determine the range of time to classify each set of students. 

Therefore, that module computes dynamically the student’s 

knowledge in relation of their classmates. Students are 

classified according to their performance in the last three 

missions. It is expected that this measure gives a good 

indicator of the student level.  

We tested the model during a first experiment. We found 

out that initially most students were classified as bad or 

excellent. However, as students advanced in the game, they 

had a more similar performance and more students were 

classified as good. Although more experiments are 

necessary to evolve and validate the model, we believe 

teachers and the game can use this information to adapt 

their lessons or missions giving special attention to less 

performing students. In addition, game designers should 

analyse this data to review the challenges and learning 

tasks. 

During this experiment it was possible to conclude that 

it was not necessary to increase the challenges difficulty 

level. However, we needed to enhance the game to adjust 
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it to the poor performance students, this can be achieved 

through a DDA component.  

Acknowledgements. 
AV acknowledges the doctoral scholarship supported by 

CNPq/CAPES – Programa Ciência sem Fronteiras – CsF (6392-

13-0) and authorized retirement by UDESC (688/13). We also 

want to thank the students that played the game and their teachers 

that allowed us to try it with them.  

References 

[1] VAHLDICK, A.; MENDES, A. J.; and MARCELINO, M. J. 

(2014) A review of games designed to improve 

introductory computer programming competencies. In: 

Proceedings of 44th Annu. Front. Educ. Conf. Madrid, 

Spain, 781–787 

[2] BAYLISS, J. D.; and STROUT, S. (2006) Games as a “flavor” 

of CS1. In: Proceedings of 37th SIGCSE Tech. Symp. 

Comput. Sci. Educ. Houston, Texas, 500–504 

[3] BARNES, T.; POWELL, E.; CHAFFIN, A.; GODWIN, A.; and 

RICHTER, H. (2007) Game2Learn: Building CS1 learning 

games for retention. In: Proceedings of 12th SIGCSE 

Conf. Innov. Technol. Comput. Sci. Educ. Dundee, 

Scotland, 121–125 

[4] GRELLER, W.; and DRACHSLER, H. (2012) Translating 

Learning into Numbers: A Generic Framework for 

Learning Analytics. Educ Technol Soc 15 (3): 42–57. 

[5] SHUTE, V. J.; and KE, F. (2012) Assessment in Game-

Based Learning. Assess game-based Learn Found Innov 

Perspect 43–58. 

[6] CHEN, J. (2007) Flow in games (and everything else). 

Commun ACM 50 (4): 31. 

[7] MALLIARAKIS, C.; SATRATZEMI, M.; and XINOGALOS, S. 

(2014) Integrating learning analytics in an educational 

MMORPG for computer programming. In: Proceedings of 

14th Int. Conf. Adv. Learn. Technol. ICALT 2014. 233–

237 

[8] MISSURA, O.; and GÄRTNER, T. (2009) Player Modeling 

for Intelligent Difficulty Adjustment. In: Proceedings of 

12th Int. Conf. Discov. Sci. Bled, Slovenia, 108–122 

[9] SHA, L.; HE, S.; WANG, J.; YANG, J.; GAO, Y.; ZHANG, Y.; 

and YU, X. (2010) Creating appropriate challenge level 

game opponent by the use of dynamic difficulty 

adjustment. In: Proceedings of 6th Int. Conf. Nat. Comput. 

ICNC 2010. Valencia, Spain, 3897–3901 

[10] OSMAN, Z. M.; DUPIRE, J.; MADER, S.; CUBAUD, P.; and 

NATKIN, S. (2016) Monitoring player attention : A non-

invasive measurement method applied to serious games 

(In press). Entertain Comput 14 33–43. 

[11] JENNINGS-TEATS, M.; SMITH, G.; and WARDRIP-FRUIN, N. 

(2010) Polymorph : Dynamic Difficulty Adjustment 

Through Level Generation. In: Proceedings of Work. 

Proced. Content Gener. Games PCGames. Monterey, 

California,  

[12] NAGLE, A.; NOVAK, D.; WOLF, P.; and RIENER, R. (2014) 

The effect of different difficulty adaptation strategies on 

enjoyment and performance in a serious game for memory 

training. In: Proceedings of IEEE 3rd Int. Conf. Serious 

Games Appl. Heal. Rio de Janeiro, Brasil, 120–128 

[13] JANTZEN, J. (2007) Foundations of Fuzzy Control. John 

Wiley & Sons, Chichester. 

[14] LEE, K. H. (2005) First Course on Fuzzy Theory and 

Applications. Springer Berlin Heidelberg, Berlin. 

[15] JUUL, J. (2010) A casual revolution: Reinventing video 

games and their players. MIT Press, Cambridge, MA. 

[16] LANDERS, R. N.; and CALLAN, R. C. (2011) Casual social 

games as serious games: The psychology of gamification 

in undergraduate education and employee training. Serious 

Games Edutainment Appl 399–423. 

[17] NOR, S.; MOHAMAD, H.; PATEL, A.; LATIH, R.; QASSIM, Q.; 

NA, L.; and TEW, Y. (2011) Block-based programming 

approach : Challenges and benefits. In: Proceedings of Int. 

Conf. Electr. Eng. Informatics. Bandung, Indonesia, 4–8 

[18] CINGOLANI, P.; and ALCALÁ-FDEZ, J. (2012) jFuzzyLogic : 

A Robust and Flexible Fuzzy-Logic Inference System 

Language Implementation. In: Proceedings of IEEE World 

Congr. Comput. Intell. Brisbane, 1090–1097 

[19] JOHNSON, S. C. (1967) Hierarchical clustering schemes. 

Psychometrika 32 (3): 241–254. 

EAI Endorsed Transactions on
Serious Games

12 2016 - 12 2017 | Volume 4 | Issue 13 | e1




