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Abstract. This research is a preliminary study in the development of UAV in intelligent 

agriculture. This study aimed to detect Single Wet Rice Field Bund UAV Image Using 

CNN. The data used in this research were 170 images divided into Training (150), 

Validation (10), and Testing (10). The proposed stages were image acquisition, pre-

processing, image labeling, training, and testing. The inputs were Wet Rice Field Bund 

UAV images, and the output was a bounding box as the result of rice bund detection. The 

training was carried out using Google Collaboratory and GPU features using CNN YOLO 

V5. In the training process, the best Recall, Precision, mAP0.5, mAP0.5:0.95 values were 

respectively 1, 1, 0.9952, 0.6358 with a total processing time of 0.858 hours. At the testing 

stage, Bounding boxes were detected at confidence thresholds of 0.1, 0.2, and at confidence 

0.3, 0.4, 0.5 were able to detect a bounding box of 80%. 
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1 Introduction 

The rapid development of information and computer technology affects people's perspective on 

agriculture technology. Some aspects that used to be done manually and took a long time are 

now being pushed to be faster and done automatically and digitally. An example is the way of 

spatial data acquisition in agriculture, which is currently starting to use unmanned aerial vehicles 

(UAV). Mapping technology with UAV is an alternative in addition to other mapping 

technologies such as aerial photography, both large and small scale, manned, and satellite-based 

mapping. This technology is very promising to be applied and developed under the 

topographical and geographical characteristics of Indonesia, especially for large areas such as 

rice fields. 

UAV is an unmanned aircraft flown using a remote controller, smartphone, or computer. UAVs 

can be equipped with high-resolution cameras that allow users to monitor a particular location 
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from a height in real-time. By using UAV, data can be obtained at a relatively low cost, relatively 

fast time, and safely in various weather conditions. UAV is an unmanned system (Unmanned 

System), which is an electro-mechanical based system that can carry out programmed missions, 

with the characteristics of (i) uncrewed aircraft, (ii) operating in fully or partially independent 

mode, (iii) This system is designed to be used repeatedly. There are several types of UAV, 

namely fixed-wing and multi-rotor. Fixed-wing drones provide an advantage in range and flight 

time over multi-rotor. However, Fixed Wing requires a significant open location for take-off 

and landing. Fixed Wing UAV is suitable for wide-scale mapping surveys such as aerial 

photography and other surveys. The Multi-Rotor UAV is suitable for mapping that does not 

have a large open area for take-off and landing. Surveys with multiple rotors provide an 

advantage in terms of the level of object detail that can be obtained. Multi-Rotor uses several 

motors as its propulsion, requiring more power sources resulting in reduced range and flight 

time.  

The development of UAV is widely used in mapping implementation [1][2][3][4][5]. In this 

study, the use of UAVs used to support agriculture was still controlled manually and 

automatically using waypoints to determine the movement of the UAV. The use of manual or 

automatic waypoints required determining the limits of the movement of the UAV so that it did 

not cross the treatment limits of the agricultural area. The automated movement of the UAV by 

considering the boundaries of the agricultural area in the UAV image has not yet been 

developed. When UAV is capable of automatically determining the boundaries of the 

agricultural area, it can move automatically, which is limited to agricultural areas. In 

determining the boundaries of agricultural areas using UAV imagery, it is necessary to study 

how the detection and segmentation of vegetation in agricultural areas can be determined so that 

the boundaries of agricultural areas can be determined. One of the agricultural areas in the wet 

rice field is a rice field filled with water. One method of detecting and segmenting objects in 

digital images can use the Deep Learning method. One of the deep learning that is widely used 

in object segmentation is Convolution Neural Network (CNN) [6][7]. One of the CNN 

architectures used to detect objects in the form of bounding boxes is You Look Only Once 

(YOLO). Some researchers use YOLO to detect objects in UAV images [8] [9][10][11][12]. 

This research is a preliminary study in the development of UAVs in intelligent agriculture. 

Based on the problems and research done previously, the researcher proposed the detection of 

a single wet rice field bund on an unmanned aerial vehicle image using a convolutional neural 

network.  

 



 

 

 

 

 

 

Fig. 1. Research methodology. 

 

2 Methodology 

This research method consisted of five stages: image acquisition, pre-processing, image 

labeling, training, and testing. The inputs in this research were wet rice field bund UAV images 

and the output was bounding box as the result of rice bund detection. The proposed research 

chart is shown in Figure 1. 

2.1 Data acquisition 

The image acquisition process is a process to collect research data. The research data was in the 

form of Wet Rice Field Bund UAV video format. The data were gathered using a multirotor 

UAV with the DJI Mavic Mini type. The data were taken at an angle of 90 degrees with a height 

between 25m – 50m from the surface of the rice fields. The resulting data was in video format 

with a resolution of 1920 x1080 pixels. The data were taken in sunny weather with a time range 

of 10 am – 12 am. The screenshot of the image on the video from the image acquisition process 

is shown in Figure 2. 

 

 

Fig. 2. Screenshot image from data acquisition video. 

 



 

 

 

 

 

2.2 Pre-processing 

The pre-processing stage is the stage used to process the video data from the data acquisition 

into data used in the following process. In the pre-processing stage, there were two stages, 

namely frame extraction and image resizing. Frame extraction was done to extract video data 

into image frames. The resulting images frame had a resolution of 1920 x 1080 pixels. The next 

stage was Image Resize which aims to change the image size to 416 x 416 pixels. Image Resize 

was done to reduce the size of the image so as to reduce the computation time. Some pre-

processed images can be shown in Figure 3. 

 

 

Fig. 3. Images result of the pre-processing stage. 

 

 

 

Fig. 4. Labeling stage and the labeling information. 

 

2.3 Image labeling 

The Image Labeling stage is the stage for labeling the rice field objects contained in the wet rice 

field bund UAV images. The labeling process was carried out on the rice field images dataset. 

The labeled images contained the coordinates of the ground-truth bounding box. The label 

information format in YoloV5 was in the form of a text file that contained the coordinates of 

the bounding box. The research team carried out the labeling process by looking at the position 

of the rice fields on the UAV images. This stage used the LabelImg application. Figure 4 shows 

the stages of labeling and label information data. 



 

 

 

 

 

2.4 Training dataset 

The dataset that has been labeled in the previous stage was trained to produce a model used in 

the Testing process. The model form was a model that already had a pattern whose results were 

in the form of weights. These weights were used in the Testing process. The number of images 

used for training was 150 training images, and the validation data was ten validation images. 

The training used tools on Google Collaboratory with Graphics Processing Unit (GPU) and 

Convolutional Neural Network with YOLO (You Look Only One) version 5. YOLOv5 

architecture is shown in Figure 5. 

 

 

Fig. 5. YOLOv5 architecture [13]. 

 

The testing was done by calculating the value of Recall, Precision, F1-Measure, mAP [14]. In 

the testing stage, it is necessary to calculate the True Positive (FP), True Negative (TN), False 

Positive (FP), False Negative (FN) values. A Recall is defined as the ratio of the total number 

of correctly classified positive samples divided by the total number of positive samples. High 

Recall indicated that the class was recognized correctly. The Recall was calculated by equation 

(1).  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(1) 

 

The precision value was obtained by dividing the total number of correctly classified positive 

samples by the total number of positive samples predicted as in equation (2). High Precision 

indicates positive labeled examples are indeed positive. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

 



 

 

 

 

 

F1 Score was used to see the balance between Recall and Precision. F1 Score is shown in 

equations (3). 

 

𝐹1 =  2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

(3) 

 

Mean Average Precision (mAP) is the average of the Average Precision values. The calculation 

of Average Precision (AP) is shown in equation (4) (5). 

 

𝐴𝑃 =  ∑(𝑟𝑛+1 − 𝑟𝑛) 𝑝𝑖𝑛𝑡𝑒𝑟𝑝 (𝑟𝑛+1) (4) 

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1) =  max
�̃�≥𝑟𝑛+1

𝑝(�̃�) (5) 

 

2.5 Testing Dataset 

A testing dataset was used to determine the capability of the architectural model generated in 

the training process. At this stage, 10 images were used to be a testing dataset. At this stage, 

variations of the confusion threshold value were used with values of 0.1, 0.2, 0.3, 0.4, 0.5. The 

images used in the testing process are shown in Figure 6. The images used were images 

containing rice fields bund. 

 

 

Fig. 6. Images of testing dataset. 

 

3 Result and discussion 

At this stage, the research results obtained at the testing stage were presented. The method used 

in this research was Convolutional Neural Network with YOLO architecture version 5. The data 

were acquired using a multirotor UAV in the first stage, and produced data in video format. In 

the pre-processing stage, the frame was extracted to obtain images with a resolution of 1920 x 

1080 pixels. To reduce processing, the image was resized to 416 x 416 pixels. After pre-



 

 

 

 

 

processing the image, then image labeling was done. The resulting image was an image 

containing a single bund rice field. The label given was in the form of a bounding box on the 

part of the area that contains rice fields. The label used was the Pematang name. An image 

contained only one label. The label was the coordinates of the bounding box stored in a text file. 

The results of the labeling bounding box process on several images can be seen in Figure 7. 

 

 

Fig. 7. Images result of labeling stage. 

 

The training stage aimed to generate weights in the model used in the testing process. The 

training process was carried out using CNN YOLO version 5, run using Google Collaboratory. 

The training process used the Graphical Processing Unit (GPU) on the Google Collaboratory. 

The training process on the Training dataset with 150 images data, 500 epochs, 16 batch sizes 

were carried out in 0.858 hours.  The results of the training process are shown in Figure 8. 

 

 

Fig. 8. Result of 500 epoch training stage. 

 

The graph of Recall, Precision and mAP in training using 500 epochs is shown in Figure 9.  

 



 

 

 

 

 

 

Fig. 9 Recall, precision and mAP grapich for 500 epoch. 

 

Based on the graph, it can be seen that the results obtained have followed the trend of values in 

a better direction. Visually, in the 500th epoch, graphics Recall, Precision and mAP have shown 

a stable pattern. The results of the best Recall, Precision, mAP0.5, mAP 0.5:0.95 values 

respectively were 1, 1, 0.9952, 0.6358. Graphic comparison of Recall, Precision and F1 on the 

training dataset with confidence is shown in Figure 10.  

 

Fig. 10 Recall, precision, F1 training dataset compare by confidence. 

 

The results obtained from the detection process were in the form of bounding boxes in areas 

containing rice fields. The results of the bounding box detection in the training images are shown 

in Figure 11. 

 

Fig. 11. Bounding box detection result of the training dataset. 



 

 

 

 

 

After the training process was carried out, a model with updated weights was generated. This 

model was used in the Testing process. Graphic comparison of Recall, Precision, and F1 on the 

validation dataset with confidence was shown in Figure 12. The results of bounding box 

detection on the validation images are shown in Figure 13. 

 

 

Fig. 12 Recall, precision, F1 validation dataset compare by confidence. 

 

Based on Figure 10 and Figure 12, the table of Recall, Precision, F1 values in the training, and 

testing dataset is shown in Table 1. 

 

 

Fig. 13. Bounding box detection result of the validation dataset. 

 

Table 1. Value of recall, precision, F1 with confidence. 

 Recall Precision F1 Score 

Value Confidence Value Confidence Value Confidence 

Training 

dataset 

1 0.00 1.00 0.479 1 0.478 

Validation 

dataset 

0.85 0.00 1.00 0.748 0.48 0.342 



 

 

 

 

 

Table 2. Bounding box detection with confidence threshold. 

Images 

Number 

Confidence Threshold Total 

0.1 0.2 0.3 0.4 0.5 

1 1 1 1 1 1 10 

2 1 1 1 1 1 10 

3 1 1 1 1 1 10 

4 1 1 1 1 1 10 

5 1 1 1 1 1 10 

6 1 1 1 1 1 10 

7 1 1 1 1 1 10 

8 1 1 0 0 0 7 

9 1 1 0 0 0 7 

10 1 1 1 1 1 10 

Percentage 

(%) 

100 100 80 80 80  

1 = detected, 0 = undetected 

In the testing stage, the model from the training phase was used to detect rice fields in the 

training dataset. The detection results were varied with confidence-threshold values of 0.1, 0.2, 

0.3, 0.4, 0.5. The detection success rate on ten images in the Training dataset is shown in Table 

2. The results of bounding box detection in the testing dataset that were detected and those that 

were not detected are shown in Figure 14. 

 

 

Fig. 14. Bounding box result of the testing dataset. 

 

Based on Table 2, it can be seen that images numbers 8 and 9 were not detected when the 

confidence threshold was 0.3, 0.4, and 0.5. The detection results of the detected and undetected 

bounding box testing images can be seen in Figure 14. 

In Figure 14, the detected images have a relatively different color from the background. In the 

images that have been detected visually, it looks like it had a different background with the color 

of the rice fields. The rice fields were relatively green and the background had a variety of 

colors. The images that were not successfully detected visually at a confidence threshold of 0.3, 

0.4, 0.5. The color of the rice fields had a color similar to the background so that it had a low 

confidence value. 



 

 

 

 

 

4 Conclusions 

This study proposed the detection of a single wet rice field bund on unmanned aerial vehicle 

images using a convolutional neural network. The method of CNN architecture YOLO version 

5 was proposed with steps of data acquisition, pre-processing, images labeling, training dataset, 

testing dataset. The data used in this research were training dataset (150 images), validation 

dataset (10), testing dataset (10). The training was carried out using Google Collaboratory and 

GPU features. In the training process, the best Recall, Precision, mAP0.5, mAP 0.5:0.95 values, 

respectively were1, 1, 0.9952, 0.6358, with a total processing time of 0.858 hours. At the testing 

stage, Bounding boxes were detected at confidence thresholds of 0.1 and 0.2 and at confidence 

0.3, 0.4, 0.5 were able to detect a bounding box of 80%. In this study, the UAV camera angle 

was still pointing downwards (90 degrees). The use of camera tilt variations during data 

acquisition can be continued from this study. 
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