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Abstract

INTRODUCTION: This paper presents a distributed approach to optimise self-consumption on a local energy
community containing photovoltaic generators, electric vehicles, loads and a storage system.
OBJECTIVES: The goal is to maximise energy sharing between users while preserving the indivual objectives
of each user.
METHODS: Game theory is employed to model users’ behavior and preferences. A distributed algorithm
is used to solve the optimisation problem. In addition, a physical model of the grid is built to verify if
the solutions respect grid constraints. Finally, a private blockchain environnement is deployed to concretely
implement this distributed framework with a smart contract.
RESULTS: It is shown that the proposed approach effectively leads to an increase of self-consumption rate on
the local grid.
CONCLUSION: The proposed distributed framework, combining game theory and blockchain, shows real
potential to improve energy sharing on energy communities.
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1. Introduction
Due to environmental concerns, many countries
have promoted the development of photovoltaic (PV)
generators through diverse financial incentives, leading
to an increase of the worldwide PV capacity from about
10 GWp in 2008 to more than 500 GWp at the end of
2018 [1]. PV generators differ from traditional power
plants: their capacity is much lower so they are spread
on large geographical areas and often connected to
low or medium voltage grid. For example, small PV
generators of less than 4 kWp counted for 21% of
the total PV capacity installed in the UK in 2016 [2].
As a result, new uses of electricity networks appear
with the development of PV generators. The continuous
decrease of PV installation costs encourages consumers
to produce their own electricity from rooftop solar
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panels. This situation corresponds to self-consumption.
The overall electrical grid can benefit from self-
consumption behaviour with a decrease of energy flows
on the lines, leading to a decrease of investments costs
[3]. Self-consumption rate is defined as the part of
the electricity produced by the PV generators that is
locally consumed over the total local production, while
self-production refers to the part of the total energy
consumption that is locally produced [4].

France, Sweden and the Netherlands now also
allow collective self-consumption, in which a group
of consumers shares the local PV production on the
low voltage grid over a small area, creating a local
energy community [5]. The idea is to benefit from the
flexibility of all the consumers in order to maximise the
self-consumption and self-production rates. However,
collective self-consumption projects and local energy
communities are still at an early stage and a large-scale
development requires a new framework to optimise the
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self-consumption rate and thus to make collective self-
consumption attractive for all participants.

In the objective of developing collective self-
consumption frameworks, research is required to
develop novel energy management strategies in order to
improve energy exchanges and take advantage of load
flexibility at a local scale. An energy community can
contain diverse types of users, including PV producers,
tertiary or residential consumers, electric vehicles, stor-
age systems. In this perspective, distributed methods
for energy management are more relevant than tra-
ditional centralised computation. Indeed, centralised
methods need to collect all data about the system,
including physical parameters of the lines, but also
consumption data of users. On the contrary, distributed
approaches consist of several sub-problems that can be
solved in parallel with a limited number of informa-
tion. Consequently, distributed methods can reduce the
need of extensive communication network and improve
robustness in case of failure of one agent [6]. But most
importantly, distributed methods guarantee privacy of
users data and consumption habits [7]. In addition,
distributed methods enable to build user centred strate-
gies, that take into account users habits and let them act
as they want [8].

Therefore, the question this article deals with is: how
to practically optimise energy exchanges on a local
energy community in a distributed way, taking into
account users preferences ?

To answer this question, an innovative distributed
approach is proposed to improve the self-consumption
and self-production rates on a local energy community.
The study is based on the energy community of Lille
Catholic University, France, which combines PV gener-
ators, a battery, charging stations for electric vehicles
(EV) and tertiary buildings. A global optimisation prob-
lem is defined to increase the energy exchanges inside
the energy community. In order to take into account the
preferences of each participant, this global problem is
decomposed in several smaller local problems, using
game theory. Game theory is gaining popularity in
the literature as a distributed optimisation method for
smart grid, as it reflects its distributed and heteroge-
neous nature [9]. In [10], authors give an overview of
the potential applications of game theory for the grid.
They underline that game theory is a promising tool as
it models users behaviour and thus can be used to build
users centred tools. Game theory is used to decompose
an optimisation problem into several sub-problems, but
it needs to be combined with distributed algorithms.

Nguyen et al. use game theory for demand side
management in a system containing storage devices
[11]. The authors use a proximal decomposition
algorithm to solve the problem. Results show a decrease
of energy costs and of the load peak compared to a
centralised approach.

In [12], authors introduce a bargaining game to
manage a micro-grid both in connected or islanded
mode, introducing a balance between the different
objective functions. The optimisation problem is solved
with a distributed gradient algorithm, leading in a
global costs decrease for the micro-grid.

Some articles propose peer-to-peer (P2P) energy
exchanges mechanisms based on game theory. For
example, [13] introduces a P2P structure in order
to minimise the electricity costs among consumers.
A relaxed consensus+ algorithm is used to solve
the optimisation problem in a distributed way, with
limited exchanges of information between users. In
[14], authors use a combination of 3 different games to
maximise the total welfare inside an energy community.
Proposed approach ensures economic benefits for all
users.

As mentioned by [10], game theory is a promising
tool for energy management, but lacks of practical
implementation. In this perspective, the application
of blockchain technology to support P2P structures
is currently a topic of growing interest, as this
technology shows promising features for collective
self-consumption and energy sharing. Blockchain
is basically a distributed and secured database,
supporting the execution of distributed algorithms
called smart contracts [15]. Mengelkamp et al. propose
a methodology to design blockchain P2P markets in
order to improve energy sharing [16]. In [17] and [18],
authors use blockchain to implement local markets with
an auction scheme, where producers and consumers
publish demand offers and sell offers with smart
contracts, and blockchain automatically matches the
offers. In [19], the authors present a method to solve
an optimal power flow problem in micro-grid networks.
The global problem is first divided in local problems
and then blockchain aggregates all the local solutions to
provide the overall optimum. These examples show that
blockchain has the potential to implement distributed
approaches for energy sharing among communities and
enables to get rid of a central agent.

However, two lacks appear from a review of the
current literature. Firstly, most studies consider utility
functions that take into account only electricity costs.
Yet to build real user centred methods, it is necessary
to include users preferences about their consumption.
Authors in [20] consider such preferences about the
origin of electricity for prosumers on a local grid, but
they use the same utility function for all users and do
not include other users such as electric vehicles, storage
system and pure consumers. Secondly, [9] underlines
the necessity to include physical constraints of the
grid network in the energy strategy, and this point is
rarely present in current studies. The present article
aims to answer to these lacks, by building a framework
including individual goals for diverse kinds of users,

2 EAI Endorsed Transactions on 
Energy Web 

05 2021 - 07 2021 | Volume 8 | Issue 34 | e1



Increasing photovoltaic self-consumption with game theory and blockchain
and by proposing a practical implementation of this
framework.

This paper presents a distributed strategy for energy
management on a local energy community. Users
preferences are taken into account to build a real
user centred method. A blockchain implementation is
proposed for real development. To verify the relevance
of this work and take into consideration the physical
constraints of the power grid, the results of the
proposed optimisation framework are tested on a
physical model of the grid, including real production
and consumption data, in order to guarantee that the
real grid can support the energy flows between the
different users.

The novelty of this work consists in the combination
of a theoretical mathematical framework with a
practical implementation to build a concrete and fully
distributed method for increasing energy exchanges in
a local energy community. Different complementary
tools are used to form a complete framework (game
theory, physical model of the grid and blockchain). The
distributed nature of the grid and of the blockchain
is exploited to get rid of a central optimisation agent
and let the users optimise their consumption or
production profiles according to their own individual
goals. Moreover, the test of the proposed approach on
a physical model of a real grid, provided with real
production and consumption data, shows the feasibility
of such an approach.

This paper is divided as follows. In the second
part, the optimisation problem and the game theory
framework are introduced. The third part details how
the three tools (optimisation algorithm, physical model
of the grid, blockchain) are combined together. Then,
some results on simple scenarios are presented.

2. Optimisation framework using game theory
A local university grid is considered as case study:
it contains loads (buildings), a storage system (an
electrochemical battery), rooftop PV generators and
several charging stations for electric vehicles. There is
a connection point to the distribution grid. Each actor
can adjust its energy consumption or production profile
in order to maximise its own satisfaction. Thus, the goal
of the global optimisation problem is to maximise the
overall satisfaction of users, while a global constraint
links all users.

More specifically, game theory is chosen, because
it defines a mathematical framework for distributed
optimisation in which each element of the system aims
to optimise its own individual situation [21]. Game
theory is a relevant method in this case for several
reasons. First, it models a situation where players
are in competition. This reflect the case of a local
energy community where players are in competition

to reach their individual objectives. Second, game
theory enables to take into account not only cost
objectives, but also other considerations like comfort
or the will to consume locally produced electricity
[22]. This is interesting as few studies integrate non
economic objectives in their energy strategy [20].
Finally, game theory is interesting because each agent
has to solve a simpler problem, in comparison to the
global optimisation problem.

2.1. Problem formulation
A non-cooperative game is defined, in which each
element tries to reach its personal objectives by
adjusting its production or consumption profile,
without any coordination with the other elements.
Parameters for preferences are introduced so that each
user is able to adjust its objective function (called
utility function) according to its own preferences.
Such weighting coefficients are classically used in
multi-objective optimisation [23]. These preferences
can represent the cost paid (or earned) for electricity
consumption (or production), the users’ comfort, or
the will to consume the local PV production. The
benefit of such an approach is that it only requires
that the participants locally optimise their behaviour,
without any cooperation. Thus, it does not require
a central agent to coordinate all the participants.
As mentioned previously, this situation reflects the
reality of a local grid where participants have limited
knowledge about the structure of the grid and do not
necessary communicate between them to meet their
goals. Thus, a game is introduced withN players, which
are the N elements of the grid (loads, PV generators,
battery, electric vehicles charging stations). The game
is defined by the set G = {N , (Si)i∈N , (Ui)i∈N }, where
Si is the strategy set of the player i and Ui its utility
function. Here, the strategy set is defined as Si = {xi},
where xi is the production or consumption profile of
the user. The users adjust their profile xi one day ahead,
between ti and tf , with a time step ∆t. So, for each
user i, xi(t) = Pi(t) ∗ ∆t, with Pi(t) the average power
consumed or produced between t and t + ∆t. The price
of electricity (written c in the following) is supposed to
be imposed by the distribution grid.

In the rest of the article, xi > 0 corresponds to an
energy consumption and xi < 0 to a production.

2.2. Utility functions
This section details the utility function used for each
kind of user. The utility function, or objective function,
mathematically translates the goals of the player
and measures user’s satisfaction. The players tend
to maximise their utility function by adjusting their
strategy, here their energy consumption or production
profile.
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EV user. For an EV user connected to the charging
station, the following function is proposed :

UEV (xEV (t)) = −α1 ln(1 + xEV (t)) − α2c(t)xEV (t)

− α3(abs(xf orecastP V (t)) − xEV )2 (1)

The term α1 ln(1 + xEV (t)) represents the objective
to charge the vehicle. The natural logarithm function
is classically used for energy buyers as it models
users’ satiety [17]. With the term α2 c(t) xEV (t), the
user aims to minimise the cost to pay. Then the term
α3(abs(xf orecastP V (t)) − xEV )2 is introduced to represent
the objective to preferentially use the local PV
production.

The weighting coefficients α1, α2 and α3 are used
so that each user can adjust its preferences. These
coefficients are commonly used in the literature
for multi-objective optimisation to combine different
objectives into a unique objective function. These
coefficients should be positive and verify: α1 + α2 +
α3 = 1 [23].

For each EV, some constraints need to be taken into
consideration. According to the current situation of the
case study, discharge is not allowed and the charging
power is limited by the maximum power of the charging
station:

0 ≤ PEV (t) ≤ P EVmax (2)

Moreover, the state of charge (SOC) has upper and
lower bounds, which are characteristics of the vehicle
battery:

SOCminEV ≤ SOCEV (t) ≤ SOCmaxEV (3)

In addition, the user specifies a minimal SOC value
SOC

required
EV to be reached at the end of the charging

time, in order to guarantee a minimum level of comfort:

SOCEV (t = tdeparture) ≥ SOC
required
EV (4)

Battery. The battery can have two objectives: first to
maximise its income, and second to maximise the
consumption of the local PV production. Thus, the
following utility function is used:

Ub(xb(t)) = β1c(t)xb(t) − β2(abs(xf orecastP V (t)) − xb(t))2

(5)

Here also, the positive coefficients β1 and β2 are used
to specify the user’s preferences with β1 + β2 = 1.

The charging power and discharging power of the
battery are limited:

0 ≤ Pb(t) ≤ P
charge,max
b (6)

0 ≥ Pb(t) ≥ P
discharge,max
b (7)

Moreover, similarly to the EV, the SOC has
boundaries:

SOCminb ≤ SOCb(t) ≤ SOCmaxb (8)

Finally, at the end of the day, the SOC should reach
the intial value, in order to form a cycle:

SOCb(t = tf ) = SOCb(t = ti) (9)

PV generators. PV generators simply tend to maximise
their production, because their marginal production
cost is equal to zero [19]. So their goals are to optimise
their payoff, and to limit the production curtailment.
Therefore, the following utility function is written with
the two respective terms:

UP V (xP V (t)) = −γ1c(t)xP V (t)−

γ2(xf orecastP V (t) − xP V (t))2 (10)

The positive coefficients γ1 and γ2 model the user’s
choice, and we impose γ1 + γ2 = 1.

PV generators can only curtail their production
from the maximal production, which is the forecasted
production one day ahead:

0 ≥ xP V (t) ≥ xf orecastP V (t) (11)

Loads. Loads can have some flexibility (written f ),
which means that they can decrease their consumption
compared to their forecasted consumption profile
x
f orecast
l . However, to ensure a minimal level of comfort,

the total energy consumed at the end of the day should
be equal to the forecasted consumption for the entire
day. In other words, loads can delay their consumption
but do not globally decrease it. Then the objectives are
to minimise the cost paid for electricity, to consume
the local PV production and to minimise the change of
the forecasted consumption, that would represent a loss
of comfort for the user. Therefore, inspired by [12] the
following utility equation is used, with a quadratic term
to model comfort:

Ul(xl(t)) = −δ1c(t)xl(t) − δ2(xf orecastl (t) − xl(t))2

− δ3(abs(xf orecastP V (t)) − xl(t))2 (12)

Each user can specify its preferences by adjusting δ1,
δ2 and δ3 (with δ1 + δ2 + δ3 = 1).

The constraint on the flexibility f imposes:

x
expected
l (t)(1 − f ) ≤ xl(t) ≤ x

expected
l (t)(1 + f ) (13)
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Moreover, as mentioned previously, the total energy

consumed in one day should not change, so:

tf∑
t=ti

xload(t) =

tf∑
t=ti

x
f orecast
load (t) (14)

2.3. Nash equilibrium
An important concept in game theory is the Nash
equilibrium, a situation in which no player can increase
its utility by being the only one to change its strategy
[9]. Mathematically, if X∗ = {x∗1, ..., x

∗
N } represents the

strategy of the players at the Nash equilibrium and
x−i = {x1, ..., xi−1, xi+1, ..., xN } the strategy of all players
except player i, the Nash equilibrium corresponds to:

Ui(x
∗
i , x
∗
−i) ≥ Ui(xi , x

∗
−i),∀xi ∈ Si (15)

This Nash equilibrium is important as it guarantees
that when all players individually maximise their utility
function, the global system reaches an equilibrium
point.

All the utility functions Ui specified in this article
are concave and continuous in xi . Moreover, all the
constraints impose that for each player, the strategy set
is a segment: ∀i ∈ N ,Si = {xi |xi ∈ [xmini , xmaxi ]}, so it is a
convex set. This guarantees the existence of at least one
Nash equilibrium for the global problem [21].

If in a first approach the cost function c does not
depend on the consumption and production profiles of
the players. Indeed, the price of electricity is imposed
by the distribution grid (with for example EPEX
SPOT prices). Thus, electricity prices are completely
independent from the users’ strategies. As a result, [24]
ensures the unicity of the Nash equilibrium.

2.4. Distributed algorithm
In the game previously defined, each user tends to
maximise its satisfaction, according to its preferences
and individual objectives. Therefore, the game leads
to the maximisation of the global satisfaction, which
corresponds to the following global optimisation
problem:

max
X∈S

∑
i∈N

Ui(X) (16)

with the local constraints (2), (3), (4), (6), (7), (8), (9),
(11), (13), (14).

Moreover, a global constraint links all the users of
the community: the total imported power from the
distribution grid should not exceed a precise value Pmax,
specified in the energy contract. Therefore:∑

i

xi(t) ≤ Pmax,∀t ∈ [ti , tf ] (17)

To solve the global problem (16) under the local
and global constraints, a distributed algorithm is
required. Among the diverse algorithms available in
the literature, ADMM (Alternating Direction Method
of Multipliers) is a good candidate. This distributed
algorithm has been notably used in [19] and [20],
and is well suitable for energy exchanges frameworks
[25]. The ADMM algorithm is based on the Lagrangian
decomposition and enables to divide the global problem
into several sub-problems. In practice, all the users
optimise their own utility function while respecting
their own local constraints, and then a penalty
parameter ρ is calculated to force the users to respect
the global constraint, as illustrated on Figure 1.
The ADMM converges towards a final state, which
corresponds to the Nash equilibrium of the system [26].

More precisely, all the steps are described in
Algorithm 1. The variable x is the mean of all xi :
x = 1

N

∑N
i=1 xi .

Algorithm 1 ADMM algorithm

1: while ||rk ||2 > εprimal and ||sk ||2 > εdual do2: xk+1
i ← argminxi (Ui (xi ) + ρ

2 ||xi − x
k
i + xk − zk + uk ||22)3: zk+1 ← argminz(g(Nz) + Nρ

2 ||z − u
k − xk+1||22)4: uk+1 ← uk + xk+1 − zk+15: end while6: return X = [x1, ..., xN ]

In the first step (line 2), each user optimises its utility
function, with a penalty term ρ

2 ||xi − x
k
i + xk − zk +

uk ||22). The lines 3 and 4 correspond to the aggregation
steps, where the global variables z and u are calculated.
The function g is a convex function that mathematically
transcribes the global constraint (17). If this constraint
is respected, then g(Nz) = 0. If not, g takes a very high
value to ensure that the constraint will be respected.
The parameter ρ is the penalty parameter. So, at each
iteration, users optimise their utility with a penalty
term in order to converge towards a state where the
global constraint will be respected. The algorithm
stops when the primal residual rk+1 = xk+1 − zk+1 and
of the dual residual sk+1 = ρ(zk+1 − zk) verify a stop
criterion, which means that we have reached the Nash
equilibrium of the system.

The aggregation steps (lines 3 and 4 of Algorithm 1)
could reintroduce a central aggregator and thus be an
obstacle to a fully distributed implementation. How-
ever, the following section explains how blockchain is
used to avoid this problem.

3. Optimisation implementation
This section presents how the proposed optimisation
process is concretely deployed, and more specifically
how the physical model of the grid and the blockchain
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x1

Local	optimisation	of
energy	profiles	

Global optimisation (variables z and u)

No

Yes

ADMM	algorithm

preferences (α, β, γ or δ) 
and forecast

User	1

x2

Local	optimisation	of
energy	profiles

x3

Local	optimisation	of
energy	profiles

Final state

User	2 User	3

Penalty parameter ρ

preferences (α, β, γ or δ) 
and forecast

preferences (α, β, γ or δ) 
and forecast

?

Figure 1. Distributed optimisation overview
translates the theoretical game theory framework. The
combination of these three parts constitutes a new
tool which gives a concrete distributed framework
for optimising self-consumption on real local energy
community grids.

3.1. Role of blockchain
Blockchain is a distributed and secured database
divided in chronological blocks. A block contains data
and some additional information related to the previous
block. Thus, all blocks form a chain [15]. Each user
holds a copy of the database. Adding a new block to the
existing chain requires a consensus between all users,
so the blockchain works without any central supervisor
nor trusted third-party.

In addition, blockchain supports the execution of
specific algorithms, called smart contracts, that enable
to automatically proceed to previously defined tasks,
such as triggering a transaction between two users [27].
Practically, a smart contract is a piece of code defining
some functions that is deployed over the blockchain
and interacts with every node of the network. Thanks
to its distributed architecture, blockchain and smart
contracts are interesting tools to support smart grids
decentralisation. Indeed, authors in [19] have already

employed smart contract to perform a distributed
optimisation for energy sharing.

Different consensus mechanisms exist in order to
create new a new block and add it to the chain.
Currently, the most used one is the Proof-of-Work
(PoW). It was initially used on Bitcoin and Ethereum
public blockchains. In PoW, each node competes with
the others to find a solution to a difficult mathematical
puzzle. This process is called mining. The node that first
finds the solution creates the new block and spreads
it to the rest of the network. The other nodes verify
the integrity of the new block and then it is definitely
added to the blockchain. The miner that has created the
new block receives an income to compensate the energy
spend for mining. The difficulty of the puzzle and the
competition between the miners guarantee the integrity
of the blockchain [28]. However, this process requires
large amount of energy, and therefore it is not relevant
for energy management applications.

Proof-of-Authority (PoA) is another consensus mech-
anism that is more interesting for local blockchains. In
this process, a new block is added after a vote between
the nodes of the network. The nodes that can vote are
initially declared at the creation of the blockchain. Since
PoA gets rid of the intensive calculation of PoW, it
consumes very few energy in comparison. It is suitable

6 EAI Endorsed Transactions on 
Energy Web 

05 2021 - 07 2021 | Volume 8 | Issue 34 | e1



Increasing photovoltaic self-consumption with game theory and blockchain
for private blockchains where a small number of users
interact, and where these users can be trusted to create
new blocks [29].

In the proposed system, blockchain serves as the
communication layer between the users and aggregates
the results. It replaces the role of a central optimisation
agent. More precisely, a private Ethereum blockchain is
deployed between all the elements of the grid. Thus,
each player of the game holds one node of a peer-to-
peer communication network. The blockchain works
with a PoA mechanism. Each user’s node is combined
with a Python client which automatises the interactions
with the blockchain and has more specifically the
following three tasks. First, it assigns the right utility
function to the user, depending of its type (electric
vehicle, storage system, PV generator or load). Second,
it collects the coefficient preferences of the user. Finally,
it performs the local optimisation of the utility function
and automatically sends the results to the blockchain.

A smart contract deployed on the blockchain
implements the aggregation steps of the ADMM
algorithm presented in the previous section. It collects
the results of all users and calculates the global
variables z and u, and sends the results to the users for
a new iteration.

The blockchain framework is illustrated on Figure 2
for 3 users. An additional agent is created only in order
to deploy the smart contract and maintain the network.
It does not perform any other operation and does not
receive any users’ data.

Smart contract 
(ADMM)

User 1 Python client Blockchain node

User 2 Python client Blockchain node

User 3 Python client Blockchain node

AgentBlockchain node

Figure 2. Blockchain framework
The main interest of this implementation is that,

through the smart contract, blockchain gets rid of the
need for a central optimisation supervisor that would
know the production and consumption details and
the preferences of all the grid elements. Moreover,
blockchain has the benefit to be built with a distributed
structure, so it guarantees security and trust between
the elements of the grid. Blockchain is also more
resilient to changes than a unique central agent: new
element can simply be added to or deleted from the

blockchain without any consequence on the overall
framework.

3.2. Game theory framework
As mentioned in the previous paragraph, each player of
the game constitutes one node of the blockchain. This
node locally optimises the user’s utility for the specified
time period through the Python client.

The ADMM process is illustrated on Figure 3 from
the point of view of one user.

For one user :

Preferences coefficients

Electricity
prices

Individual parameters 
(forecast, charging time,...)

Smart contract

Global constraint
(Pmax)

Python client

Optimised profile 
xi

Penalty term

Final optimised profile 
xi 

PV forecast

Figure 3. Optimisation for one user
The agent deploys the smart contract and specifies

the period of optimisation and the electricity prices c
and the total PV production forecast for the next day.
Each user reads these information, and then indicates
its preferences and physical parameters in the Python
client, depending on its type (charging time and SOC
limits for EV, SOC limits for the battery, production
forecast for PV generators, flexibility and consumption
forecast for loads). The Python client computes the local
optimisation step and automatically sends the result
into the smart contract. Then it receives the global
results to perform another iteration if needed, until the
final state is reached by the overall system.

3.3. Physical model of the real grid
In the theoretical framework defined in section 2, the
physical constraints related to the grid have not been
taken into account. More precisely, the proposed game
theory framework implicitly assumes that the grid is
able to transfer all the power flows according to the
optimisation results. However, the grid elements are
connected through lines that have a limited capacity.
Therefore, it may be possible that the consumption
and production profiles processed by the optimisation
algorithms lead to some over-currents or over-voltages
on the lines.

For this reason, a physical model of the grid at
stake is build, in which the physical properties of the
lines are included (see figure 4), with PowerFactory.
This software is used by grid operators for grid
modelling and analysis [30]. The local network contains
4 buildings considered to be loads, 2 PV generators, one
battery and 6 EV charging stations (figure 4). Buidling
this model requires to obtain all needed electrical data
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of the energy community, especially the architecture
and the lines capacity.

~~~~

~~

~~
~

AGBT_HEI

TGBT_TDN001

TGBT_HA

Terminal_HTA

AGBT_Ext

Battery
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Annexe:

Distribution grid

Transformer

Load_A Load_B Load_C

Load_D

PV_A PV_B EV_A EV_B EV_C EV_D

EV_E EV_F

Figure 4. Physical model of the grid
The consumption and production profiles of all the

players provided by the optimisation process are tested
on the grid model in order to check if they create line
congestion or over-voltages. In this case, the problems
that occur can be precisely identified on the physical
model. Then additional constraints can be imposed to
the optimisation process (for example curtail the PV
production) in order to obtain profiles that will respect
the grid constraints. The combination of the theoretical
optimisation framework with the simulations on the
physical model ensures that the solutions are realistic
and will not damage the grid.

3.4. Combination of tools
To summarize, the proposed approach combines a
distributed optimisation based on game theory and
solved by ADMM, a practical implementation with
blockchain and a physical model of the grid. Figure 5
illustrates the overall system.

This framework is here specific to the case study, but
could be adapted to other situations. The distributed
optimisation algorithm has been detailed in section
2.4. The Ethereum blockchain only implements this
algorithm, with a P2P network that reflects the
electrical network. As mentioned previously, Python
clients are used in combination with each Ethereum
node (each user) to perform local optimisation of
utility functions. The smart contract only computes
the aggregation step of the algorithm. At the end of
the algorithm, each user obtains a power profile that
maximises its utility function while respecting the

Table 1. Parameters of grid elements for scenario (a)
Element Preferences coefficientsEVa α1 = 0.1 α2 = 0.1 α3 = 0.8EVb α1 = 0.1 α2 = 0.1 α3 = 0.8Battery β1 = 0.2 β2 = 0.8 -PV generatora γ1 = 0.5 γ2 = 0.5 -PV generatorb γ1 = 0.5 γ2 = 0.5 -Loada δ1 = 0.1 δ2 = 0.1 δ3 = 0.8Loadb δ1 = 0.1 δ2 = 0.1 δ3 = 0.8Loadc δ1 = 0.1 δ2 = 0.1 δ3 = 0.8Loadd δ1 = 0.1 δ2 = 0.1 δ3 = 0.8

global constraints applied to the entire community.
Theses solutions are then sent in a second step to the
physical model of the grid to ensure that they do not
lead to over-voltage or over current on the lines.

As the physical model is specific to the energy
community studied, a replication of the proposed
approach would require to build a new electrical model.
However, the blockchain environment can be easily
deployed on other situations, because it take into
accounts diverse kinds of actors (generators, battery,
tertiary loads and EV).

4. Results
To illustrate the developed approach, this section
presents some preliminary results. The grid of Lille
Catholic University (whose PowerFactory model is
represented on figure 4) is used as case study, with only
two electric vehicles respectively connected between
09:30 and 12:20, and between 10:40 and 19:10 and with
initial SOC of 20% and 45% respectively. The battery
has an initial SOC of 35%. Loads are assumed to have a
flexibility of 25%.

For electricity prices, data from the EPEX SPOT
European market [31] are used. The global power
constraint is set to Pmax = 350 kW and the timestep ∆t
to 20 minutes.

Two cases are presented: in the first one, the
users prefer to consume the locally produced energy
(scenario (a)) ; in the second one (scenario(b)), they
have a preference to minimise their costs (or maximise
their income). Tables 1 and 2 show the preferences
coefficients used for the simulations, respectively for
scenario (a) and scenario (b).

Both scenarios converge after 73 iterations. Figures 6
and 7 illustrate the results obtained respectively for
scenarios (a) and (b), from the users point of view.

The comparison of these two figures shows that
the proposed approach enables the users to reach
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User‘s preferences 

Desired consumption / 
forecasted production

Physical model of the local energy community 

Electrical data of the grid 
(currents, voltage, …)

Consumption and 
production forecast

Optimisation algorithm: 
game theory 

Consumption or 
production profile 

for each player

Consumption and 
production profiles for all 

players

Constraints for grid support

Blockchain : smart contract

Blockchain : database

Blockchain stores data for each timestep

User (node of the network)

Figure 5. Overview of the overall optimisation process
Table 2. Parameters of grid elements for scenario (b)

Element Preferences coefficientsEVa α1 = 0.1 α2 = 0.8 α3 = 0.1EVb α1 = 0.1 α2 = 0.8 α3 = 0.1Battery β1 = 0.8 β2 = 0.2 -PV generatora γ1 = 0.8 γ2 = 0.2 -PV generatorb γ1 = 0.8 γ2 = 0.2 -Loada δ1 = 0.8 δ2 = 0.1 δ3 = 0.1Loadb δ1 = 0.8 δ2 = 0.1 δ3 = 0.1Loadc δ1 = 0.8 δ2 = 0.1 δ3 = 0.1Loadd δ1 = 0.8 δ2 = 0.1 δ3 = 0.1

their individual goals. Indeed, in scenario (a), energy
consumers (EV and loads) really follow the PV
production profile. Loads shift their consumption in the
middle of the day to consume a maximum of local PV
energy. On the contrary, their profiles follow exactly the
price function in scenario (b). Regarding the battery, its
SOC profile slightly follows the PV production profile
in scenario (a), but it is not enough to charge the battery.
In scenario (b), the SOC is correlated to the price of
electricity. For PV generators, each scenario results in a
maximisation of the production. This is an effect of the
utility function (equation 10) in which all terms tend to
increase the production.

As a results, table 3 shows the costs or benefits for
all users. It illustrates that in scenario (a), users are
ready to pay more to consume preferentially the local
PV production.

Figure 8 illustrates the power imported by the energy
community from the grid in both scenarios. A negative
value indicates that the community exports power to
the distribution grid. First, the global power constraint
(represented by the dotted line) is respected in both
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Figure 6. In red: power profiles scenario (a), for EV2, the battery,the aggregated loads and the total PV production (the green lineshows the forecasted profile, and the red line the optimised one).In blue: electricity prices.
cases. Second, scenario (a) is more interesting for the
distribution grid, because it avoids the morning and
night peaks, it decreases the power send back to the
grid and the power imported show less fluctuations (the
standard deviation is only 63 kW in scenario (a), and
105 kW in scenario (b)). This is due to the will of users
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Figure 7. In red: power profiles scenario (b), for EV2, the battery,the aggregated loads and the total PV production (the green lineshows the forecasted profile, and the red line the optimised one).In blue: electricity prices.
Table 3. Costs or benefits in scenarios (a) and (b)

Costs (>0) or benefits (<0) Scenario (a) Scenario (b)Consumers (EV and loads) 223 € 214 €PV generators -71 € - 71 €Storage 1 € - 4 €Total 153 € 140 €
Table 4. Global self-consumption rate for scenarios (a) and (b)

Scenario (a) Scenario (b)SC rate 99% 91%

to consume preferentially the local PV production:
they adapt their consumption and thus they need less
power from the distribution grid. As a result, the self-
consumption rate of the energy community is higher in
scenario (a) than scenario (b), as shown in table 4.

In a second step, the obtained solutions of both
scenarios have been tested on the physical model of the
grid, but do not create any problem. Therefore, in these
scenarios, there is no need to add new constraints. The
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Figure 8. Imported power from grid in both scenarios
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Figure 9. Self-consumption rate for scenarios (a) and (b).
physical model ensures that in the studied scenarios,
the university grid can support the consumption and
production profiles. Simulations on the physical grid
are necessary to guarantee that the algorithm provides
feasible solutions. This is a very important point as
the idea behind the work is to provide a concrete
solution to improve energy sharing among a local
energy community.

To summarize, the results show that the proposed
approach leads to a stable state where individual goals
of the users are met, while the global constraint is
respected. It proves that this fully distributed approach
is relevant for energy management on an energy
community.
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An interesting perspective is to include a price

function that reflects in real time the production and
consumption on the local grid: when consumption
is higher than local production, the price will
increase. This would encourage the grid elements to
preferentially consume the local production, even in
case that they are only sensible to the electricity
cost. This work will be also improved by a better
version of the ADMM algorithm, with for example a
more sophisticated penalty parameter that would result
in a negotiation between the users to decrease their
consumption when needed.

5. Perspectives and conclusion

In this paper, a concrete distributed framework to
improve energy sharing between producers and con-
sumers is proposed among a local community energy.
In this way, the use of local photovoltaic production is
maximised as well as the self-consumption rate while
users’ objectives are respected.

The approach combines three tools: game theory
for distributed optimisation, a physical model of the
grid to guarantee the stability of the grid, and a
communication layer with blockchain. The combination
of these tools is an innovative approach and constitutes
a fully distributed method for better use of local
renewable energy sources on energy communities. The
approach with game theory enables each actor to
specify its particular preferences and to act freely to
reach these goals. Thus, the framework reflects the
distributed nature of electric grids, where various actors
are following very diverse goals.

The first results are promising and show a conver-
gence towards an equilibrium where the global con-
straints is verified while individual goals of users are
met. However, this work will be continued, with a spe-
cific focus on the following tasks. First, a complete anal-
ysis of the blockchain and of its energy consumption is
required. This article focused on the results obtained by
the distribution framework deployed in the blockchain,
but a study of the entire system is required in order
to conclude if the proposed framework is effectively
relevant for an energy community. This analysis should
cover the energy consumption of the blockchain, but
also practical aspects like the communication speed
between users and the security of the solution.

Second, the price function needs to reflect in real
time the consumption and production inside the local
grid. The creation of a small electricity market between
the players is an interesting option to encourage loads
to consume when the PV production is high. In this
perspective, interesting further results are expected

Moreover, some additional questions regarding the
overall stability of the system should be answered,

especially when a new player is added, for example
when a new electric vehicle arrives at a charging station.
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