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Abstract

Optimization energy is a technique helpful to manage electricity consumption of home devices according to
the electric system. CBR is used to predict consumption but lacks to be generic. This paper intends to design a
more generic CBR approach by relying on various intelligences. The retrieve process includes four steps. The
first step is weight evaluation of attributes based on AHP. The second step exploits an adapted cosine model
for distance similarity. The third and fourth steps use k-Means and k-NN to identify the most similar cases.
The reuse process is defined as a linear programming problem solved by PSO. During revise, an algorithm
based on the reuse model and SVR, derives the revised solution. Experiments on a dataset of 1096 samples are
made for forecasting energy electricity consumption. CBR revise process is 99.35% accurate, improving the
reuse accuracy by 11%. The proposed architecture is a potential in energy management as well as for other
prediction problems.
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1. Introduction
Case-Based Reasoning (CBR) is a methodology which
makes use of solutions of past problem cases to solve
new problems [1] [2]. It includes four steps. The retrieve
process aims to retrieve cases that are similar to the
new case of the problem. The reuse process aims to
reuse a solution that has been suggested by measuring
the similarity in the retrieve phase. The revise process
aims to adapt the solution to fit the new problem.
The retain process is used to retain the new solution
when it is confirmed. CBR is a promising artificial
intelligence methodology as compared to machine
learning techniques for two reasons [3] and [4]. First,
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it is able to adapt new data which is automatically
stored into the knowledge base of the model and
become part of the solution for predicting the future
solution. Second, it is able to provide interesting
performance independently to the dataset. On the
contrary, supervised learning algorithms require large
volume of data and need to be re-calculated when
there is new data. It is not representative of the
general trends of the modelling data. However, CBR
lacks specifications on how these processes should
be fulfilled. As a consequence, a CBR system can
differ from another. CBR has been largely applied in
energy consumption prediction to increase consumer
awareness of the forecasted energy consumption. It is
done to stimulate the shift their appliance consumption
there by improving energy usage. Different approaches
exist as using CBR to adjust the energy consumption of
a house according to the actual state of consumption of
appliances [5] and [6], predicting energy consumption
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according to internal and external factors as well
as people habits and agendas in the building [6],
and selecting optimal algorithms exploited in different
processes in resource scheduling [7] and [8]. However,
these works lack to be generic because they only solve
specific problems. The suggested aim is to make CBR
functionalities more generic based on well structured
data for energy forecasting problems. This study
proposes Case based reasoning Architecture Based on
machine LEarning (CABLE), a novel CBR approach
coupling various intelligences to efficiently forecast a
solution based on historical cases. It relies on a modified
version of cosine for distance similarity and associates
k-NN and k-Means for the retrieve phase. CABLE
structures in the reuse, the determination of solution
as an optimization problem from which the solution is
determined using Particle Swarm Optimization(PSO).
The retrieve process combines the reuse model and
the SVM regression model based on a threshold.
Experiments were made on real data samples about
energy loads in buildings to assess the performance
of forecasting using CABLE. This work is expected
to be relevant to people willing to predict their
energy consumption for making adequate decisions.
And therefore to be further exploited as a support to
determine appliances which increase consumptions.
The rest of the paper is organized as follows. The
first section presents related works about predicting
energy consumption using CBR. The second section
presents different intelligent techniques required to
build the proposed approach. The third section details
the different components of the resulted architecture.
The fourth section describes a case study exploiting
CABLE to predict the electricity energy consumption
in market buildings. The last section concludes and
specifies future works.

2. Related works
Several works have been proposed to improve energy
consumption using case-based reasoning. Platon et
al. [7] study the accuracy of CBR and Artificial Neural
Networks (ANN) models in predicting the hourly
building electricity use. They investigate Artificial
Neural Networks(ANN) and CBR methods for to
the development of accurate models. This work uses
Principal Component Analysis (PCA) to optimally
reduce the number of variables by identifying the
significant variables containing significant information
in the dataset. Xiao et al. [9] and Shen et al. [10]
provide a case-based reasoning model to build green
buildings based on past knowledge and experience.
They use text mining techniques to translate the
experience in the format of text to be systematically
descriptive. Faia et al. [8] propose a case-based
reasoning scheme to determine optimal algorithms

selected in previous cases to solve a new problem and
the problem of optimal resource scheduling (ORS).
They define requirements and related meta-heuristics
to be applied in each process (retrieve, reuse, revise and
retain). Faia et al. [5] propose an approach aiming to
adjust the instant consumption of a house according
to the required reduction values in each moment.
This approach couples CBR and an intelligent house
management to obtain suggested reduction values for
house energy management. Authors analyze the history
of previous cases of energy reduction in buildings,
and using them to provide a suggestion on the ideal
level of energy reduction that should be applied in the
consumption of houses. González-Briones et al. [6], [11]
aim to prevent temperature jump of the Heating,
Ventilation and Air-Conditioning (HVAC) system by
anonymously analyzing parameters influencing energy
consumption. While, considering the presence of
people in the building as well as forecasted in-door
and out-door temperature fluctuations. They propose
a multi-agent system to optimize energy usage relying
on information related to the inhabitants captured by
sensors and a CBR system, in conjunction with the
current indoor and outdoor temperature together with
the future temperature. Based on CBR, the system
recommends the best possible energy saving techniques
in the building and propose changes in the habits
of the inhabitants. Minor and Max [12] investigate
the replacement of traditional proportional-integral-
derivative loops (PID) controller by a CBR system
for the experience-based control of inert systems and
demonstrated the feasibility of the approach for the
reduction of energy wastage. Kadir et al. [13] show
that energy consumption of a building can be predicted
by focusing on the properties of the data and their
pretreatment methods. Authors use automatic learning
algorithms for the prediction.

Problem Statement The aforementioned works are
limited in three points. Firstly, several cases with
similarity between each others are required to reach
good results and existing cases in the case base
should cover every possible option or at least similar
cases. These facts are difficult to verify, especially
in early stages of the management and execution.
Concerning this issue, this research supposes to have a
consistent dataset as input. Secondly, the proposed CBR
approaches are so far specific and problem-oriented.
And the application of these models in other area, or
slightly different problems, require significant changes.
This research intends to provide functionalities in each
CBR process so that they can be parameterized to
every problem instance. Thirdly, the rules obtained in
the revise stage are subjective. This research relies on
supervised learning to produce knowledge to adapt the
solution to fit to the problem’s new case.
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3. Background
This section presents different concepts required for the
CBR proposal.

3.1. Case-based reasoning
The case-based reasoning is the result of the work
of Roger Schank and his students at Yale University
in 1980s [2]. The purpose of his work was based on
dynamic memory and learning for the story set in
natural language [14]. The first CBR system called
CYRUS was developed by Janet Kololner using Schank’s
ideas [5]. This system was fundamentally focused on
a question-and-answer system concerning the various
trips and meetings of former Secretary of State Cyrus
Vance [15]. Bruce Porter and his team later developed
the PROTOS system which is a CBR system used in the
classification of stains [16]. CBR is a knowledge-based
system where the most suitable solution to a decision-
making problem based on the most similar cases stored
in a database [17]. Based on its methodology, case-
based reasoning means using old cases from the case
database to find the solution to a new case, adapting
old solutions to new solution requests or using old
cases of the case database to compare and or criticize
new situations [18]. Case-based reasoning is based on
artificial intelligence tools used by designers to build
knowledge-based systems. It requires little effort in
terms of acquiring bias judgements from experts. The
choice of CBR will therefore provide the final system
with memory and history. Figure 1 illustrates the
process of CBR including four steps : Retrieve, Reuse,
Revise and Retain.

Figure 1. CBR steps [2]

Retrieve. This step extracts knowledge, relevant cases
that solve the given target problem [19]. The retrieve
phase is very important for CBR utility as shown in
Figure 1. It finds similar cases to the new case in
the case base and compares them with the new case.

This stage has some classical methods like k-Nearest
neighbours(k-NN) [19], or methods based on artificial
intelligence like artificial neural networks [18] as well
as genetic algorithms. Park et al. [20] demonstrate that
statistical tools can also be exploited to recover best
similar cases, by recovering the optimal number of
neighbours according to their probability of similarity.

Reuse. As shown in Figure 1, the reuse phase is the
second stage of CBR. This step is responsible for
proposing a solution to the new problem [21]. It is easy
when the similar case of the retrieve step is sufficiently
similar to the new case because the solution of the new
case will be just that of the similar case found. The
following approaches can be exploited in this case [22].
Majority rule: The solution is the class ci with the

larger number of votes(maxcount), i.e., the class that has
solved the larger number of cases in the set of retrieved
cases (RC).

sq = argimaxcount(ci , RC) (1)

Probabilistic scheme: This procedure assigns prob-
abilities to each possible outcome or class ci . The class
with the higher probability is selected.

p(sq = ci) =

∑
j∈RCSim(Pq, Pj )λj∑
j∈RCSim(Pq, Pj )

(2)

where λj = 1 if sj = ci , 0 otherwise.

Class-based scheme: This procedure determines, for
each class ci , the mean distance of the query case with
the cases belonging to ci , and takes the class with the
minimum average (minmeant).

sq = argiminmeanciSim(pq, pj ),∀j, (3)

The Reuse process becomes more difficult when
the retrieve cases have significant differences. One
must therefore be able to adapt the solutions of the
retrieved cases to obtain new solutions. According
to Kolodner [18], adaptation can be done in two
ways: substitution and transformation. Garza & Maher
used evolutionary algorithms in [23] and Suganthan
used nature-inspired metaheuristics optimization algo-
rithms in [24]. This step aims to map the solution from
the previous cases to the target problem [25]. There
are two major steps involved in adaptation: figuring
out what it is needed to be adapted and applying the
adaptation [21].

Revise. The revision process begins when the reuse
phase is finished (see Figure 1). The purpose of this
part is to evaluate the proposed solution in the reuse
process that is normally done by simulations. It is
noted that simulations often neglect important aspects
of reality [5] because one can not always formulate all
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the aspects that can occur in the real world [26].This
step simulates the new solution in the real world and
revises it if necessary [27].

Retain. This is the last phase and it keep the right
solution in the case base. It is often good to record the
specification of problem and the solution for future use.
Veloso et al. [28] shows that it is recommended to store
the final solution along with its knowledge structure.
This knowledge is exploited to build the new solution
to have a decision-making process. This step stores the
resulting experience as a new case in memory after the
solution has been successfully adapted to the target
problem [29].

3.2. Analytic Hierarchy Process
Analytic Hierarchy Process (AHP) is a Multi-criteria
Decision Making (MCDM) technique developed by
Saaty [30]. It models an unstructured problem into a
hierarchical structure of elements. The components of
the hierarchy include the main goal: criteria that affect
the overall goal and that can be used for selection of the
final solution and sub-criteria that influence the main-
criteria and the alternatives to solve the problem [31].
A pairwise comparison matrix is made by expert’s
opinions under the Saaty’s preference scale as given in
Table 1.

Table 1. Saaty’s scales

Scale Compare factor of i & j
1 Equally important
3 Weakly important
5 Strongly important
7 Very strongly important
9 Extremely important
2, 4, 6, 8 Intermediate value between adjacent

scales

This work uses only the three first steps concerning
the determination of weights [32]. The first step builds
the pairwise comparison matrix.

Ann =


a11 . . . a1n
...

. . .
...

an1 . . . ann

 (4)

Where n is the number of attributes from data, aij is
the Saaty’s comparison value between attributei and
attributej .

aij = 1 when i = j and aji = 1/aij .

The first step costs about n2 + α, α ∈ R. The second step
constructs the normalized decision matrix.

cij =
aij∑n
j=1 aij

, i, j = 1, ..., n (5)

This step requires n2 + β, β ∈ R. The third step
determines the criteria weight vector w by averaging the
entries on each row of the normalized matrix. This step
requires about n2 + σ, σ ∈ R.

wi =
∑n
j=1 cij
n i = 1, 2, ..., n (6)

At the end, performing the vector of attributes weights
is solvable in polynomial time proportionally to the
square of the number of attributes, i.e (n2 + α) + (n2 +
β) + (n2 + σ ) = 3n2 + α + β + σ,with α, β, σ ∈ R.

3.3. Cosine similarity model
Cosine is the most popular Euclidean distance based
metric for text classification [33] and [34]. It is
determined as in Equation (7) and its value is between
0 and 1. More its value is closest to 1, more the both
vectors are similar.

cos ine(A, B) =
∑N
i=1 Ai × Bi√∑N

i=1A
2
i

√∑N
i=1B

2
i

A and B are two vectors.

(7)

3.4. Particle Swarm Optimization
PSO is developed by Kennedy and Eberhart in
1995 [35]. According to [36] and [24] it is considered
as the most popular nature-inspired metaheuristic
optimization algorithm. The PSO algorithm is directed
by personal experience (P best), overall experience
(Gbest) as well as the current movement of the
particles to decide the next positions in the search
space. Additionally, experiences are accelerated by
two factors C1 and C2, and two random numbers
generated between [0, 1] whereas the current movement
is multiplied by an inertia factor w varying between
[wmin, wmax]. The initial population (swarm) of size N
and dimension D is denoted as X = [X1, X2, ..., XN ]T ,
where ‘T ′ denotes the transpose operator. Each
individual (particle) Xi (i = 1, 2, ..., N ) is given as Xi =
[Xi,1, Xi,2, ..., Xi,D ]. Also, the initial velocity of the
population is denoted as V = [V1, V2, ..., VN ]T . Thus, the
velocity of each particle Xi , (i = 1, 2, ..., N ) is given by
Vi = [Vi,1, Vi,2, ..., Vi,D ]. The index i varies from 1 to N
whereas the index j varies from 1 to D. The pseudo-
code of PSO is given in Algorithm 1 [37].

Complexity This part evaluates the time complexity
of PSO algorithm.

• Line 1 contributes for one (01) operation;

• Line 2 contributes for N operations;

• Line 3 contributes for one (01) operation;
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Algorithm 1: Pseudocode of PSO.

1 Set parameter wmax, wmin, C1 and C2 of PSO ;
2 Initialize population of particles having positions

X and velocities V ;
3 Set iteration k = 1 ;
4 Calculate fitness of particles Fki = f (Xki ), ∀i and

find the index of the best particle b ;
5 Select P bestki = Xki ,∀i and Gbestk = Xkb ;
6 w = wmax − k ∗ (wmax − wmin)/Maxite ;
7 Update velocity and position of particles ;
8 V k+1

i,j = w ∗ V ki,j + C1 ∗ rand() ∗ (P bestki,j − X
k
i,j ) +

C2 ∗ rand() ∗ (P bestki,j − X
k
i,j ) ; ∀j and ∀i ;

9 Xk+1
i,j = Xki,j + V k+1

i,j ; ∀j and ∀i ;

10 Evaluate fitness Fk+1
i = f (Xk+1

i ), ∀i and find the
index of the best particle b1 ;

11 Update Gbest of population ;
12 if Fk+1

i < Fki then
13 Gbestk+1 = Xk+1

j

14 else
15 P bestk+1

j = P bestkj

16 Update P best of population ;
17 if Fk+1

b1 < Fkb then
18 Gbestk+1 = P bestk+1

b1 and b = b1
19 else
20 Gbestk+1 = Gbestk

21 if k < Maxite then
22 k = k + 1 and goto step 6
23 else
24 goto step 25

25 Print optimum solution as Gbestk ;

• Line 4 contributes for 1 + logN operations with a
binary search to look for index of the best particle;

• Line 5 contributes for two (02) operations;

• Line 6 - 7 perform N iterations in outer loop
and use bubble sorting algorithm with six (06)
operations;

• Line 8 performsN iterations in outer loop for nine
(09) operations;

• Line 9 performs N iterations in outer loop for one
(01) operation;

• Line 10 performs logN operations to look for the
best element (binary search);

• Line 11 performs one (01) operation;

• Line 12 to line 15 perform one (01) operation;

• Line 16 performs one (01) operation;

• Line 17 to line 20 perform one (01) operation;

• Line 21 to line 24 perform one (01) operation;

• Line 25 performs one (01) operation.

• N.B: The goto operation indicates k iterations in a
outer loop from line 6 to line 22.

In summary, t(n) = 1 +N + 1 + (1 + logN ) + 1 + k(6 +
N logN +N (9 + 1) + (logN + 1 + 1 + 1 + 1 + 1 + 1)) =
N + logN + k(10N + 12 + logN +N logN ) + 4. PSO
includes two inner loops based on the population
n, and one outer loop for iteration k (from line 6
to line 22). The complexity time t(n) is linear in
terms of k, which is in fact, the number of iterations
of the particle movements. Higher, the number of
iterations, higher is t(n). The main computational
constraint concerns evaluating complexity time related
to the objective function (#obj). Therefore, t(n) =
N + logN + k(10N + 12 + logN +N logN ) + 4 + #obj

3.5. k-Nearest Neighbors
k-Nearest Neighbours (k-NN) is a supervised learning
technique used for classification based on majority of k
nearest neighbours [38] and [39]. It relies on Euclidean
distance based metrics to determine minimum distance
from the query instance to the training samples to
determine the k-NN. The pseudocode of k-NN is given
in Algorithm 2 [40] and is illustrated in Figure 2.

Algorithm 2: Pseudocode of k-NN
1: The data is loaded.
2: The value k is initialized.
3: For every point in the training data
4: DistanceVector <- Calculate the distance between

testing data and each row of training data. Here,
Euclidean distance or other metrics such as
Chebyshev or cosine can be used.

5: vectorSorted <- Sorting DistanceVector in
ascending order based on distance values;

6: topK <- Get top k rows from vectorSorted;
7: frequentClass <- Get the most frequent class of

these rows;
8: Return frequentClass

3.6. k-Means Clustering
k-Means [41] is an unsupervised learning technique
used for clustering. The following steps [42] are
involved in k-Mean clustering and is illustrated in
Figure 3.
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Figure 2. k-NN

• k observations are randomly selected (they are
called centroids);

• Each instance in the dataset is affected to
a cluster represented by nearest (Euclidean
distance) centroid;

• Once the clusters are constituted, the centroid
is updated for each cluster to the mean of all
cluster members. And the cluster constitution
reinitializes with new centroids. This step is
repeated until the centroids become themselves
mean of clusters. It means that the centroid
become unchanged;

• The prediction of a test sample is done based
on the nearest centroid calculated based on
Euclidean distance.

3.7. Support Vector Machine
Support Vector Machine (SVM) [43] is a discriminative
classifier defined by a separating hyperplane. The algo-
rithm outputs an optimal hyperplane given labelled
training data (supervised learning) to classify new data.
In two dimensional space, this hyperplane is a line
dividing a plane in two parts, where each class belongs
to either side. As shown in Figure 4, points in star
and in circle can be separated with an infinite number

of hyperplanes. The best hyperplane maximizes the
margin. The margin is the distance between the hyper-
plane and a few close points. These close points are the
support vectors because they control the hyperplane.

The support vector classifier fails if the data is not
linearly separable as in Figure 5. In this case, the
aforesaid problem is solved through transformation
of original feature space. It requires a nonlinear
separation to a feature space that can be separated by a
linear function. These approaches include linear kernel,
polynomial kernel and gaussian kernel.

3.8. Regression

Regression refers a model which relates dependent
attributes to independent attributes as shown in
Figure 5. It is used to predict a variable in terms
of other variables. Simple linear regression models
relationships between a dependent variable and an
independent variable. Multiple linear regression is
an approach to model the relationship between a
dependent variable and several independent variables.
SVM Regression [44] is used within the scope of this
work. The version of SVM for regression was proposed
in 1996 by Vapnik et al. and baptised as Support Vector
Regression (SVR) [45]. SVR is illustrated in Figure 6.
It differs from SVM in some aspects. SVR deals with
continuous classes by setting a margin of tolerance
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Figure 3. k-Means

Figure 4. SVM

Figure 5. Non Linear Separation

(epsilon) in approximation to the SVM. The main idea
remains the same: minimize and tolerate error, and
determine the hyperplane which maximizes the margin.
A SVR problem is formulated as [46] min1

2 ‖ w ‖
2,

where ‖ w ‖2 is the magnitude of the normal vector to
the surface being approximated.

Subject to,
yi − wxi − b ≤ ε and wxi + b − yi ≤ ε
where xi is the a training sample with target value yi .
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ε is a free parameter which is used as a thresold: true
positives are predicted within a ε range.

Figure 6. Linear SVR

4. Model development
The proposed approach, namely Case based reasoning
Architecture based on machine LEarning (CABLE) is
structured in three layers as shown in Figure 7. The
retrieve layer relies on an adapted cosine similarity
combined to AHP, k-NN and k-Means to determine
the most similar cases to the query case. The reuse
layer formulates the prediction problem as a linear
programming problem on the similar cases and exploits
an optimization technique to obtain the solution of the
query case. The revise layer improves the detection
efficiency based on a certain threshold, by using
SVR. Methodologies for predicting a case solution are
presented in the following sections.

4.1. Retrieve
The aim of retrieve is to provide the most similar cases
to a new incoming case. There are some components to
describe to achieve this mission.

Case base. The case base is represented as relational
matrix depicted in Table 2 where attribute i refers
to characteristics of the case and solution i is the
solution value obtained for the problem case i. V alueij
is the value of the attribute, which could be of type
continuous, discrete, ordinal or nominal. The solution
can be discrete or continuous.

Generation of attribute weights. Considering the impor-
tance of an attribute is relevant to improve performance
of CBR systems [47–49]. Literature exploits [47] the
whole costly process of AHP to determine the weights
of attributes. On the contrary, some steps are consid-
ered to obtain the normalized vector of weights ( see
section 4.1. Each attribute refers to criteria. The pair-
wise comparisons are determined through interviews
with domain experts under the Saaty’s scale to compare
attributes with each others. Consistency (lower to 0.1)
is checked according to responses [30]. The details on

similar case retrieval are described in the following
section.

Determination of similar cases. This step takes as input
a query case (CQ) and finds similar cases based on
distance measures. At this stage, the query case only
includes of attributes associated to weights with a
solution to be determined. Three steps are performed
to get similar cases. First, the similarity measure is
computed between the query case and every case in the
case base. This operation is realized with the adapted
cosine, which considers the importance of attributes as
proposed in Equation (8).

CosineMod(A, B) =
∑N
i=1wiAiBi√∑N

i=1wiA
2
i

√∑N
i=1wiB

2
i

(8)

Therefore, it takes each case with its pairs (attribute,
weight) as determined by AHP. There are therefore
as much similarity values as the number of cases.
For instance, if the case base has hundred cases
with solutions, then there will be hundred similarity
measures. Each case is possibly similar to the query
case. At this point, it is important to define the criteria
to select cases considered as similar. We adopt to realize
it by experimentally finding a value (α) varying in the
range [0.1, 0.9], which provides the higher number of
cases closer to CQ. The logic exploited here is that
more experiences, a person has, more that person can
make a decision on a future similar problem. It is
justified by the fact that the person has enriched with
enough knowledge. In this regards, more there are
cases, much precise is the determination of the query
case solution. Cases with a similarity greater than (α)
are consequently taken.

Determination of the most similar cases. The first activity
here is to transfer the similar cases (without their
solutions) to k-Means to create cluster of cases that are
similar to each other. The intention is to put together
cases with similar characteristics trend. The algorithm
k-NN is then taken into account to match the query
case into the closer cluster. This cluster is determined
based on calculation of Euclidean distance between
previous cluster centroids and the query case. The
selected cluster includes the most similar cases. For
instance, k-Means provides the following output: 1, 1,
2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,
2, 1, 1, 1, 2, 2. The position represents the case index
and the value is the cluster identifier to which the case
belongs. In this example, case 1, case 2, case 9, case
10 belong to cluster 1. Case 3, case 4, case 5 belong
to cluster 2. The next step consists to apply k-NN to
determine in which cluster the query case fits better:
it is a classification problem. In other words, this step
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Figure 7. CABLE

Cases Attributes Solutions
Attribute1 Attribute2 ... ... Attributem

Case1 V alue11 V alue12 ... ... V alue1m Solution1
Case2 V alue21 V alue22 ... ... V alue2m Solution2
... ... ... ... ... ... ...
... ... ... ... ... ... ...
Casen V aluen1 V aluen2 ... ... V aluenm Solutionn

Table 2. Case base

determines the centroid most closer to the query case,
based on Euclidean distance. In case, several clusters
are equally distant, the operation is restarted based on
cosine distance. At the end, there are two outputs.

• The cluster with the centroid with the smaller
Euclidean distance is selected;

• The cases belonging to that cluster are elected as
the most similar cases for the problem.

4.2. Reuse
This stage aims to take the set of most similar cases
to deduce the solution of the query case. For that,
as described in section 3.1, there are three main
possibilities. First, the attributes are modified; second,
the problem structure is modified; and third, solution

of the retrieved cases are together merged to the query
case while changing some parameters such as attribute
weights. The adopted method is the last option because
the two first options modify either the original problem
structure. This situation is represented as a model
of relationships between different cases. That is, to
determine a linear function between the solutions and
case attributes, based on the actual structure of the
case base. This problem can be modelled as a linear
programming model as shown in Equation 9, where

• xij is the attribute i’s value of the case j;

• wi is the ith AHP weight;

• Rj is the solution value of the case j.
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Rj = w1xj1 + w2xj2 + w3xj3 + ... + wixji (9)

Equation (10) is obtained after applying Equation (9)
to the set of retrieved cases.

x11 . . . x1i
...

. . .
...

xj1 . . . xij

 ∗

w1
...
wi

 =


R1
...
Rj

 (10)

Variables called errors in Equation (11) are the gap
between the expected solution and the scalar of casei by
the vector of weights.


x11 . . . x1i
...

. . .
...

xj1 . . . xij

 ∗

w1
...
wi

 −

R1
...
Rj

 =


e1
...
ej

 (11)

The objective function in Equation (12) has been
adopted from [5] with the main goal of minimizing the
sum of square root of the error ej . This function reaches
a minimum value when the minimum combination of
weights is obtained by solving each of the equations
resulting from the matrix calculation.

minf (e) = 2

√√√maxj∑
i=1

(e2
j ) (12)

Particle Swarm Optimization (PSO) is used to find
the optimal weights in Equation 12. The query
case’s solution is simply calculated by substituting
the attribute’s optimal weights and its attribute
values. Evaluating the objective function costs about
#attribute ∗ #cases for solving the linear system.
#attribute is the number of attributes and #cases is the
number of cases.

4.3. Revise
This activity is about improving the solution of the case
query so that to minimize errors. It includes different
steps.

Step 1 the case base C is splitted in possible x%
training cases (training) and y% testing cases
(testing) such that x belongs to 50%, 55%, 60%,
65%, 70%, 80%, 85%, 90%, 95% and y is 100% −
x.
For each splitting, perform step 2 to step 4

Step 2 the SVR algorithm is applied to the training
cases to obtain the model of regression SVRModel.

Step 3 for each testing case,
(a) Compute µtestingcase such that

µtestingcase = 1 −
mean(solutionretrieve(testingcase))

solutionreuse(testingcase)
(13)

solutionretrieve(testingcase) provides solutions of
the most similar cases for the testing case and
solutionreuse(testingcase) gives the solution of the
testing case obtained in the reuse. The set of
training cases is considered as the case base to
obtain solutionretrieve and solutionreuse.
(b) Determine µmin as the smallest of µtestingcase.

Step 4 Determine the solution of the query case
(newcase) such that

solutionrevise(newCase) ={
SVRModel(newcase) µnewcase > µmin
solution1reuse(newcase) otherwise

solution1reuse(newcase) is computed on the orig-
inal C to obtain the solution in the reuse. SVR-
Model(newcase) predicts the solution of the query
case based on the regression model.

5. Tests and validation

This research focused on proposing a reliable scheme
to estimate solutions of new case problems. Various
experiments using the collected cases were conducted
to test the reliability of CABLE. All the scripts have
been written using Matrix Laboratory (Matlab) version
2018a because this environment basically includes
pre-integrated machine learning and optimization
packages. The hardware consists to a machine with
a processor Core i5 of 3.20 GHz and a memory of
8 GigaBytes with Microsoft Windows 8 as the hosted
operating system.

5.1. Experiment design and process

The experiment design has chronological phases as
illustrated in Figure 8. The first phase is the collection
of the dataset, which includes different cases related
to energy consumption. The second phase concerns the
application of CABLE on the gathered data.

This phase includes application of different layer
processes involved in CABLE. Experiments based on t-
test are exploited to determine which reuse algorithm
provides best prediction results as well as to examine
which whether reuse or revise is precise in prediction.
The final performance of CABLE is obtained by
computing the prediction accuracy based on Root
Mean Square Error (RMSE) since the target variable
is continuous. The last phase aims to measure effects
of varying k-NN and PSO parameters on the retrieve
and reuse results. This phase is validated by studying
consistency of the retrieved cases obtained for each
parameter value.
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Collecting reliable data Application of CABLE
Investigations of 

Impact of parameters

1 2 3

- Validation based on RSME

- Validation based on test statistics - Validation based on the retrieved cases

Figure 8. Experiment design

Table 3. Description of dataset attributes

Attribute Description
DA_DEMAND(A1) Day-Ahead Cleared

Demand
RT _DEMAND(A2) Real-Time Demand

DA_LMP(A3) Locational Marginal Price
One Day Ahead

DA_EC(A4) Energy Part of the Day
Ahead Price

DA_CC(A5) Congestion Part of the
Day Ahead Price

DA_MLC(A6) Marginal Loss Part of the
Day Ahead Price

RT_LMP(A7) Real-Time Locational
Marginal Price

RT_EC(A8) Energy Component of
Real-Time

RT_CC(A9) Congestion Component
of Real-Time

RT_MLC(A10) Marginal Loss Compo-
nent of Real-Time

DRY_BULB(A11) Dry-bulb temperature in
°F for the weather station

DEW_Point(A12) Dewpoint temperature in
°F for the weather station

Reg_Service_Price(A13) Regulation Market Ser-
vice clearing price

Reg_Capacity_Price (A14) Regulation Market
Capacity clearing price

System_Load(A15) Real load corresponding
to the energy demands

5.2. Collecting of data
The dataset is collected from of NYISO [50]. It has
1096 cases gathered day-by-day during two years from
the first of January 2015 to the 31 December 2017. It
concerns electrical consumption of different appliances
in market buildings. This dataset has fourteen (14)
attributes (A1 to A14) required for assessing energy
load (A15), which is the target variable to forecast. They
are described in Table 3.

Table 4 presents the types of attributes and some
descriptive statistics such as the minimum, the
maximum, the mean and the standard deviation of each
attribute.

Figure 9 depicts the distribution of the target
variable. This figure illustrates that System_Load
follows a normal distribution with a skewness of 0.755.

Figure 9. Distribution of the system_load variable

5.3. Application of CABLE
This experiment focused on applying CABLE method-
ologies (see section 4) on the collected dataset. The
dataset has been splitted into training cases and testing
cases such that training possibly belongs to 50%, 55%,
60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and testing
is 100% − x. Different experiments take the training set
as case base and the testing set includes the query cases
to estimate solutions. The overall aim was to estimate
the testing solutions through CABLE schemes and to
evaluate prediction performance.

Retrieve. Table 5 presents an excerpt of the case base
and a new case. As presented in section 4, this layer
aims to find the most similar cases.

Attributes are weighting with AHP based on 10
surveyed experts in energy domain, who provided
comparisons under Saaty’s scale. Based on the answers
from expert, the following attribute weights have
been obtained based on the methodology 4.1. w1 =
0.185, w2 = 0.11, w3 = 0.14, w4 = 0.090, w5 = 0.093,
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Table 4. Data types and descriptive statistics

Type Min Max Mean Standard deviation
DA_CC Continuous -29 2 -0.221 1.436

DA_Demand Continuous 11419 22928 15718.270 1987.782
DA_EC Continuous 10 241 44.06204380 28.139

DA_LMP Continuous 10 242.00 44.032 28.405
DA_MLC Continuous 0.00 3.000 0.120 0.375

Dew_Point Continuous -17.00 74.00 38.917 19.592
Dry_Bulb Continuous 1.00 90.00 53.683 19.399

Reg_Capacity_Price Continuous 0.00 435.00 22.977 34.652
Reg_Service_Price Continuous 0.00 10.00 0.498 1.750

RT_CC Continuous -15.00 23.00 0.029 1.758
RT_Demand Continuous 11955 23633 16020.553 2082.461

RT_EC Continuous 0.00 334.00 42.283 33.008
RT_LMP Continuous 0.00 336.00 42.486 33.536
RT_MLC Continuous -1.00 3.00 0.108 0.360

System_Load Continuous 12167 23970 16264.166 2112.897

Table 5. Case base representation

Attributes A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 Solution
Weights 0.185 0.11 0.14 0.090 0.093 0.057 0.048 0.056 0.049 0.044 0.043 0.036 0.024 0.015
Case 1 16679 16391 63 62 0 1 45 45 0 0 30 9 6 0 16688
Case 2 16924 16649 57 56 0 1 22 22 0 0 31 15 7 0 16934
Case 3 15999 16624 53 52 0 0 58 58 0 1 27 25 12 1 16958
Case 4 14404 15765 41 40 0 0 77 76 0 1 41 40 21 1 16058
Case 5 18036 18557 83 82 0 1 103 111 0 1 19 30 25 3 18867
Case 6 18504 19259 82 82 0 1 130 130 0 1 15 10 28 0 19554
Case 7 19409 19883 115 114 0 1 127 126 0 1 10 20 24 0 20159

New case 18602 19901 81 82 0 1 99 114 0 1 18 25 26 2

w6 = 0.057, w7 = 0.048, w8 = 0.056, w9 = 0.049,
w10 = 0.044, w11 = 0.043, w12 = 0.036, w13 = 0.024,
w14 = 0, 015

The adapted cosine provides the similarity results
depicted in Table 6.

Table 6. Similarity results

Cases Cosine values
case 1 0.63
case 2 0.71
case 3 0.52
case 4 0.48
case 5 0.900
case 6 0.911
case 7 0.902

Next, the optimal threshold is selected to provide
the best similar cases. For that, the following steps are
executed while looping from 0.1 to 0.9 with a pace of
0.1.

Step 1 k-Means is used then to form the clusters
provided in Table 7.

Step 2 k-NN classifies the new case in different classes.
For every alpha, k-NN selects the class {5,6,7} to
assign the new case. Case 5, Case 6 and Case 7 are
the best similar cases to be retrieved.

An experiment has been realized on different
dataset splitting to examine similarity trends. For
each splitting, the most similar cases are obtained as
previously presented and then the average between
their similarity measures is calculated. As presented
in Table 8, the overall similarity scores ranged from
approximately 70% to 91%. These similarities show
that cases similar to the given case were extracted with
a similarity of approximately 80.5%, which ensures
the reliability of the retrieved cases for prediction.
Furthermore, the subdivision (75%, 25%) seems to
provide consistent retrieval.

Reuse. Experiments here were achieved based on the
dataset subdivision (75%, 25%) because it provided
best similarity values (see table 8), therefore optimal
retrieved cases. Reuse can be performed by copying
solution values from the retrieved cases or by adapting
historical cases with a mathematical function. Two
procedures has been used to identify which one fits the
best to the problem, adapting and copying.
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Table 7. k-Means clustering

Alpha Cases Clusters
0.1 empty empty
0.2 empty empty
0.3 empty empty
0.4 Case 1, Case 2, Case 3, Case 4, Case 5, Case 6, Case 7 cluster 1={1,2}

cluster 2={3,4}
cluster 3={5, 6, 7}

0.5 Case 1, Case 2, Case 3, Case 5, Case 6, Case 7 cluster 1={1,2}
cluster 2={3}
cluster 3={5, 6, 7}

0.6 Case 1, Case 2, Case 5, Case 6, Case 7 cluster 1={1,2}
cluster 2={5, 6, 7}

0.7 Case 2, Case 5, Case 6, Case 7 cluster 1={2}
cluster 2={5, 6, 7}

0.8 Case 5, Case 6, Case 7 cluster 1={5, 6, 7}
0.9 Case 5, Case 6, Case 7 cluster 1={5, 6, 7}

Table 8. Experiments about dataset splitting vs. similarity measures

Subdivisions (training, testing)
(50,50) (55,45) (60,40) (65,35) (70,30) (75,25) (80,20) (85,15) (90,10) (95,5)

Similarity measures 0.79 0.75 0.86 0.84 0.905 0.913 0.77 0.85 0.79 0.70

Reusing by adapting The parameters of PSO are the
following.

• Inertia weight: 0.9 to 0.4

• Acceleration factors (c1 and c2): 2 to 2.05

• Population size: 10 to 100

• Maximum iteration (Maxite): 100 to 500

• Initial velocity: 10% of position

In this appraoch, testing solutions are obtained when
PSO converges. Figure 10 shows the gap between the
solutions obtained after PSO convergence (graph in red)
and the expected solutions (graph in blue).

Figure 10. Reuse results

Figure 10 reveals some gaps between the expected
solutions and predicted solutions. Moreover, CABLE is
able to optimize testing solutions through PSO with an
accuracy of 0.88.

Reusing by copying In this scheme, solutions of
testing cases are determined by applying the Majority
Rule (MR), the Probabilistic Method (PM) and the
Class-based Method (CM) as described in section 3.1.
Table 9 is an excerpt of the first nine case solutions
calculated in each technique (according to section 3.1).
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The first remark is that MR, PM and CM have values
that are sometimes repeated across cases. MR has its
majority value 15153 copied in all cases; PM has either
values 15192 or 15409 that are repeated across cases
and CM has either values 17480 or 16086 obtained
in different cases. This situation is explained by the
fact that these models compute solutions independently
from the case base structure. It is therefore observed
that these estimations can be efficient only in some
cases.

The next section investigates which reuse model
(MR, PM, CM or PSO) makes solution estimations
more closest to the expected testing solutions (see the
column "ExpectedSolution" in Table 10). To achieve this
objective, ExpectedSolution is compared indepedently
to MR, then to PM, then to CM and to PSO. The
statistical technique t-Test is used to check if the means
in each case are significantly different from each other.

t-Test The aim here is to examine, for example,
whether ExpectedSolution and PSO values, are different
on average, then PSO could not be chosen as the one
getting closer to the expected values. The hypotheses
are the following.

Ho(Null hypothesis) The sample means are equal
or they do not have any significant difference.
For instance, ExpectedSolution’s mean and PSO’s
mean do not have any significant difference.

H1(Alternate hypothesis) The sample means are dif-
ferent or they have significant difference. For
instance, ExpectedSolution and PSO means have
significant difference.

Table 10 presents the results from the statistical test.
Concerning PSO, P (T <= t) = 0.64 > 0.05, Ho is

therefore accepted. It means that PSO and ExpectedSo-
lution samples have statistically the same means. PSO
is appropriate to approximate ExpectedSolution. Con-
cerning MR, the difference between MR and Expected-
Solution means is significant because we have evidence
to reject the null hypothesis (P (T <= t) = 5.3971E −
50 < 0, 05). MR differs or moves away from Expected-
Solution. This conclusion is the same for PM and CM.
In view of results, only the test between the Expect-
edSolution and PSO reveals that they do not differ on
average (from a statistical point of view), and that there
is only 5% chance to fail in this assertion. In addition,
mean values of PSO and ExpectedSolution are too close
as well as their correlation equals 0.995, close to 1. PSO
is therefore the model which is more appropriate to the
expected values.

Revise. The revision of reuse solutions is made as
described in section 4.3. First we experimented different
dataset subdivisions as presented in Table 11. Then we

investigated the subdivision which offers the high revise
accuracy related to dataset.

The subdivision (75%, 25%) offers the best accuracy.
Figure 11 illustrates results of revise (graph in red)
compared to expected solutions (graph in blue). We
observe that the accuracy has improved from 88.38%
in the reuse to 99.35% in the revise. Therefore,
some mispredicted testing solutions in reuse has been
correctly classified in the revise. The SVM regression
model effectively improves the determination of
solutions.

Figure 11. Revise result

We performed a statistical test to investigate whether
the reuse approach is better than the revise approach.

t-Test The aim here is see, for example, whether
ExpectedSolution and Reuse’s estimated values, are
statistically different on average, then Reuse could not
be chosen as the one getting closer to the expected
values. The hypotheses are the following.

Ho(Null hypothesis) The sample means are equal or
they do not have any significant difference. For
instance, ExpectedSolution’s mean and Revise’s
mean do not have any significant difference.

H1(Alternate hypothesis) The sample means are dif-
ferent or they have significant difference. For
instance, ExpectedSolution and Revise means
have significant difference.

Table 12 presents the results from the statistical test.
Concerning Reuse, P (T <= t) = 0.64 > 0.05, Ho is

therefore accepted. It means that PSO and ExpectedSo-
lution samples have statistically the same means. PSO
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Table 9. First nine case solutions

ExpectedSolution PSO MR PM ClassBasedMethod
Case 1 16688 16798.60 15153 15192 17480
Case 2 16934 17032.85 15153 15192 17480
Case 3 16958 16833.86 15153 15409 16086
Case 4 16058 15809.71 15153 16911 16086
Case 5 18867 18835.71 15153 15409 16086
Case 6 19554 19572.17 15153 15409 16086
Case 7 20159 20278.36 15153 15409 16086
Case 8 20143 20127.56 15153 15409 16086
Case 9 18454 18510.97 15153 15192 16086

Table 10. t-Test: Expected solutions mean vs. PSO mean (resp. MR, PM, CM) , significance level = 0.05. ES: Expected solutions

t-Test: Paired Two Samples for Means, alpha = 0.05
ES PSO ES MR ES PM ES CM

Mean 16714.4 16769.6 16714.4 15153 16714.4 15588.8 16714.4 16503.1
Variance 1957287.0 2051434.9 1957287.0 0 1957287.0 401251.5 1957287.0 409003.8

Observations 274 274 274 274 274 274 274 274
Pearson correlation 0.99 - - - 0.006 - -0.10 -

Hypothesized Mean Difference 0 - 0 - 0 - 0 -
df 546 - 273 - 380 - 382 -

t-stat -0.45 - 18.47 - 12.13 - 2.27 -
P(T<=t) one tail 0,32 - 2.69855E-50 - 3.72486E-29 - 0.01 -
T critical one tail 1.64 - 1.650454303 - 1.64 - 1.64 -
P(T<=t) two tail 0.64 - 5.3971E-50 - 7.44973E-29 - 0.02 -
T critical two tail 1.96 - 1.96 - 1.96 - 1.96 -

Table 11. Experiments about dataset splitting vs. revise accuracy

Subdivisions (training, testing)
(50,50) (55,45) (60,40) (65,35) (70,30) (75,25) (80,20) (85,15) (90,10) (95,5)

Regression accuracy 69.24 86.24 75.24 76.23 90.13 99.35 88.20 79.99 95.12 84.6

Table 12. t-Test: Expected solutions mean vs. Reuse mean (resp. Revise mean) significance level = 0.05. ES: Expected solutions

t-Test: Paired Two Samples for Means, alpha = 0.05
ES ReuseSolutions ES ReviseSolutions

Mean 16714.4 16769.64 16714.4 16713.18
Variance 1957287.0 2051434.904 1957287.0 1938675.069

Observations 274 274 274 274
Pearson correlation 0.995 - 0.999 -

Hypothesized Mean Difference 0 - 0 -
df 546 - 546 -

t-stat -0.45 - 0,01 -
P(T<=t) one tail 0.32 - 0,49 -
T critical one tail 1.64 - 1,64 -
P(T<=t) two tail 0.64 - 0,991 -
T critical two tail 1,96 - 1,96 -

is appropriate to approximate ExpectedSolution. Con-
cerning revise, P (T <= t) = 0.991 > 0.05, so the differ-
ence between both samples is not significant. In terms

of mean, Revise is statistically equals to ExpectSolution.
Revise is also appropriate to approximate the expected
solutions with 5% chance to be mistaken. However,
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to choose the model that best approximates, we refer
to mean and correlation coefficient values. The results
illustrate that ExpectedSolution and Revise means are
very close (16713 and 16714). Additionnally, the corre-
lation coefficient between ExpectedSolution and Revise
is closest to 1 (0.9998) compared to ExpectedSolution
and Reuse (0.995). The Revise model is therefore the
model that best approximates the expected values.

5.4. Study of k-NN and PSO parameters on the
determination of solutions
This step investigates the incidence of variability of PSO
and k-NN parameters, on the determination of similar
cases.

Number of neighbors Table 13 provides the similar
cases for case 1 based on the number of neighbours in
k-NN. For each k, the similar cases are ordered based on
the distance considering the fourteen attributes. As k
is reduced, the k-NN algorithm selects the most similar
cases. The most similar cases are performed until the
selection is done for k = 1. Table 13 reveals that case
57 is the neighbour closest to case 1 for k = 1. Figure
12 shows different case values for k = 10 and case 57
is found as the most closest to case 1 in terms of
system_Load prediction. This experiment demonstrates
that while varying k, k-NN remains consistent in the
selection of most similar cases. This result means
that the approach used to determine similar cases is
effective.

Figure 12. Similar cases for case 1

PSO executions Case 5 is investigated to analyze the
relation between the number k of neighbours and the
objective function value. Table 14 provides results. The
estimation of case 5’s solution with PSO is independent
to the number of executions of PSO. It is justified by the
fact that the estimated solution remains the same across
k and the objective function is constant. A better value
of the objective function is attained when k takes the
value of 10.

5.5. Discussions
Determination of similar cases. Determination of similar
cases. Existing works determine similar cases in the

retrieve process based on Euclidean distance models
by randomly selecting the number of similar cases.
This work proposes a new scheme based not only on
Euclidean distance but also on k-NN and k-Means for
two reasons: the first reason is to take into account
continuous solutions using k-Means to create clusters.
The second reason is that the hyper-parameter k is
very useful to set the number of similar cases taken
here as the number of voted neighbors. However,
the problem still exists. There should be a number
of cases at the beginning. Therefore, a considerable
amount of experiences should be gathered for the same
problem. Otherwise, k-Means and k-NN will lose their
performance. Collecting such information is sometimes
very hard. This scenario is a limitation for CABLE
since similar cases required for reuse and revise would
possibly not exits due to dataset size.

Genericity. CABLE is composed of different compo-
nents in different stages. In the first stage, CABLE
includes AHP means of computing attribute weights.
The latter takes as input a matrix of pair comparisons
between attributes by experts. Therefore, it is config-
urable and not fixed to a particular problem. The other
functionalities such as the adapted cosine, k-Means and
k-NN are adaptable to the dataset taken as input. In
the second stage, CABLE uses PSO, which computes
the set of weights to apply to each attribute in other to
find the solution of the new case. PSO depends on the
dataset since it takes as input the subset of known cases
from the dataset. In the third stage, CABLE includes an
algorithm, which depends on the result in reuse and
the SVM Regression. This algorithm is based on two
parameters: the number of training cases (x), and the
number of testing cases (y ). The former is used to derive
the regression model and the latter is used to obtain the
threshold which indicates whether the reuse solution is
applied or the reuse solution is revised. These overall
descriptions demonstrate that CABLE is configurable
according to the dataset provided as input. It is there-
fore, generic-dependent to the dataset provided for
the forecasting problem to solve. More important it
deals with continuous solutions since in the retrieve, k-
Means is used to make cluster of retrieve cases before
transferring it to k-NN. However, it is limited when
one cannot provide enough data at start. In this case,
an alternate learning algorithm must be determined,
whose performance is not dependent to data size.

Association of intelligences. This research contributes in
the way that CABLE federates various intelligences
and computational approaches: an adapted version of
cosine similarity, a multi-criteria decision making, (un-
)supervised algorithms such as k-NN and k-Means,
an optimization algorithm and the supervised SVM
regression. The CBR architecture proposed so far
is able to accurately forecast the electricity energy
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Table 13. Similar cases selected for case 1

k Index of cases
10 57, 1069, 188, 126, 568, 561, 147, 470, 1019
5 57, 1069, 188, 126
3 1, 57, 1069
1 57

Table 14. PSO executions for case 5

PSO executions Measures k=1 k=3 k=5 k=10

100
Minimum 18867 18758 18758 18624

Mean 18867 18823.66 18813.6 18735
Std 0 57.83 44.89 89.70

10
Minimum 18867 18758 18758 18624

Mean 18867 18823.66 18813.6 18735
Std 0 57.83 44.89 89.70

consumption in home buildings and can be generic
to other type of dataset with non-discrete class. The
efficiency of forecasting after the reuse and revision
stages is due to the good measure of approach of
similarity implemented in the retrieve stage and
the optimization in the determination of solutions.
Nonetheless, this process of association induces a
complexity to deal with in case one does not have
enough resources for computing. Since input data
can be huge, approaches should be designed to avoid
unuseful and repeated operations.

Performance. The CABLE’s revise varies sizes of train-
ing and testing sets. The splitting (75%, 25%) has
been found accurate in improving the determination
of solutions since accuracy has improved by 11% from
reuse to revise. Although, this process provides inter-
esting results, it lacks to generalize results to the data
structure. It is unsure that the performance remains
acceptable if one changes the structure of the dataset:
for instance, does the performance remain when the
first 20% samples are used for training and the 80%
remaining samples are used for testing –or when the
first 20% samples are used for testing and 80% remain-
ing for training.

6. Conclusion and perspectives
IoT supports the smart city paradigm in collecting
information for making decisions. Smart city requires
to connect appliances and equipments that consume
energy. Optimization of energy consumption is there-
fore a concern for reduce monthly expenses. To address
this problem, this paper proposed CABLE, a three-
layer novel architecture of CBR with more generic func-
tionalities. CABLE combines optimization and machine
learning algorithms to forecast energy consumption in
buildings. The first layer is made of two ways. The

first extends the cosine model to consider attribute
weighting while evaluating similarity between cases.
The second applies k-Means then k-NN to find the most
similar cases to the new case. The second layer designs
the determination of the solution as a linear program-
ming problem solved with PSO on the retrieved cases.
The third layer improves the solution with the SVM
regression model. Experiments realized with 1096 sam-
ples about electricity energy consumption revealed that
the proposed scheme is accurate using the adaptation
manner with PSO in the reuse. In fact, the revise
approach is able to improve accuracy by 11% while
reaching around 99% of prediction of expected solu-
tions. The proposed architecture is a big potential to
predict continuous solutions for the energy problems.
The proposed architecture has two advantages. The first
is that it optimizes the prediction of solution based on
the association of machine learning and optimization
processes. The second is its capacity to adapt to energy
problems. As future work, we aim to design efficient
retain process concerning integration and indexing of
solved cases.
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