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Abstract. In this paper, we have developed a novel attempt to be sensitive to multiple 
means of long-memory time series in an unsupervised manner using our own legitimate 
method.Self-regular, can avoid estimating the gradual variance variance and use the 
regular method at the same time. The method can be conveniently and conveniently applied 
to the first-order stationary data with long memory (stationary with long memory) 
dependency), no change points, statistics are collected and summarized in non-exit 
distribution. We describe this statistic and evaluate its effects. At the same time, the 
feasibility of the method is illustrated by real data.  
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1 Introduction 

The research on the change point of time series first started decades ago, GOMBAY and 
HORVATH (1990) [1], discussed the use of maximum likelihood estimation mean. 

Long-term dependent data, also known as long-memory data or long-persistence data, is a 
phenomenon that has recently emerged frequently in time-series data analysis and is usually 
observed in long-term series data. In fact, there are many definitions of long memory. In this 
article, we use the following definitions. Let: 

(1 − 𝐵) (𝑋 − 𝜇) = 𝑢 , 𝑡 ∈ 𝑍    (1) 
where B is the post-position operator, µ is the unknown mathematical expectation, and, {u } ∈  
is a short dependent sequence with 0 mean and finite variance.。When the parameter m = 0, the 
time series  X  is called a  “ short-memory time series ”, when m ∈ (−1/2, 0) ∪ (0, 1/2), we 
call  {X}  is the “ long-memory time series ”. 

When we try to construct first-order statistics such as mean change point, cumulative sum 
statistics ( CUSUM ) is often a more commonly used method. The proof of its limit theory is 
relatively simple, and the calculation of numerical simulation is relatively easy. 

Its form is similar to the following: 

𝐺 (𝜃) =
√ ( )

     (2) 

However, this kind of statistical structure often has an additional condition, that is, the 
asymptotic variance needs to be estimated, and these methods without exception refer to more 
preset parameters. For the drawbacks of estimating asymptotic variance for CUSUM statistics, 
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Kiefer et al. (2000)[2] and Lobato (2001)[3] first proposed similar methods, which can 
successfully avoid estimating asymptotic variance. 

2 Model and test statistics 

At first we want to discuss the mean change point. With the series X , … , X  given, to test the 
H  , of no change in the mean, namely: 

Let {𝑋}  be the long memory time series. The null hypothesis is that no change point. 

𝐻  : 𝐸(𝑋 ) = 𝐸(𝑋 ) = ⋯ = 𝐸(𝑋 ) = 𝜇   (3) 

The alternative is that there being more than one change point, that is, there are m ≥ 1 change 
points，𝑘 = 1 < 𝑘 < ⋯ < 𝑘 < 𝑛 = 𝑘   make: 

𝐻 : 𝐸(𝑋 ) ≠ 𝐸(𝑋 ), i ∈ {𝑘 , … , 𝑘 }   (4) 

For other positions, 𝐸(𝑋 ) =  𝐸(𝑋 )。The number of change points m, and the position 

𝑘 … 𝑘  are unknown yet. Let 𝑋 , = (𝑘 − 𝑗 + 1) ∑ 𝑋  be the sample mean of X， 

𝑆(𝑗, 𝑘) = ∑ 𝑋  be the corresponding partial sum, with 1≤j≤k≤n. 

To test the null hypothesis (3), a common method is to compare recursive means: 𝑋 , = 𝑆 , /𝑘, 
the global mean 𝑋 , = 𝑆 , /𝑛, And check whether there is an obvious deviation between the 
two, and the corresponding research object becomes the called “ cumulative sum process ” : 

𝑍 (𝑡) =
1

√𝑛
𝑋 − 𝑋 , ,   𝑡 ∈ [0,1]

⌊ ⌋

 

⌊x⌋ means the largest integer that less than x. As the 𝐻   (3) of no change points, stochastic 
process {𝑍 (𝑡)} ∈[ , ] independent of the unknown μ. A suitable critical value can be obtained 
by the central limit theory of  cumulative sum process as follows. 

𝑆 (𝑡) =
1

√𝑛
(𝑋 − 𝜇),   𝑡 ∈ [0,1]

⌊ ⌋

 

Let B( ) be the standard Brownian motion, ⇒ means weak convergence in Skorokhod space, 
and the following assumptions are made:  

(IP) There exists σ > 0，such that {Sn(t), 0 ≤ t ≤ 1} ⇒ {σB(t), 0 ≤ t ≤ 1} , let： 

𝑆 (𝑟) = 𝑛 ( ) (𝑋 − 𝜇)    →    𝐶 𝐵 (𝑟), 𝑟 ∈ [0,1]

⌊ ⌋

 

𝑍 (𝑡) = 𝑛 ( ) 𝑋 − 𝑋 ,
⌊ ⌋

 , then there is： 

𝑍 (𝑡) → 𝐶 𝐵 (𝑡) − 𝑡𝐵     (5) 
where Cd is a positive constant, Bd(·) s called fractional Brownian motion.The assumption (IP) 
is often referred to as the principle of invariance.  

For example the mixing coefficients of Hannan (1979)[4] and Herrndorf (1984)[5], the 
functional dependence measures of Berkes et al. and other reference contributions therein. By 



 
 
 
 

postulate (IP) and the continuous mapping theorem, weak convergence can be obtained as: 

𝑍 (𝑡) → 𝜎{𝐵(𝑡) − 𝑡𝐵(1)} 

As reviewed by Shao and Zhang (2010) [6], both theoretical and empirical studies in the 
literature have found that using data-dependent bandwidth leads to testing with non-monotonic 
powers. To solve this problem, Shao and Zhang (2010) propose to adopt the idea of self-
regularization and generalize it to the change point problem.  

Proof. 

𝑍 (𝑡) = 𝑛 𝑥 − µ −
1

𝑛
𝑥 − µ

( )

 

= 𝑛 (𝑥 − µ) − 𝑛
⌊𝑛𝑡⌋

𝑛
𝑥 − µ

⌊ ⌋

 

= 𝑛 ∑ (𝑋 − µ) − 𝑡 · 𝑛 ∑ 𝑥 − µ
⌊ × ⌋⌊ ⌋

→ 𝐶 𝐵 (𝑡) − 𝑡 · 𝐶 𝐵                          (6) 

The postulate (IP) generally refers to the principle of invariance and has been shown to hold for 
most short dependent processes, e.g. Hannan (1979) and Herrndorf (1984) for mixed parameters. 
From the hypothesis (IP) and the principle of continuous mapping, we get the following weak 
convergence conclusion: 

𝑍 (𝑡) → 𝜎 {𝐵(𝑡) − 𝑡𝐵(1)}, This asymptotic distribution depends on the parameter σ。 

Statistics 𝑇 ： 

In the statistics, n corresponds to the sample population, and 𝛯 , (𝑗 , 𝑗 , 𝑗 ) and 𝛯 , (𝑗 , 𝑗 , 𝑗 ) 
correspond to the test statistics of positions 𝑗 , 𝑗 , 𝑗 to determine whether there is change point. 
The overall statistics traverse all the combinations of 𝑗 , 𝑗 , 𝑗  as a judgment on whether there is 
a change point as a whole. 

𝐷 , (𝑗 , 𝑗 , 𝑗 ) = × 𝑋 , − 𝑋 ,     (7) 

𝐿 , (𝑗 , 𝑗 , 𝑗 ) = ∑ × 𝑥 , − 𝑥 ,    (8) 

𝑅 , (𝑗 , 𝑗 , 𝑗 ) = ∑ × 𝑋 , − 𝑋 ,   (9) 

𝛯 , (𝑗 , 𝑗 , 𝑗 ) = 𝐿 , (𝑗 , 𝑗 , 𝑗 ) + 𝑅 , (𝑗 , 𝑗 , 𝑗 )   (10) 

𝑇 , = max , ( , , )

, ( , , )
     (11) 

𝐷 , (𝑗 , 𝑗 , 𝑗 ) = × 𝑋 , − 𝑋 ,    (12) 

𝐿 , (𝑗 , 𝑗 , 𝑗 ) = ∑ × 𝑋 , − 𝑋 ,   (13) 



 
 
 
 

𝑅 , (𝑗 , 𝑗 , 𝑗 ) = ∑ × 𝑋 , − 𝑋 ,     (14) 

𝛯 , (𝑗 , 𝑗 , 𝑗 ) = 𝐿 , (𝑗 , 𝑗 , 𝑗 ) + 𝑅 , (𝑗 , 𝑗 , 𝑗 )   (15) 

𝑇 , = max
, ∈ ( )

, ( , , )

, ( , , )
    (16) 

Ω(𝜀) = {(𝑡 , 𝑡 ): 𝜀 ≤ 𝑡 ≤ 𝑡 ≤ 1 − 𝜀}, 

Ω (𝜀) = {(⌊𝑛𝑡 ⌋, ⌊𝑛𝑡 ⌋): (𝑡 , 𝑡 ) ∈ Ω(𝜀)} 

Our test statistic is: 

𝑇 = 𝑇 , + 𝑇 , = max
( , )∈ ( )

, ( , , )

, ( , , )
+ max

, ∈ ( )

, ( , , )

, ( , , )
  (17) 

Unlike Shao's supervised test, which fixed the partitions by formulating segments according to 
a pre-specified change points number, the provided test is free of supervised, with change points 
detected. Following theorem tells the asymptotic properties of Tn under H  and  H  . 

Theorem 2.1. 𝑯𝟎 Limit Theory 

𝑇 → 𝑇(𝐵)        (18) 
And we have 

𝑇(𝐵) = sup
( , )∈ ( )

𝐷(𝐵, 0, 𝛾 , 𝑟 )

𝛯(𝐵, 0, 𝛾 , 𝑟 )
+ sup

( , )∈ ( )

𝐷(𝐵, 𝑆 , 𝑠 , 1)

𝛯(𝐵, 𝑆 , 𝑆 , 1)
 

𝐷(𝐵, 𝑡 , 𝑡 , 𝑡 ) =
1

𝑡 − 𝑡
× 𝐵(𝑡 ) − 𝐵(𝑡 ) −

𝑡 − 𝑡

𝑡 − 𝑡
× {𝐵(𝑡 ) − 𝐵(𝑡 )}  

𝛯(𝐵, 𝑡 , 𝑡 , 𝑡 ) 

=
1

(𝑡 − 𝑡 )
× 𝐵(𝑠) − 𝐵(𝑡 ) −

𝑠 − 𝑡

𝑡 − 𝑡
× {𝐵(𝑡 ) − 𝐵(𝑡 )} 𝑑𝑠

+ 𝐵(𝑡 ) − 𝐵(𝑠) −
𝑡 − 𝑠

𝑡 − 𝑡
× {𝐵(𝑡 ) − 𝐵(𝑡 )} 𝑑𝑠 

When there is no change point, the limiting distribution of the 𝑇  statistic is fractional Brownian 
motion T(B). And there is no need to preset the number of change points, so this statistic is 
called unsupervised. 

Theorem 2.2. The limiting distribution of 𝑯𝑨 

When exists 𝑚 ≥ 1, 𝑘 = 1 < 𝑘 < ⋯ < 𝑘 < 𝑛 = 𝑘 , such that 

𝐸(𝑋 ) ≠ 𝐸(𝑋 ), i ∈ {𝑘 , … , 𝑘 } 

while 𝐸(𝑋 ) = 𝐸(𝑋 ) in other position , then： 

𝑇 → ∞     (19) 
When there is a change point, the limit distribution of statistics tends to ∞。 



 
 
 
 

The test procedure above involves a pruning parameter ε, which controls the minimum length 
(proportionally) of the part amount. As Shao and Zhou (2013) [7] commented, fine-tuning 
parameters in autonormalization are different from smoothing parameters, such as truncated 
lags in long-term variance estimation (Newey and West, 1987 [8], Liu and Wu, 2010 [9], Politis, 
2011[10]), the window size is dependent on the bootstrap (Shao, 2010, Zhou, 2013) or the width 
of the subsampling method (Hall and Jing, 1996; Politis et al., 1999; Zhang et al., 2013), such 
as considering the effect of trimming in the limiting distribution and its approximation. Zhou 
and Shao (2013), as well as Huang et al. (2015)[11], performed a series of numerical analyzes 
and concluded that the empirical choice of ε = 0.1 produce satisfactory self-regularizing 
methods. The provided test has the potential to generalize to other quantity-ratio means, such as 
quantiles, which we discuss in subsequent sections. 

3 Numerical simulation 

This article uses the R language arfima class library to generate long-memory time series data. 
Such libraries can set data change points number and bias. In this paper, number of generated 
sequence data points is 10000, and the deviation system d is divided into: -0.4, -0.3, -0.2, -0.1,0, 
0.1, 0.2, 0.3, 0.4. 

Table 1. Size and power of 𝑇  for real time series 

 No change point With change point 
 Size Power 

d 10% 5% 10% 5% 
-0.4 0.8613 0.9210 0.9117 0.9618 
-0.3 0.8987 0.9637 0.9031 0.9561 
-0.2 0.9118 0.9355 0.9033 0.9481 

0 0.8825 0.9374 0.8998 0.9564 
0.1 0.9135 0.9557 0.8919 0.9404 
0.2 0.8924 0.9375 0.9142 0.9552 
0.3 0.9080 0.9479 0.9037 0.9582 
0.4 0.8695 0.9524 0.8982 0.9489 

It can be seen that our statistics can provide better Size and Power for different long-memory 
time series when d is different. 

Table 2 Critical value of mean change point statistics under different dependence strengths 

 SZ101 SZ102 SZ103 T 

ρ 90% 
95

% 
90% 95% 90% 95% 90% 95% 

-0.4 0.876 0.933 0.872 0.972 0.900 0.928 0.861 0.921 
-0.3 0.827 0.954 0.878 0.927 0.845 0.935 0.898 0.963 
-0.2 0.856 0.934 0.785 0.884 0.722  0.827 0.911 0.935 

0 0.825 0.967 0.934 0.942 0.947 0.938 0.882 0.937 
0.1 0.925 0.928 0.937 0.946 0.936 0.946 0.913 0.955 
0.2 0.925 0.926 0.937 0.949 0.948 0.931 0.892 0.937 
0.3 0.934 0.912 0.933 0.945 0.946 0.932 0.908 0.947 
0.4 0.923 0.965 0.956 0.934 0.934 0.945 0.869 0.952 



 
 
 
 

Among them, SZ10 is the statistic of Shao and Zhang (2010), and T is the statistic of this paper.It 
can be seen from Table 2 that this statistic has a relatively stable performance. 

4 Conclusion 

In this paper, based on the self-regularization method, the multi-variation point test problem 
under unsupervised conditions is studied based on the time series of long-memory multi-
variation points. From the simulation experiments, the proposed new method still has good 
properties in the case of no uniform assumed change point number. 
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