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Abstract: In recent years, predicting the volatility of financial assets has received 

increasing attention due to the continuous development and increased volatility of 

financial markets. In this paper, we propose a volatility prediction model based on the 

Long Short-Term Memory (LSTM) model in deep learning, which considers the intraday 

high and low prices in financial asset sequences. To compare the performance of the 

proposed model, we also use the Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) model for comparison. By analyzing the data of the 

Shanghai Composite Index from January 1, 2015 to December 31, 2019, the results show 

that the proposed model outperforms the GARCH model, which is also reflected in the 

root-mean-square error of the two models. The proposed method exhibits promising 

results in predicting asset volatility and highlights the potential of LSTM models in the 

field of financial asset volatility prediction. 
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1. INTRODUCTION  

The prediction of financial asset volatility is a crucial issue in risk management and 

investment decision-making. Volatility can be understood as the range of fluctuation in asset 

prices. High volatility implies a significant change in asset prices, while low volatility 

indicates small price variations. Predicting volatility is important for investors to assess the 

risk level of their portfolio, make informed investment decisions, and accurately price options 

and financial derivatives. 

In recent years, numerous methods have been developed for predicting financial asset 

volatility, and statistical models have long been the primary tools used for this purpose. 

Among the various statistical models, generalized autoregressive conditional 

heteroskedasticity (GARCH) models such as ARCH[1], GARCH[2], and EGARCH[3] have 

gained widespread popularity due to their ability to capture the time-varying nature of 

volatility. GARCH models estimate the conditional variance of the asset returns based on 

historical data and are particularly suitable for modeling the persistence and clustering of 

volatility. Moreover, GARCH models can handle various types of financial data, including 
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high-frequency data, and have been widely applied in various fields, such as risk management, 

option pricing, and portfolio optimization. Despite the success of GARCH models, they also 

face several challenges, including the difficulties in modeling the complex and non-linear 

patterns of volatility and the computational burden of estimating the model parameters. 

Therefore, there is a growing need for developing more advanced and efficient models to 

improve the accuracy and efficiency of financial asset volatility prediction. 

With the recent advancements in machine learning and deep learning, researchers have been 

exploring various non-linear models for predicting volatility. These models include neural 

networks[4], support vector machines[5], random forests[6], and deep learning models such as 

convolutional neural networks[7] and recurrent neural networks[8]. These models have shown 

great potential in predicting volatility and have become the focus of extensive research in the 

field of finance. 

Among these models, the Long Short-Term Memory (LSTM) model[9,10] has emerged as a 

popular deep learning model for predicting volatility. The LSTM model has shown remarkable 

results in capturing the complex temporal dependencies and non-linear patterns that exist in 

financial time series data. In comparison to other models, LSTM has a unique ability to learn 

long-term dependencies in data, making it well-suited for the prediction of volatility, which is 

inherently a complex and non-linear problem. One of the key advantages of the LSTM model 

is its ability to incorporate past data to make future predictions. This is especially important in 

financial markets, where historical data plays a crucial role in forecasting future trends. 

Moreover, the LSTM model is highly customizable and can be adapted to a wide range of 

applications in finance, including stock market forecasting, risk management, and portfolio 

optimization. This flexibility has made the LSTM model a popular choice among financial 

analysts and investors. 

In this paper, we propose an LSTM-based approach that incorporates daily high and low 

prices to predict asset volatility. Specifically, we use a sequence-to-sequence architecture that 

takes in the daily high, low and closing prices as input and predicts the corresponding asset 

volatility. By including daily high and low prices, we are able to capture more information 

about the underlying market dynamics and improve the predictive performance of our model. 

To evaluate the performance of our proposed model, we compare it with the GARCH 

estimation model using Shanghai Composite Index from January 1, 2015 to December 31, 

2019, totaling 1,219 data points. Our empirical results demonstrate that our proposed model 

outperforms the GARCH model used for comparison in terms of out-of-sample forecasting 

accuracy. The proposed method exhibits promising results in predicting asset volatility and 

highlights the potential of LSTM models in the field of financial asset volatility prediction. 

The remainder of this paper is organized as follows. Section 2 provides an overview of 

relevant theories, including the GARCH model and LSTM model. In Section 3, we present the 

experimental results and analysis. Finally, Section 4 summarizes the findings and outlines 

potential avenues for future research. 



 

 

2. FORMATTING OF MANUSCRIPT COMPONENTS 

2.1 GARCH model 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is a popular 

approach for modeling financial asset volatility. The model was introduced by Bollerslev in 

1986 and has since been widely used in financial research due to its ability to capture the time-

varying nature of volatility. 

The GARCH model is based on the assumption that the variance of an asset's returns is not 

constant over time but is instead a function of past returns and past variances. Specifically, the 

GARCH model is defined by the following equations: 
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where tr is the return on the asset at time t, t is the expected return at time t, t is the error 

term at time t, 
2

t  
is the variance of the error term at time t, and tz is a standardized 

residual with zero mean and unit variance.  

The GARCH model is a time-series model that estimates the variance of the asset's returns 

based on its own past returns and past variances, as well as the past returns and past variances 

of other assets. The model uses two sets of parameters: the first set, 1, , p  , measures the 

short-term impact of past returns on the variance, while the second set, 1, , q  , measures 

the long-term impact of past variances on the variance. The parameter is a constant term that 

represents the long-run average variance. 

The GARCH model is estimated using maximum likelihood estimation (MLE) and can be 

used to forecast future volatility. The model has been widely used in finance and has been 

found to be effective in modeling the time-varying nature of financial asset volatility. 

In summary, the GARCH model is a popular and effective approach for modeling financial 

asset volatility, based on the assumption that the variance of an asset’s returns is a function of 

past returns and past variances. 

The model uses two sets of parameters to measure the short-term and long-term impact of past 

returns and past variances on the variance, and can be used to forecast future volatility. 

2.2 LSTM model 

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) that is 

designed to address the problem of vanishing gradients in traditional RNNs. LSTM has 

become increasingly popular in various fields, including finance, for time-series analysis and 

prediction. 



 

 

The LSTM model is based on a memory cell, which can remember values for an extended 

period of time. 

The memory cell is connected to three gates: the input gate, output gate, and forget gate. The 

input gate controls the information that enters the memory cell, while the output gate controls 

the information that exits the memory cell. The forget gate controls the information that is 

forgotten from the memory cell. 

The LSTM model is trained using backpropagation through time, where the gradients of the 

loss function are propagated backwards through time to update the weights of the network. 

The architecture of the LSTM model is shown in Figure 1. 

 

Figure 1. LSTM model architecture 

Mathematically, the LSTM model can be represented as follows: 
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where tx is the input at time t, 1th − is the hidden state at time t-1, ti , tf , o t are the input, 

forget, and output gates, respectively, tg is the candidate memory cell, tc is the memory cell 

at time t, th is the hidden state at time t, ˆ
ty is the predicted value at time t, and   is the 

sigmoid activation function. 



 

 

In the context of asset volatility prediction, we use a sequence-to-sequence LSTM architecture 

that takes in the daily high, low, and closing prices as input and predicts the corresponding 

asset volatility. The input sequence is fed into the LSTM network, which outputs a hidden 

state at each time step. The hidden states are then used to make predictions about the future 

volatility of the asset. 

The LSTM model is trained using the mean squared error (MSE) loss function, which 

measures the difference between the predicted and actual values of the asset volatility. 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

This paper selected data from the Shanghai Stock Exchange Composite Index (SSECI) 

ranging from January 1, 2015, to December 31, 2019, totaling 1219 data points.To facilitate 

further analysis, the data is transformed into log-returns as shown in Figure 2a. 

Table 1 presents the descriptive statistics of the SSECI log-returns sample. In addition to the 

mean, standard deviation, maximum, minimum, skewness, and kurtosis of the log-returns, the 

table also provides the q-statistic with a lag of 10 to test for autocorrelation in the log-returns 

and squared log-returns. The q-statistic for the 10th-order autocorrelation cumulative effect of 

the SSECI log-returns and squared log-returns is highly significant, indicating the presence of 

autocorrelation in the first and second moments of the log-return distribution. 

Table 1. Descriptive statistics of the Shanghai Stock Exchange Composite Index. 

mean min max std skewness kurtosis Q-test(10) Q2-test(10) 

0.0007  -0.0887 0.0560 0.0151 -1.2018 9.9652 38.3240 490.5336 

Figures 2b and 2c display the lag-30 autocorrelation and squared autocorrelation graphs of the 

index series, respectively. Figure 2b shows the sample ACF of the log-return series, indicating 

no significant serial correlations except for a minor one at lag 11. Figure 2c shows the sample 

ACF of the squared log-returns, suggesting that the log-returns are not serially independent. 

Combining the two plots, it appears that the log-returns are indeed serially uncorrelated but 

dependent, indicating the presence of ARCH effects in the index series. Therefore, volatility 

models are required to capture this dependence in the return series. 

To compare and analyze the modeling performance of the deep learning LSTM model, this 

study employs the GARCH (1, 1) model as the benchmark model. The fitting results are 

shown in Table 2, which includes the T-statistics and corresponding p-values of the model 

fitting. 



 

 

 

(a)                                   (b) 

 

(c) 

Figure 2. Time plot and statistics. (a) Time plot of daily log returns. (b) Sample ACF of log returns. (c) 

Sample ACF of the squared log returns. 

Table 2. The fitting results of the GARCH model. 

 Value StandardError TStatistic PValue 

Constant 5.008e-07 4.1208e-07 1.2153 0.22426 

GARCH{1} 0.94302 0.0045315 208.1 0 

ARCH{1} 0.054814 0.0055167 9.9361 2.8993e-23 

Subsequently, this study uses the LSTM model to analyze the same SSECI data. First, the true 

volatility is calculated using a time window of length 30. Then, the SSECI data is split into 

two parts: one for training the model, forming the training set, and the other for testing the 

model, forming the testing set. 80% of the data is used for both training and testing sets, with 

951 data points, and the remaining 20% of data is used for the validation set, comprising 237 

data points. This study establishes a 5-layer LSTM network model, including a sequence input 

layer with an input dimension of 3, corresponding to the intraday high, low, and closing prices, 

two LSTM layers, a fully connected layer, and a regression layer. The number of hidden units 

in each LSTM layer is set to 100. During the network training process, the Adam algorithm is 

adopted for the stochastic gradient algorithm with a gradient threshold of 1. The mini-batch 



 

 

size is set to 64, the initial learning rate is 0.01, and every 125 training iterations, the learning 

rate is multiplied by a factor of 0.2 to reduce the learning rate. The maximum training iteration 

step is set to 500. 

In this paper, we analyze the selected Shanghai Stock Exchange Composite Index data using 

the established GARCH(1,1) and LSTM models, and use the last 237 data points for 

comparison of predictive performance. The computed results are shown in Figure 3. 

As shown in Figure 3, the actual volatility exhibits significant fluctuations at the beginning, 

followed by a relatively stable period between 50 and 150, and then increased volatility 

afterwards. The predicted curve of the LSTM model presents a similar trend, although with 

smaller fluctuations. In contrast, the predicted curve of the GARCH model fails to capture the 

same trend and shows an upward trend after 200. The root mean square error (RMSE) is 

calculated for both models, and the GARCH model is 0.0092, while the LSTM model is 

0.0059, indicating that the LSTM model outperforms the GARCH model significantly. Based 

on the above results, it is evident that the LSTM model used in this paper performs better than 

the GARCH model in predicting volatility. This suggests that considering the intraday high 

and low prices can improve the predictive performance of volatility. 

 

Figure 3. The predictive results of the LSTM and GARCH models 

4. CONCLUSION 

Financial asset volatility analysis and prediction have always been hot topics in the economic 

and financial research field. In this paper, we adopt the LSTM model, which is specifically 

designed for analyzing sequential data behavior in deep learning, and consider the intraday 

high and low price information to analyze and predict the volatility of the Shanghai Stock 

Index data. In addition, to compare the performance of the model, we selected the widely used 

GARCH model in volatility analysis for comparison. The calculation results show that the 



 

 

proposed LSTM model can effectively predict the volatility trend of time series in volatility 

prediction and its performance is better than that of the GARCH model. The root-mean-square 

error (RMSE) results of the two models also demonstrate this point. Finally, how to consider 

other trading information to improve the prediction performance of volatility will be the 

further work of this paper. 
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