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Abstract: With the advancement of the Internet and the popularization of e-commerce, 
sales forecasting has become an essential marketing strategy in the online market. This 
article uses the historical sales data of a Russian e-commerce company to build an LSTM 
model under the TensorFlow framework. 
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1. Introduction to LSTMs 

1.1.  RNN(Recurrent Neural Networks) 

RNNs are a class of extended artificial neural networks that are generated for modeling 
sequential data. For instance, text is a sequence of letters and words; voice as a sequence of 
syllables; video as a sequence of images; meteorological observation data and stock trading data, 
etc., are also serial data. [1] The core idea of RNN: There is a sequential relationship between 
the samples, with each sample being related to the previous one. Through the expansion of the 
neural network in time series, the serial correlation between samples can be discovered. Figure 
1 shows the structure of the RNN loop body expanded in time. In this figure, A represents the 
hidden layer, x represents the input of each time period, and h represents the output obtained by 
each input. At each moment there is an input Xl, and then the current state Al of the RNN 
provides an output. The current state Al is jointly determined according to the previous state Al-
1 and the current input Xl. [2]  

 

Figure 1: An unrolled recurrent neural network 
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1.2. LSTM 

LSTM - is a special category of RNN capable of learning long-term dependencies. The full 
name of LSTM is Long Short Term Memory Networks. As shown in Figure 3, compared with 
the traditional recurrent neural network, the LSTM has three additional gates: the input gate, the 
forgetting gate and the output gate, and an internal storage unit in its internal structure. [3]  

A simple demonstration of the LSTM process is shown in Figure 4. 

In the first step, it is determined which information must be dropped from the Cellular State and 
is processed by the sigmoid unit of the oblivion gate, which outputs a vector between 0 and 1 
by viewing ℎ௧ିଵ and 𝑥௧ information, and the 0-1 values in vectors determine which messages 
in the cell state 𝑐௧ିଵ reserved or discarded.[4] 

In the second step, decide which new information to add to the cell state. ① Use ℎ௧ିଵ and 𝑥௧ 
to decide which information to update through the operation of the input gate. ② Use ℎ௧ିଵ 
and 𝑥௧ to obtain new information on candidate cells 𝐶௧ through a tanh layer that possibly to 
be updated with cells information.[4] 

In the third step, the original cell 𝑐௧ିଵ  is renewed to the new cell message 𝐶௧. The update 
regulations are: a part of the old cell message is selected by the forgetting gate, and then a part 
of the candidate cell message 𝐶௧෩  is added by the output gate to get the new cell message 𝐶௧. 

In the fourth step, after updating the cell state, it’s important to determine which state 
characteristics of the output unit are based on the input ℎ௧ିଵ and 𝑥௧. Here, it is necessary to 
transfer the input through a sigmod layer called the output gate to get the determination 
requirements, then the cell state is obtained as a vector between [-1, 1] by tanh, which is 
multiplied with the determination requirements derived from the input gate to get the output of 
the last RNN cell.[4] 

The four state functions and outputs are shown in Figure 2 below: 

 

Figure 2: State functions and outputs 



 

Figure 3: RNN and LSTM 

 

Figure 4: LSTM module 

2. Experiment 

2.1.  Data preprocessing 

2.1.1 Import python module, read the information of the file 

Import the required modules, as shown in Figure 5: 

 

Figure 5: Libraries in python 



Make a list of documents 

# read data 
sales_train_file = 'data/sales_train.csv' 
final_test_file = 'data/test.csv' 
category_file = 'data/item_categories.csv' 
item_file = 'data/items.csv' 
shop_file = 'data/shops.csv' 
 
raw_df = pd.read_csv(sales_train_file) 
final_test_df = pd.read_csv(final_test_file) 
category_df = pd.read_csv(category_file) 
item_df = pd.read_csv(item_file) 
shop_df = pd.read_csv(shop_file) 

The data in raw_df has 6 contents: date-time, date_block_num-increasing by one per month, 
shop_id-store code, item_id-item code, item_prince-item price, item_cnt_day-item daily sales 
volume. 

Final_test_file has 3 contents, ID-used to submit the final answer, shop_id-store code, item_id-
item code. 

Category_df has 3 contents, item_category_id and item_category_name, which provide a 
description of each category ID. 

There are 2 contents in shop_df, shop_name and shop_id, which also provide descriptions for 
each category. 

2.1.2 Organizing data 

Since the features of the training and testing sets are different, the training set has more features 
and the sales in the training set are daily data, which have different time dimensions if they need 
to predict the next month's data. In order to avoid cumulative errors, we choose to extend the 
features of the test set to make them consistent with those of the training set, first sum the data 
monthly, the model is then trained to predict monthly sales. 

Merge training files .Use the pandas merge function to merge item_df and raw_df, and then 
remove the item_name column after merging. Convert the date column string to timestamp 
format to facilitate the processing of time. 

item_all_df = pd.merge(item_df, category_df, on=['item_category_id']) 
print(item_all_df.info()) 
# handle time data 
dt_format = '%d.%m.%Y' 
raw_df['date'] = pd.to_datetime(raw_df['date'], format=dt_format) 
print(raw_df.head()) 
print(raw_df.info()) 

The results are shown in Figure 6: 



 

Figure 6: Results 

Organize daily sales data into monthly sales data, and expand the training set into a full matrix 
of shops*items. Monthly sales are merged by date_block_num, since this number represents a 
particular month. The year and month information is already extracted in the time series feature, 
and the data is merged by these two data: summing all sales data for a given year and month, 
but only the average value is required for the price data. 

2.1.3 Establishing an all-distance array 

Compare the data shape of both 

print(sales_per_month.shape) 
print(final_test_df.shape) 

The results are as follows 

(424124, 71) 
(214200, 3) 

Since each row of the current test set and training set represents a combination of shop_id and 
item_id with different numbers, the data sets need to be merged to create the full distance array. 

full_shop_item_matrix = pd.DataFrame([]) 
all_items = item_df[['item_id']] 
for shop_id in shop_df['shop_id'].values: 
    all_items_per_shop = all_items.copy() 
    all_items_per_shop['shop_id'] = shop_id 
    if full_shop_item_matrix.shape[0] ==0: 
        full_shop_item_matrix = all_items_per_shop 
    else: 
        full_shop_item_matrix = pd.concat([full_shop_item_matrix, all_items_per_shop], 
axis=0) 
 
print(full_shop_item_matrix.shape) 
 
sales_per_month = pd.merge(left=sales_per_month,right= 
full_shop_item_matrix,on=['shop_id','item_id'],how='right') 
 
print(sales_per_month.info()) 
sales_per_month.drop([('item_category_id', '', '')], axis=1, inplace=True) 
 
sales_per_month = pd.merge(left=sales_per_month, 



                           right=item_df[['item_id', 
                                          'item_category_id']], 
                           left_on=[('item_id', 
                                     '', 
                                     '')], 
                           right_on=['item_id'], 
                           how='right') 
sales_per_month[('item_category_id', '', '') 
                ] = sales_per_month['item_category_id'] 
sales_per_month.drop(['item_category_id', 'item_id'], inplace=True, axis=1) 
print(sales_per_month.info()) 
 
sales_per_month.fillna(value=0, inplace=True) 
 
print(sales_per_month.info()) 

2.2. Feature Engineering 

Reasonable feature engineering can substantially improve the effectiveness of the model. 

Extract 18 months of sales data and price data as a set of samples. 

Roll iteratively through 33 months of data, creating one set of samples at a time. 

Combine all samples into one large sample. 4. 

Reorder price and sales. 

Slice and dice the training and validation groups and the test group. 

Normalize the training and validation groups. 

Convert the training, validation and test groups into 3D arrays. 

The data structure of the training group is as follows. 

(19953000, 18, 2) 

2.3. Build LSTM model 

The LSTM layer is the core layer in keras, and its usage is basically similar to the general Dense 
layer. The main difference lies in the following points. 

input_shape: LSTM needs to input 3D array, usually input (n_steps, n_features), which is 
apparently 2-dimensional, but actually means that the first dimension (the number of samples) 
is None, that is, no restriction. 

return_sequences: This parameter indicates whether to return the hidden features of each time 
step (generally denoted by h). As the first input layer, and the intermediate layer, it is chosen to 
return True. the last LSTM layer is chosen to return False, indicating that only the hidden 
features of the last step are returned. 

The rest of the parameters can be referred to the general Dense layer. 



To prevent overfitting, I have activated the dropout scale here. [5] 

n_hidenlayers = 5 
dp_ratio = 0.4 
 
n_steps = 18 
n_features = 2 
model = Sequential() 
model.add(LSTM(16, dropout = dp_ratio,return_sequences=True, input_shape=(n_steps, 
n_features))) 
 
#model.add(LSTM(n_hidenfreature, dropout = dp_ratio,return_sequences=False, 
input_shape=(n_hours, n_features))) 
 
for _ in range(n_hidenlayers): 
    model.add(LSTM(16,dropout = dp_ratio,return_sequences=True)) 
 
model.add(LSTM(8,dropout = dp_ratio)) 
model.add(Dense(1)) 
model.compile(loss='mse', optimizer='adam') 
model.summary() 
 
callbacks = [EarlyStopping(monitor='val_loss', patience=20), 
             ModelCheckpoint(filepath='best_model.h5', monitor='val_loss', 
save_best_only=True)] 
 
# fit network 
history = model.fit(melt_train_X, melt_train_y, epochs=150, batch_size=13302*5, callbacks = 
callbacks,validation_data=(melt_validate_X, melt_validate_y), verbose=1, shuffle=False) 
# plot history 
plt.plot(history.history['loss'], label='train') 
plt.plot(history.history['val_loss'], label='test') 
plt.legend() 
plt.show() 

The model is built and the structure of the model is previewed in Figure 7. Notice that the second 
dimension of the first 5 layers in the output shape are all 18, indicating that the sequence is 
returned. the last LSTM does not return the sequence, but only the hidden state of the last time 
step. 



 

Figure 7: Structure of the model 

2.4. Test Model 

Prediction training set, as shown in Figure 8: 

 

Figure 8: Prediction training set 

2.5. Predictive test set 

Predict the next month's sales for the full matrix. 

Filter out the combinations that appear in the test set. 

Output the results. 

 



result = shop_item_id.copy() 
yhat = model.predict(melta_test_X) 
result['item_cnt_month'] = yhat 
# melt_test_df.reset_index(inplace=True) 
result['item_cnt_month'].plot() 
print(result.info()) 
result = pd.merge( 
    final_test_df, 
    result, 
    left_on=[ 
        'shop_id', 
        'item_id'], 
    right_on=[ 
        'shop_id', 
        'item_id'], 
    how='left') 
print(result.isna().any()) 
print(result.info()) 
# result.fillna(0, inplace=True) 
# result['ID'] = result.index 
result['item_cnt_month'].clip(0,20,inplace=True) 
 
result[['ID', 'item_cnt_month']].to_csv('submission.csv', index=False) 

3. Conclusion 

For e-commerce companies, demand forecasting is the most common and important application 
problem for most companies in their daily operations. In this paper, we predict the sales data of 
e-commerce companies by building a neural network LSTM model. However, the LSTM model 
is more time consuming to train and the error is below 1. 
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