
E-commerce Sales Forecast Based on Neural Network
LSTM

Sizhe Zhou

EMAIL: zsz470469575@gmail.com

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russia

Abstract: With the advancement of the Internet and the popularization of e-commerce,
sales forecasting has become an essential marketing strategy in the online market. This
article uses the historical sales data of a Russian e-commerce company to build an LSTM
model under the TensorFlow framework.

Keywords: Long Short Term Memory Networks, Sales Forecasting, Convolutional Neural
Networks.

1. Introduction to LSTMs

1.1. RNN(Recurrent Neural Networks)

RNNs are a class of extended artificial neural networks that are generated for modeling
sequential data. For instance, text is a sequence of letters and words; voice as a sequence of
syllables; video as a sequence of images; meteorological observation data and stock trading data,
etc., are also serial data. [1] The core idea of RNN: There is a sequential relationship between
the samples, with each sample being related to the previous one. Through the expansion of the
neural network in time series, the serial correlation between samples can be discovered. Figure
1 shows the structure of the RNN loop body expanded in time. In this figure, A represents the
hidden layer, x represents the input of each time period, and h represents the output obtained by
each input. At each moment there is an input Xl, and then the current state Al of the RNN
provides an output. The current state Al is jointly determined according to the previous state Al-
1 and the current input Xl. [2]

Figure 1: An unrolled recurrent neural network

MSEA 2023, May 26-28, Nanjing, People's Republic of China
Copyright © 2023 EAI
DOI 10.4108/eai.26-5-2023.2334251

1.2. LSTM

LSTM - is a special category of RNN capable of learning long-term dependencies. The full
name of LSTM is Long Short Term Memory Networks. As shown in Figure 3, compared with
the traditional recurrent neural network, the LSTM has three additional gates: the input gate, the
forgetting gate and the output gate, and an internal storage unit in its internal structure. [3]

A simple demonstration of the LSTM process is shown in Figure 4.

In the first step, it is determined which information must be dropped from the Cellular State and
is processed by the sigmoid unit of the oblivion gate, which outputs a vector between 0 and 1
by viewing ℎ௧ିଵ and 𝑥௧ information, and the 0-1 values in vectors determine which messages
in the cell state 𝑐௧ିଵ reserved or discarded.[4]

In the second step, decide which new information to add to the cell state. ① Use ℎ௧ିଵ and 𝑥௧
to decide which information to update through the operation of the input gate. ② Use ℎ௧ିଵ
and 𝑥௧ to obtain new information on candidate cells 𝐶௧ through a tanh layer that possibly to
be updated with cells information.[4]

In the third step, the original cell 𝑐௧ିଵ is renewed to the new cell message 𝐶௧. The update
regulations are: a part of the old cell message is selected by the forgetting gate, and then a part
of the candidate cell message 𝐶௧෩ is added by the output gate to get the new cell message 𝐶௧.

In the fourth step, after updating the cell state, it’s important to determine which state
characteristics of the output unit are based on the input ℎ௧ିଵ and 𝑥௧. Here, it is necessary to
transfer the input through a sigmod layer called the output gate to get the determination
requirements, then the cell state is obtained as a vector between [-1, 1] by tanh, which is
multiplied with the determination requirements derived from the input gate to get the output of
the last RNN cell.[4]

The four state functions and outputs are shown in Figure 2 below:

Figure 2: State functions and outputs

Figure 3: RNN and LSTM

Figure 4: LSTM module

2. Experiment

2.1. Data preprocessing

2.1.1 Import python module, read the information of the file

Import the required modules, as shown in Figure 5:

Figure 5: Libraries in python

Make a list of documents

read data
sales_train_file = 'data/sales_train.csv'
final_test_file = 'data/test.csv'
category_file = 'data/item_categories.csv'
item_file = 'data/items.csv'
shop_file = 'data/shops.csv'

raw_df = pd.read_csv(sales_train_file)
final_test_df = pd.read_csv(final_test_file)
category_df = pd.read_csv(category_file)
item_df = pd.read_csv(item_file)
shop_df = pd.read_csv(shop_file)

The data in raw_df has 6 contents: date-time, date_block_num-increasing by one per month,
shop_id-store code, item_id-item code, item_prince-item price, item_cnt_day-item daily sales
volume.

Final_test_file has 3 contents, ID-used to submit the final answer, shop_id-store code, item_id-
item code.

Category_df has 3 contents, item_category_id and item_category_name, which provide a
description of each category ID.

There are 2 contents in shop_df, shop_name and shop_id, which also provide descriptions for
each category.

2.1.2 Organizing data

Since the features of the training and testing sets are different, the training set has more features
and the sales in the training set are daily data, which have different time dimensions if they need
to predict the next month's data. In order to avoid cumulative errors, we choose to extend the
features of the test set to make them consistent with those of the training set, first sum the data
monthly, the model is then trained to predict monthly sales.

Merge training files .Use the pandas merge function to merge item_df and raw_df, and then
remove the item_name column after merging. Convert the date column string to timestamp
format to facilitate the processing of time.

item_all_df = pd.merge(item_df, category_df, on=['item_category_id'])
print(item_all_df.info())
handle time data
dt_format = '%d.%m.%Y'
raw_df['date'] = pd.to_datetime(raw_df['date'], format=dt_format)
print(raw_df.head())
print(raw_df.info())

The results are shown in Figure 6:

Figure 6: Results

Organize daily sales data into monthly sales data, and expand the training set into a full matrix
of shops*items. Monthly sales are merged by date_block_num, since this number represents a
particular month. The year and month information is already extracted in the time series feature,
and the data is merged by these two data: summing all sales data for a given year and month,
but only the average value is required for the price data.

2.1.3 Establishing an all-distance array

Compare the data shape of both

print(sales_per_month.shape)
print(final_test_df.shape)

The results are as follows

(424124, 71)
(214200, 3)

Since each row of the current test set and training set represents a combination of shop_id and
item_id with different numbers, the data sets need to be merged to create the full distance array.

full_shop_item_matrix = pd.DataFrame([])
all_items = item_df[['item_id']]
for shop_id in shop_df['shop_id'].values:
 all_items_per_shop = all_items.copy()
 all_items_per_shop['shop_id'] = shop_id
 if full_shop_item_matrix.shape[0] ==0:
 full_shop_item_matrix = all_items_per_shop
 else:
 full_shop_item_matrix = pd.concat([full_shop_item_matrix, all_items_per_shop],
axis=0)

print(full_shop_item_matrix.shape)

sales_per_month = pd.merge(left=sales_per_month,right=
full_shop_item_matrix,on=['shop_id','item_id'],how='right')

print(sales_per_month.info())
sales_per_month.drop([('item_category_id', '', '')], axis=1, inplace=True)

sales_per_month = pd.merge(left=sales_per_month,

 right=item_df[['item_id',
 'item_category_id']],
 left_on=[('item_id',
 '',
 '')],
 right_on=['item_id'],
 how='right')
sales_per_month[('item_category_id', '', '')
] = sales_per_month['item_category_id']
sales_per_month.drop(['item_category_id', 'item_id'], inplace=True, axis=1)
print(sales_per_month.info())

sales_per_month.fillna(value=0, inplace=True)

print(sales_per_month.info())

2.2. Feature Engineering

Reasonable feature engineering can substantially improve the effectiveness of the model.

Extract 18 months of sales data and price data as a set of samples.

Roll iteratively through 33 months of data, creating one set of samples at a time.

Combine all samples into one large sample. 4.

Reorder price and sales.

Slice and dice the training and validation groups and the test group.

Normalize the training and validation groups.

Convert the training, validation and test groups into 3D arrays.

The data structure of the training group is as follows.

(19953000, 18, 2)

2.3. Build LSTM model

The LSTM layer is the core layer in keras, and its usage is basically similar to the general Dense
layer. The main difference lies in the following points.

input_shape: LSTM needs to input 3D array, usually input (n_steps, n_features), which is
apparently 2-dimensional, but actually means that the first dimension (the number of samples)
is None, that is, no restriction.

return_sequences: This parameter indicates whether to return the hidden features of each time
step (generally denoted by h). As the first input layer, and the intermediate layer, it is chosen to
return True. the last LSTM layer is chosen to return False, indicating that only the hidden
features of the last step are returned.

The rest of the parameters can be referred to the general Dense layer.

To prevent overfitting, I have activated the dropout scale here. [5]

n_hidenlayers = 5
dp_ratio = 0.4

n_steps = 18
n_features = 2
model = Sequential()
model.add(LSTM(16, dropout = dp_ratio,return_sequences=True, input_shape=(n_steps,
n_features)))

#model.add(LSTM(n_hidenfreature, dropout = dp_ratio,return_sequences=False,
input_shape=(n_hours, n_features)))

for _ in range(n_hidenlayers):
 model.add(LSTM(16,dropout = dp_ratio,return_sequences=True))

model.add(LSTM(8,dropout = dp_ratio))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
model.summary()

callbacks = [EarlyStopping(monitor='val_loss', patience=20),
 ModelCheckpoint(filepath='best_model.h5', monitor='val_loss',
save_best_only=True)]

fit network
history = model.fit(melt_train_X, melt_train_y, epochs=150, batch_size=13302*5, callbacks =
callbacks,validation_data=(melt_validate_X, melt_validate_y), verbose=1, shuffle=False)
plot history
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend()
plt.show()

The model is built and the structure of the model is previewed in Figure 7. Notice that the second
dimension of the first 5 layers in the output shape are all 18, indicating that the sequence is
returned. the last LSTM does not return the sequence, but only the hidden state of the last time
step.

Figure 7: Structure of the model

2.4. Test Model

Prediction training set, as shown in Figure 8:

Figure 8: Prediction training set

2.5. Predictive test set

Predict the next month's sales for the full matrix.

Filter out the combinations that appear in the test set.

Output the results.

result = shop_item_id.copy()
yhat = model.predict(melta_test_X)
result['item_cnt_month'] = yhat
melt_test_df.reset_index(inplace=True)
result['item_cnt_month'].plot()
print(result.info())
result = pd.merge(
 final_test_df,
 result,
 left_on=[
 'shop_id',
 'item_id'],
 right_on=[
 'shop_id',
 'item_id'],
 how='left')
print(result.isna().any())
print(result.info())
result.fillna(0, inplace=True)
result['ID'] = result.index
result['item_cnt_month'].clip(0,20,inplace=True)

result[['ID', 'item_cnt_month']].to_csv('submission.csv', index=False)

3. Conclusion

For e-commerce companies, demand forecasting is the most common and important application
problem for most companies in their daily operations. In this paper, we predict the sales data of
e-commerce companies by building a neural network LSTM model. However, the LSTM model
is more time consuming to train and the error is below 1.

References

[1] Wang X, Liao T, Zhang Shunxiang. Online multi-task sales prediction model based on CNN-
LSTM network[J]. Journal of Fuyang Normal University (Natural Science Edition),2021,38(02):85-
91.DOI:10.14096/j.cnki.cn34-1069/n/2096-9341(2021)02-0085-07.
[2] Gaoyueace, (2018) A simple framework implementation of recurrent neural network
RNN.https://blog.csdn.net/gaoyueace/article/details/80484234
[3] Hu Yuyang,Zhang, Cheng,Zheng, Ming,Xia Dingchun. Design and implementation of LSTM-
based sales forecasting system[J]. Computers and Networks,2020,46(23):65-67.
[4] Colah, (2015) Understanding LSTM Networks, http://colah.github.io/posts/2015-08-
Understanding-LSTMs/
[5] Hu, Bo-Wen, Li, Jun, (2021) Multi-layer LSTM-based e-commerce merchandising prediction.

