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Abstract

Introduction: Advancements in sensor technology have resulted in smart systems that can analyze, interpret
and understand their surroundings for decision making. Using such intelligent systems for environments such
as smart homes, device automation, and hospitals, makes sensing human presence an essential requirement.
Human sensing becomes critical, especially in assisted living scenarios such as in elderly care. However,
mechanisms for human sensing are not foolproof because of the dynamic nature and ability of human beings
to deliberately mislead the sensors.
Objective: Objective of paper is to detect human presence in varying environment using non-intrusive
sensors.
Method: Besides, sensors have inherent limitations, due to either their mechanism of sensing or the
environmental conditions, which can cause them to fail in human detection. These limitations can, at times,
cause sensors to provide useless data to the system. In this paper, we propose an adaptive multi-modal human
sensing mechanism which can autonomously identify and ignore unnecessary data from a set of sensors,
thereby reducing computation complexity, reducing false alarm rate and yielding better performance. The
effect of sensing when the human being is in motion has also been studied.
Results: The results portrayed in the paper prove the efficacy of the proposed multi-modal system over its
single sensor counterparts when used in changing environments and other proposed multi-modal human
sensing.
Conclusions: Human sensing is vital to many smart applications such as smart homes, traffic management
systems, human-computer interfaces, etc. Since human beings, in general, are always on the move, the use of
a dedicated sensor could fail to detect human presence, especially when the ambient parameters around the
sensor change. In this paper, a multi-modal human sensing approach has thus been prescribed for overcoming
this issue. This work described focused on automating the identification of inappropriate data relayed by some
sensors under certain environmental conditions. Experiments reported include both cases - when the sensors
are mounted on a static unit (door frame) and also on a mobile robot. The corresponding results reveal that
a combination of sensors outperforms the use of individual dedicated sensors for human detection. Analyses
of the walking speed of human being have also been studied which endorse the robustness of the approach.
However, different directions of motion need exploration in future.
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1. Introduction
A system incorporated with knowledge and intelligence
can analyze, interpret and understand its surrounding

∗Corresponding author. Email: sonia.iitg@gmail.com

environment and take appropriate actions or decisions.
In the last two decades, a significant amount of
prototypes and solutions based on Machine Learning
(ML) techniques have been proposed by researchers to
empower machines with intelligence. In the current
era of the Internet of Things (IoT), sensors play a
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dominant role. They have become more robust, cost-
effective and smaller in size. This has stimulated their
deployment on a large scale in factories, offices and
even living environments. The concept of IoT has given
rise to smart environments wherein a range of sensors
embedded within are used to monitor a variety of
parameters. While such habitats allow enhancement
in lifestyles, they are also capable of monitoring the
health status of the inhabitant(s), intruder detection,
fall detection, smart lighting, device automation, etc.
Realization of smart systems for spaces inhabited by
human beings is highly dependent on mechanisms
used to detect human beings. Human Sensing can be
defined as the process of differentiating human beings
from non-humans using data received via sensors [1]. It
encompasses issues from the lowest level instantaneous
sensing challenges up to large-scale data mining. Such
sensing mechanisms are not foolproof since the motion
and behaviors of human beings are dynamic. Worse,
human beings can also purposefully evade detection by
hiding from sensors. All this makes human sensing a
tough problem. While cameras have been widely used
for this purpose, they suffer from the issue of privacy.
There is thus a dire need to find non-intrusive ways for
human detection.

Unlike, vision-based sensors, non-intrusive sensors
such as an Ultrasonic Sensor (US) or a Pyro Infra-Red
(PIR) sensor, can sense only low-level features such
as color, heat difference, the energy of the reflected
ultrasonic wave, etc. Detection of these features is
dependent on the environmental factors, for instance,
light intensity, temperature, humidity, the distance of
human being from sensors, speed of motion of human
being, etc. Therefore, human detection with the help
of non-intrusive sensors is a challenging task. A PIR
sensor is one of the widely used sensors to detect the
presence of a human being in an indoor environment
[2]. They have also been used for other purposes such
as detection of a falling of a person [3], to count
the number of human beings [4] and human tracking
[5]. A PIR works on the principle of sensing the IR
waves emitted by living beings. Unfortunately, this
sensor cannot differentiate human beings from other
animate objects, including animals. This can mislead
the system into generating a false alarm. Vibration
sensors, which work on the amount of force applied,
have been used to learn walking patterns [6], fall
detection[7], etc. As on date, not much work has been
carried out to explore the use of a US for human
detection. A US uses the difference between the energies
of the emitted and reflected ultrasonic waves. Waves
of a specified ultrasonic frequency are bombarded on
target objects (which are placed at equal distance from
the source of ultrasonic waves). The reflected waves
from these objects are heterogeneous in nature. This

heterogeneity arises from the fact that the objects
have different absorption coefficients for ultrasonic
waves. Such sensors are thus widely used in detecting
deformity in metals [8] and differentiating surfaces
[9]. However, every sensor has its own limitations [1].
For instance, while a PIR sensor cannot differentiate
between human beings and animals. Similarly, a
vibration sensor is an infrastructure dependent sensor
and its implementation costs are high. Sensors thus
need to complement one another to overcome the
limitations. Multi-modal sensing is widely accepted
where sensors complement one another and overcome
their own limitations to quite an extent. An example
of such multi-modal sensing is when a camera, which
needs appropriate light to function correctly, is used
in conjunction with a PIR sensor to detect human
presence. When the sensing area becomes dark [10]
the camera output deteriorates, and the PIR takes over.
Vibration and PIR sensors have also been coupled to
reduce the false alarm rates [11] in fall detection.
However, in multi-modal sensing, the decision of
when and which sensor data should be processed
plays an important role. Processing the data from
all the sensors every time increases the computation
overhead. With enhanced communication and machine
learning algorithms, learning patterns from sensory
data has become more accessible. Raw data received
from sensors need to be processed further based on the
kind of expected output. In general, models based on
Machine Learning (ML) techniques are built to analyze
or categorize the various objects/situations based on the
sensory data.

The key contributions of this paper can be listed as:

1. Combine data from multiple sensors situated in
different environments (indoor and semi-open).

2. Analyze the in-built characteristics of every
sensor so as to automate the process of finding
a blinked sensor(s), thus reducing computation
time.

3. Propound an algorithm for human detection
based on multi-modal sensing in both scenarios
where sensors are static and mounted on a mobile
robot. It also covers both the cases of stationary
human as well as moving human.

4. Analyze the walking speed (which is a part of
the dynamic nature of human) versus accuracy of
human detection.

In the following section, a literature survey on multi-
sensors approach for human sensing is presented. In
section 3, problem definition is provided, following
which methodology is explained. Towards the end
of this paper, experiments and results obtained were
discussed, which is followed by conclusions.
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2. Literature Survey

Researchers have used several parameters such as
body temperature, weight, gait pattern, heartbeat,
uniqueness of the structure, vibration, scent, etc., to
distinguish a human from non-humans. These typical
traits of a human being are captured with the help of
available sensors and are used to model and develop
various applications. Guo et al. [12] present a survey
on PIR sensors used for human detection to automate
the switching on and off of lights in an indoor scenario.
PIR sensors have also been used by researchers to
count the number of persons in a room [13], to
estimate the occupancy of a given indoor space [4],
intruder detection [14], etc. Kessler et al. [6] report
the use of vibration sensors to detect human beings.
An ultrasonic sensor has been used by Sonia et al.
[15] to differentiate human from non-human things.
However, no one claims 100% accuracy to detect the
human presence in every possible scenario with a
single sensor. In recent years vision-based systems have
advanced substantially and are capable of detecting
human beings with relatively high accuracies. Chen et
al. in [16] present a survey on human motion analyses.
They emphasize the lack of realistic data sets which
covers a vast number of human beings in numerous
poses to train the system for use in a human sensing
system. Dynamism in human nature such as different
walking speeds, different body structures, different
clothing styles, etc. makes this sensing task challenging
to perform. This contributes to one of the probable
reasons responsible for the failure of human detection.

Teixeira et al. [1] presents a survey of different sensors
used for human sensing. They state the limitations and
failures (such as PIR fails to detect stationary human
being, the camera fails to detect human being in the
dark, etc.) of individual sensors used for sensing, and
stress the need of using a combination of multiple
heterogeneous sensors to improve sensing accuracy.
Bellotto et al. [17], use multi-modal human sensing
to sense and track the human being in a cluttered
indoor environment. However, this combination is
not cost-effective. Vision sensor, wearable devices and
audio sensors have been combined to reduce the false
alarm of the system build for human detection in
[18] and [19]. This combination can fail in a foggy
environment if a human fails to wear the sensor and
walk silently. A survey by Avci et al. [20] cite the use
of multiple sensors such as PIR, ultrasonic, vibration,
temperature sensor, etc., to monitor the daily activities
of human beings. Similarly, a survey on wearable
devices presented by Lara et al. in [21] emphasizes
the utility of multiple sensors to monitor the health
and wellness of human beings. While adhering to the
basic concepts of building a system for human detection
through successive layers, the task-achieving behavior

of a system can be fragmented into many smaller
decision-making units [22]. Each unit has an input that
needs to be converted to the output using analytical
data techniques. Data received via different resources
need to be processed using various techniques [23].
Matthews et al. [24] describe a system where different
algorithms are implemented to process the data from
different sensors. A voting-based approach is explored
in [25] to process the data from both ultrasonic and PIR
sensors to detect the human presence. One may thus
conclude from the literature that data received via a
variety of sensors need to be processed in different ways
so as to detect human presence reliably.

Yang et al. in [26] have used the face, body
appearance and silhouette via a Kinect sensor and
multiple color cameras to detect human beings in
a health-care application. Using a Kalman filter,
they claim their multi-modal approach to be more
effective than those reported by others. However,
their sensor combination has been tested only in a
controlled environment. Human detection has also been
performed in robotics where sensors mounted on a
robot try to detect a human presence for assistance.
Human detection has been performed by fusing the
data from a laser sensor (to detect leg structure) and a
camera [17]. Jin et al. [27] have used unattended ground
sensors for human sensing. In the approach proposed
herein, the primary level features from individual
sensor signals are extracted and then combined to form
composite patterns based on relational dependencies
between them. The advantage of this approach is that
system can function (with reduced accuracy) even in
case of a failure of a sensor. Vibration sensors come
to the rescue when the PIR sensor fails to differentiate
between a human being and animals. Occupancy
detection which solely depends on human detection
has been demonstrated by Candanedo et al. [28]. They
have presented a detailed analysis of all the sensors
and pairwise sensor combinations via a correlation
matrix. Analysis shows the performance of the different
statistical models concerning different combinations
of sensors to sense the human presence. The paper
focuses on choosing the combination of sensors with
the highest accuracy. Table 1 presents a survey of some
of the multi-modal/sensor fusion approaches to detect
various human activities. But, it is hard to find exact
related word.

In contrast to the applications described, the
proposed algorithms are not tested in dynamic
environments. The work described in this paper focuses
on scenarios where the situation could change and
thus affect system performance. Under such condition
the system automatically detects which sensors have
failed in that environment and ignores their inputs
accordingly, thus saving computational time while also
enhancing performance. This paper also explores the

3 EAI Endorsed Transactions 
on Pervasive Health and Technology 

09 2020 - 12 2020 | Volume 6 | Issue 24 | e5



Sonia, T. Semwal

Sensors used Features used Technique
Kinect sensor and multiple color
cameras [26]

face, body appearance and sil-
houette

Using a Kalman filter

vibration and passive infrared
[29]

Temperature and gait wavelet based signal processing
methods based sensor fusion

Smartphone sensors [30] skin temperature, galvanic skin
response, heat flux, and a 2-d
accelerometer

Multi-modal Sensing for
Human Activity Modeling
in the Real World

Eight body-worn Inertial Mea-
surement Units [31]

Multiple properties Deep Learning

Foot-mounted inertial sensors
and multi-sensor fusion [32]

Inertia, vibration Hybrid NN/HMM model

Table 1. Approaches for sensor fusion

effect of height and speed of motion of a human being
on True Positive Rate (TPR) of human detection. This
aspect avoids further processing of incoming data from
those sensors which provide data that can degrade the
performance of human detection. The system has been
tested in both indoor and outdoor environments.

3. Problem Definition
• For a given classification task T, let
S = S1, S2, ....., SNS

be a set of NS sensors used to
collect the data. In this paper, the task T is to
sense human presence.

SU
i = S − SB

i (1)

where, SU
i is the set of sensors from which data

extracted can be made use of accomplishing task
T , SB

i is the set of blinked sensors from which data
extracted cannot be used to accomplish task T .

It may be noted that, as environment changes, SB
i

will also differ, causing corresponding changes in
SU
i . Thus, the problem herein is to find the set

of blinked sensors (SB
i ∈ S) based on the raw data

received from all sensors in S without any human
intervention.

• A sensor (Si) is defined as a blinked sensor
in a particular environment (Ej ) if information
obtained from it cannot be used to accomplish
task T.

3.1. Elimination and Decision-making Features
Every sensor has its limitations due to which it could
fail to sense a human being in a particular environment
[1]. For example, in dark areas, information retrieved
from a camera cannot be used to detect a human being.
Under this condition, the maximum and minimum
pixel values within the concerned frame are equal
to zero. Since the image is entirely black, one may

conclude that the frame cannot be used to detect
human presence. Likewise, if the raw data from a PIR
sensor frame cannot be used for human detection when
the maximum and minimum values lie in the range
between 150 and 500, since it indicates that either the
human being is stationary or not present.

To eliminate the processing of information contained
in a frame Fk

j of the sensor Sk , we need to extract some

typical features. Let, F k
j represents the feature vectors

of eliminating features of jth frame of the kth sensor.
The data from the remaining non-eliminated frames

are used to extract features that will aid in accom-
plishing the task of human detection. For example,
color could be the feature used to decide on a camera-
based model that differentiates between an apple and
an orange. However, some of these features could
be redundant and may mislead the overall decision
process. Decision features(Fk

j ) obtained from a non-
eliminated frame can be represented as a feature vector
Fk
j . where, Fk

j is the decision making feature vector of

the jth frame obtained from the kth sensor .

3.2. Decision Model Selection

Decision features are used to train an ML model so as to
detect human presence or absence. The heterogeneity of
the data received from different sensors causes different
ML models to perform differently. Selection of the best
ML model for data from a sensor needs to be done based
on its performance. For instance, to find an appropriate
model for the PIR sensor, one could use SVM, Linear
regression, Decision tree for training and then choose
the best performing one. Thus if models Mk

1 ,M
k
2 , . . .M

k
p

are initially considered for sensor Sk and P1,P2, . . .Pp
are their respective performance measures. Then the
model with the highest value of P is selected for the
detection process.
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3.3. Online Clustering
Clustering techniques group similar objects to form
a cluster. Clustering thus distinguishes two different
objects/things. The distribution of data in an n-
dimensional space can be represented in the form
of clusters. This forms the basis of classification
algorithms such as SVM, k-means, decision trees, etc.
In the proposed approach, we have used the online
clustering technique proposed in [33] and used the
elimination characteristics for deciding sensors that
should not be taken into consideration while arriving
at a decision. The used approach fix the radius of the
cluster at the initial stage and update the cluster centers
in an online manner.

3.4. Methodology
This proposed methodology is based on the one-
class classification to detect the presence of a human
being in different environments. Figure 1 shows an
overview of the proposed method. As shown in the
figure, during the training phase, both eliminating
and decision-making features are extracted. The output
of eliminating features are clustered via clustering
algorithm. However, decision making features extracted
from each sensor Sk are used to train their respective
machine learning models. It can also be seen from the
diagram that during the testing phase, first eliminating
features are extracted. The extracted feature vector
is used to find blinked sensors. From the remaining
sensors decision making features are extracted to be
used for final decision making using their respective
ML models. If greater than 50 per cent of sensors are
detecting a human than the final decision is considered
as positive for human detection.

Training Phase. As discussed earlier, since a single
sensor is not sufficient for human sensing, multi-modal
human sensing was considered. For such sensing, the
data obtained from the sensors need to be preprocessed
and models generated, individually. For the proposed
multi-modal sensing, the training phase can be divided
into two steps:

• 1. Selection and training of ML model for each
sensor respectively: Let for Sk ∈ S, dk be the data
stream which is buffered in term of frames, Fk

i . In
the current multi-modal human sensing method,
for every sensor Sk ∈ S, an ML model needs to
be generated for the classification process. The
manner by which the appropriate model (Mk)
for sensor (Sk) is chosen has been described
earlier in the Decision model selection section.
While capturing the data required for training the
respective models, all sensors should point to the
same human being and sense concurrently.
From the buffered frames, the individual feature

vectors used for elimination and decision making,
viz. F k

j and Fk
j are calculated for all the sensors.

Fk
j are used for training the selected ML model for

a sensor.

• 2. Obtain clusters: The clustering technique [33]
used was provided with all the feature vectors
used for elimination, F = F 1

j ,F 2
j , .....,F N

j , so as
to determine the radii and centers of the clusters
generated.
F k
j represents the eliminating feature vector of

jth frame of the kth sensor.

Algorithm 1 Algorithm for elimination of blinked
sensors
Input: Prior calculated Cluster centers and radii (which
are output of clustering technique).
Input: Sensor dependent range of the features.
Output: Eliminated sensors.

1: for all Data frames received from N sensors do
2: calc_f eatures;
3: end for
4:

5: if Fj lies in any of the clusters then
6: No sensor can be eliminated.
7: Update_Clusters(Fj )
8: else if Fj does not lies in any of the clusters then
9: for all Sk do

10: Check_range()
11: if (Sk is out of defined range then
12: Add_sensor_SB

i (SB)
13: else if No sensor is out of range then
14: Update_Clusters(Fj )
15: end if
16: end for
17: end if

Distinction Phase. Concluding on the presence or
absence of a human being involves:

• Elimination of processing of frame received from
the blinked sensors

• Concluding on whether the target is a human
being

Algorithms 1 and 2 explain these two processes.
Algorithm 1 takes in the cluster centers and radii
computed in the training phase along with the sensor-
specific ranges for deciding whether or not to categorize
a sensor as blinked. Also, as mentioned earlier, based on
the values within the frames, the corresponding sensor
is either eliminated (blinked) or considered. Similar
to the training phase, here too, data from NS sensors
is buffered in the form of frames. The data within
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Figure 1. Overview of the system

Algorithm 2 Algorithm for detection of Human
Presence
Input: Pre-trained models (Mk) for sensor (Sk)
Output: Human presence either yes or no.

1: SB = Algorithm for identification of blinked
sensors.

2: SU = S − SB

3: for all Data frames (Fk
j ) received from S − SU

sensors do
4: Fk = calc_f eatures(Fk

j )

5: Output = P redict_output(Mk ,Fk)
6: end for
7: Count = Calculate_positive_count(Output)
8: if Count is > 1/2(Count of sensors in $U ) then
9: Human detected.

10: Update_P ositive_Models(Mk ,Fk)
11: else if Count is <= 1/2(Count of sensors in $U ) then
12: Human not detected
13: Update_Negative_Models(Mk ,Fk)
14: end if

these is used to ascertain the elimination features using
calc_f eatures() which in turn outputs F t

If F t lies within any of the clusters then frames
from all the NS sensors are taken into consideration for
human sensing. F t is also used to update the cluster
centers as in [33] using Update_Clusters(), to facilitate
dynamic evolution of the clusters.

On the contrary, if F t lies outside these clusters,
the values, the algorithm 1 finds the sensor(s) whose
data was responsible for making it an outlier. This is
done by inspecting the associated features within the
relevant frames based on the sensor-specific ranges that

are already available to the algorithm. If any of the
value(s) of any of the feature(s) pertaining to a sensor Sk
within a frame is out of the predefined feature-specific
range, then this sensor is deemed to be blinked and
added to the set of blinked sensors, SB. If F t does not
lie within any of the clusters and none of the associated
sensors have been deemed to be blinked then a new
cluster if formed using Create_Cluster().

The Algorithm 2 depicts the process of detection of
human presence. It takes the already available pre-
trained models for each sensor as its input and uses
the set of blinked sensors, SB obtained from algorithm
1 to eventually find the set of useful sensors(SU ). The
associated frames from the sensors in SU are used to
compute the decision-making features that is Fk

t These
features are used by the sensor-specific ML model to
decide whether or not the target is a human being.
A human being is said to be detected if the majority
of sensor-specific models report this detection to be
positive. As its last step, the algorithm 2 update the
sensor-specific models based on the final output by re-
training, on-the-fly.

4. Experiments and Results
Experiments to validate the efficacy of the proposed
human sensing methodology were conducted in two
different indoor setups.

4.1. Experiment 1
The hardware used in the experimentation included -
1. Analog Ultrasonic Sensor (XL-MaxSonar -EZ/AE)
(AUS): The output of this sensor is analog voltage
envelope of return acoustic waveform. Data is buffered
in the form of frames. If the standard deviation of such

6 EAI Endorsed Transactions 
on Pervasive Health and Technology 

09 2020 - 12 2020 | Volume 6 | Issue 24 | e5



Human Sensing for Assisted Living

Figure 2. Sensors setup on a wall

a frame is not equal to zero, then data of this frame
can be used to sense the presence or absence of human
being. 2. Two Pyro infrared Sensor(PARALLAX PIR
sensor (Rev B)) (PIR): The analog output of the sensor
is buffered in frames. For a moving object (man or
pet), which is in the sensing range of a PIR sensor, the
maximum and the minimum values output of the frame
are higher than 500 and less than 150, respectively. 3.
Ping Sensor (PARALLAX PING)))) (US): This sensor
outputs the distance of the obstacle in front. The data
from AUS and PIR sensors are processed depending on
the output of US sensor. 4. Arduino Mega 2560: All the
sensors are connected with the Arduino board to read
the sensory data. The sensors - Ping, AUS and PIR(P IR1)
- one each, were placed on a wall (near to a door) at
a height of 72 cm from the ground as shown in the
Figure 2. Another PIR(P IR2) sensor was placed on the
same wall at a height of 20 cm from the ground. All
sensors were placed in such a way that they all pointed
at the same target. In this setup P IR1 is prioritized
over P IR2 sensor P IR1 is placed at an height of 72 cm
which is above average height of cats and dogs. That is
why, for the final decision of human detection P IR1 is
prioritized. Therefore, P IR1, AUS, P IR2 is the sequence
of sensors in the decreasing order of priority for the
finalization of decision of human sensing.

Apart from the distance of the obstacle in front,
from analog AUS signal, a comprehensive analysis
can be performed to differentiate human from non-
humans. Similarly, unlike binary output of PIR sensor
analog signal of the PIR sensor can be analyzed for the
direction of motion and speed of motion.

The data of PIR sensors and AUS is processed only
when an object is detected at a distance of 60-70 cm
from the sensors. To train the system, the incoming

data was buffered into data frames. One data frame
of a sensor consisted of all the data obtained from a
sensor in a time period of 4 seconds. When human being
was standing at a distance of 60-70 cm, the sensory
data of PIRs and AUS was buffered in the form of
frames. Features were extracted from every frame of
AUS and both PIR sensors. For training purpose, both
were eliminated, and decision-making features were
extracted from each frame. Equations 3 and 2 represent
the eliminating features for the PIR sensors while
equation 3 through 10 represent the decision making
features. Equation 10 represents the eliminating feature
for AUS . However, equations 3 through equation 10
represent the decision making features for the same.
Table 2 represents the eliminating features and their
specified ranges for different sensors.

Sensor Eliminating Features Human sensing range
P IR1 Max and Min > 500 and <= 0
P IR2 Max and Min > 500 and <= 0
AUS Standard Deviation > 0

Table 2. Eliminating features and their specified ranges for PIR
sensors and AUS for Experiment 1

Minimum = Min (ax)Xx=1 (2)

Maximum = Max (ax)Xx=1 (3)

Median = median (ax)Xx=1 (4)

Mean = mean(ΣX
x=1ax) (5)

Kurtosis = X
ΣX
x=1 (ax − average)4(

ΣX
x=1 (ax − average)2

)2 (6)

Energy = ΣX
x=1 (ax ∗ ax) (7)

CrestFactor =
1
2 (Maximum −Minimum)

RootMeanSquare
(8)

RootMeanSquare =

√
1
X
ΣX
x=1ax (9)

StandardDeviation =

√
1

X − 1
ΣX
x=1 (ax −Mean)2 (10)

where, X is the number of data instances in the the data
frame and ax represents a single data instance of the
buffered file. Therefore,
F = max(P IR1), min(P IR1), max(P IR2),
min(P IR2), Standarddeviation

For training purposes, the data obtained when 15
different human beings stood/moving at a distance
of 60-70 cm. away from the sensors were collected.
Human beings wore different types of clothing and
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Figure 3. Input to the system under various conditions

stood in different postures. 100 data frames were
collected for each human being in order to train the
system. Human presence was confirmed in a supervised
way. After every frame, human presence is confirmed
by pressing a physical switch. If the switch was
pressed then that particular frame was retained else
discarded. As per the methodology section F and
F were calculated. Initially, based on the literature
survey, for PIR and AUS, multiple ML algorithms
were considered. Models showing highest accuracies
from among conventional machine learning algorithms
were experimentally selected for each of the sensors.
To select such a model for PIRs and AUS, extracted
decision making (F) were considered. The collected data
was divided into the ratio 7:3 to train and test for a
particular model. Also, it should be emphasized that
for the testing purpose data frames for cats and dogs
were also included. The graph in figure 4 shows the
initially considered models along with their respective
accuracies for PIR sensors and AUS.

It can be seen from figure 4 that kNN performs better
for PIR data as compared to SVM, VBA, and fuzzy logic.
Similarly, it also reveals that k-NN clustering performs
better for AUS data. Therefore, k-NN was the selected
ML model for PIRs and AUS. In parallel, centers of the
clustered were also calculated using extracted feature
vectors F . The cluster centers were calculated in an
online manner, as described in the methodology section.

Figure 4. Accuracies of different ML algorithm for AUS and PIR
sensor

Radius Number of clusters Average cluster density
0.01 12 55.96
0.05 10 45.96
0.1 10 39.06

0.15 9 36
0.2 7 28.34

Table 3. Cluster numbers and their average density at varying
radius (r)

Table 3 shows the number of clusters and the average
cluster density for different chosen values of r.
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For the detection of human sensing in the given set
up, the value of r was taken to be 0.05mm. Thus,
a trained multi-modal system (which consists of two
PIRs, one AUS and One Ping sensor) was deployed
for testing. The system was tested for human presence
detection. When the Ping sensor reported an obstacle at
a distance of 60 to 70 cm, the data was buffered in the
frames for each sensor. The two features viz. Ft and Ft
were extracted for all sensors from the respective data
frames of the sensors.

If the Ft (which represents the vector of eliminating
features of all the sensors) was inside the clusters built
a priori during the training, then the decision making
features(Ft ) were extracted from the data frames of
all the sensors. If Ft was outside all the clusters then
eliminating features of all the sensors were checked to
find whether they lie within the prior defined sensor-
specific sensing range or not. If the value of any of the
eliminating features of a sensor Sk is found to be out
of sensor-specific sensing range, then the data received
from that sensor was ignored in the decision making
process for human detection and sensor is added to
SB. For the remaining sensor (SU ), the decision making
features were extracted from their data frames. After
the decision-making features were extracted, the output
was predicted using the sensor-specific models. The
outputs of these models are either a 0 or a 1 (0 indicates
that the data of the processed data frame does not
belong to a human being and 1 suggests that it belongs
to the human class).

It is possible that no sensor has failed (i.e. SB is empty
) and Ft does not lie in any of the already available
clusters. In such a situation, a new cluster is formed,
and the corresponding decision-making features are
extracted from all the sensors. The output of all
the respective models is then considered for human
sensing.

For the current setup, if AUS is turned off, PIR sensors
fail to sense the presence of a stationary human being.
Similarly, if PIR sensors are turned off, AUS fails to
sense the human being if he walks out at high speed in
front of the sensor. However, if all sensors (AUS, PIRs)
are turned on, stationary human beings (when PIR
cannot sense) are identified by AUS. Similarly, human
walking at high speed can be sensed by PIRs. The
above statement is supported by the results presented
in figure 5. Results show that that PIRs failed to detect
the presence of stationary human 45 times from a total
of 45 and succeed to detect the moving human an
all the cases. Also, AUS detected stationary human 37
times from a total of 45 and detected moving human
being 35 times from a total of 45. However, using a
combination of PIR and AUS 43 time stationary human
was detected correctly out of 45 times, and moving
human was detected correctly in all the cases.

Figure 5. Number of human correctly classified (total number =
45)

4.2. Experiment 2
For the second experiment following hardware was
used:
1. Pioneer Amigobot : This robot has eight sonar sensor
covering an angle of 360 degree, which makes obstacle
avoidance possible while moving in an environment.
2. Analog Ultrasonic Sensor (XL-MaxSonar -
EZ/AE)(AUS): This sensor outputs the envelope
of the reflected wave which is used to analyze the
presence/absence of a human being. 3. Pyro Infrared
Sensor(Parallax PIR sensor (Rev B)): As prior
explained, this sensor works on infrared radiations
emitted from the body of living beings. This sensor is
helpful to find a living being in motion. 4. Camera:
The vision-based sensor is used to analyze a given
environment. The camera clicks the pictures of the
objects in front at a defined frequency to investigate the
presence or absence of the human being in front.

In this experiment, the sensors were mounted on a
mobile robot. The experiments were performed both in
an indoor as well as an outdoor environment. All the
sensors (AUS, PIR and camera) were mounted on the
robot at a height of 70 cm from the ground as shown
in figure 6. The mounting was done in a manner that
all sensors point to the same obstacle at a given instant
of time. The data was processed only when an obstacle
was encountered by the robot at a distance of 60-70
cm. The robot was programmed in a way that whenever
an obstacle was encountered, its speed decreased to
0.05m/sec. The speed of the robot was changed based
on the inference derived from the outputs of the sensor
data frames. Similar to the previous experiment, a data
frame consists of data buffered from the sensors for 4
seconds. All the sensors operated concurrently. Thus, a
data frame of all the sensors consisted of information of
the same obstacle at a given instant of time. The models
chosen for the experiment for PIR, AUS and camera
sensors were SVM, KNN and CNN, respectively.

The CNN for the camera was trained off-line for the
human class using 1000 pictures of human beings in
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Figure 6. Sensors Setup on a Mobile Robot

different poses and dresses. The training of the other
models for the PIR and AUS sensors was performed
online where the robot was made to move in an
environment which was congenial to the camera (i.e.,
in daylight) as also the other sensors. As soon as an
obstacle was detected at a distance of 60-70 cm, the
camera was enabled to capture its image. The data
obtained from other sensors(AUS, PIR) was buffered
into frames of 4 second while the camera clicks every
fourth second when conditions are met.

Just as in the previous experiment, the eliminating
and decision-making features were extracted from the
frames obtained from all sensors.

Sen-
sor

Eliminating
Features

Range for
human
sensing

P IR Maximum and
Minimum

> 500 and
<= 0

AUS Standard
Deviation

> 0

Camera Maximum Pixel
Intensity and
Minimum Pixel
Intensity

> 0

Table 4. Eliminating features and their specified ranges for PIR
sensors, AUS and Camera for Experiment 2

Table 4 shows the eliminating features for PIR, AUS
and camera with their respective ranges. As per entries
in the table 4, PIR data should be analyzed if the
calculated maximum value of a data frame is above
500, and the minimum value is less than or equal to

zero. Similarly, for the ultrasonic sensor, the calculated
value of the standard deviation of a data frame should
be higher than zero. However, for a camera, an image
captured cannot be analyzed for human presence if it is
completely dark that is both minimum and maximum
pixel intensity are equal to zero.

For the PIR sensor, equations 2 and 3 were used
to find the eliminating feature(s) while the equations
3 through 10 were used likewise for the decision
making features. Similarly, for the AUS, the equation 10
were used to calculate the eliminating features while
equations 3 through 10 were used for the decision
making features. Similar to the experiment 1, multiple
machine learning algorithms were tested to select
the best one for each of the sensor (to be used for
experiment) respectively.

The graph in figure 7 shows the calculated accuracies
obtained while using different machine learning models
for the PIR sensor and AUS, respectively. Unlike
experiment 1, for experiment 2 sensors were mounted
on the robot even for the preprocessing phase of the
experiment. This includes a selection of a machine
learning algorithm which outperforms other chosen
algorithms for each of the sensors respectively.

It can be seen from the graph in figure 7 that K-NN
performs better for both PIR as well as AUS as compared
to SVM, Decision-tree and Random forest. For the

Figure 7. Accuracy of different ML algorithms for both AUS and
PIR sensor mounted on a mobile robot

camera too, the eliminating features were extracted for
every image whose output was a human class. The
eliminating features of an image captured with the help
of a camera are maximum pixel intensity and minimum
pixel intensity. Therefore for the complete system =
maximum, minimum, Standard deviation, maximum
pixel intensity, minimum pixel intensity.

To train the complete system, the mobile robot was
made to move in an environment where the rate of
human beings to be detected was high. Data was
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captured for 150 human beings and the eliminating
features extracted from the buffered data frames of each
sensor were fed to an online clustering methodology so
as to form clusters of a defined radius r. Cluster centers
were found using 0.1mm as the radius. Decision-
making features were used to train the models for
PIR sensor and AUS, respectively. A system with three
different sensors (viz. PIR, AUS and Camera) and their
respective trained models was built tested both indoors
as well as outdoors with varying light intensities. For
obvious reasons, in dark area, the camera fails to detect
anything. However, in that scenario, the decision is
made by PIR and AUS readings as per the proposed
approach. For the comparison purpose, the robot is
tested in the same environment with PIR sensor alone,
AUS alone and camera alone. Accuracies of the three
experiments are shown in figure 8.

Figure 8. Number of human correctly classified (total number =
45)

4.3. Experiment 3
Human being shows dynamism in behavior such as he
can walk at various speeds; he can wear different items
of clothing, he can have shown multiple poses, etc.
Therefore, in this experiment, considering the varying
walking speed of a human, the robustness of the system
was tested. For this experiment, the pedometer was
used to count the number of steps per minute. To
perform the experiment, humans were made to walk at
different speeds in front of the sensors in a particular
direction, as shown in figure 9 and 10. Figure 9 shows
the movement of human being w.r.t. sensor setup of
experiment 1 and figure 10 shows the direction of
movement of both robot and a human being with
respect to the sensors setup of experiment 2. Figure 10
also shows the sensing zone, i.e. when sensory data is
considered for further processing.

Results are compiled in a graph as shown in figure
11 and 12. It can be concluded from the graph in figure
11 that as the walking speed of human increases, True

Figure 9. Direction of motion of human being during experiment

Figure 10. Direction of motion of the mobile robot and human
being during experiment

Figure 11. Direction of motion of human being during experiment

Positive Rate (TPR) decreases. Similar pattern can be
observed from the graph in figure 12.
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Figure 12. Direction of motion of mobile robot and human being
during experiment

The reason for the decreased TPR as observed is that
that with high walking speed human move away from
sensors so quickly that feature values extracted from
the data frame are not able to detect human presence.
Thus, the proposed approach has an upper bound on
the walking speed of human for human detection.

5. Conclusion
Human sensing is vital to many smart applications such
as smart homes, traffic management systems, human-
computer interfaces, etc. Since human beings, in
general, are always on the move, the use of a dedicated
sensor could fail to detect human presence, especially
when the ambient parameters around the sensor
change. In this paper, a multi-modal human sensing
approach has thus been prescribed for overcoming
this issue. This work described focused on automating
the identification of inappropriate data relayed by
some sensors under certain environmental conditions.
Experiments reported include both cases - when the
sensors are mounted on a static unit (door frame) and
also on a mobile robot. The corresponding results reveal
that a combination of sensors outperforms the use
of individual dedicated sensors for human detection.
Analyses of the walking speed of human being have
also been studied which endorse the robustness of the
approach. However, different directions of motion need
exploration in future.
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