
Research Article

Platforms and Protocols for the Internet of Things
Chiara Pielli1,*, Daniel Zucchetto1, Andrea Zanella1, Lorenzo Vangelista1, and
Michele Zorzi1

1Department of Information Engineering, University of Padova, Italy

Abstract

Building a general architecture for the Internet of Things (IoT) is a very complex task, exacerbated by the
extremely large variety of devices, link layer technologies, and services that may be involved in such a
system. In this paper, we identify the main blocks of a generic IoT architecture, describing their features
and requirements, and analyze the most common approaches proposed in the literature for each block. In
particular, we compare three of the most important communication technologies for IoT purposes, i.e., REST,
MQTT, and AMQP, and we also analyze three IoT platforms: openHAB, Sentilo, and Parse. The analysis will
prove the importance of adopting an integrated approach that jointly addresses several issues and is able to
flexibly accommodate the requirements of the various elements of the system. We also discuss a use case which
illustrates the design challenges and the choices to make when selecting which protocols and technologies to
use.

Keywords: Internet of Things, IoT architecture, IoT protocols, REST, MQTT, AMQP, IoT middleware
Received on 20 October 2015; accepted on 21 October 2015; published on 26 October 2015
Copyright © 2015 Ch. Pielli et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.26-10-2015.150599

1. Introduction

The Internet of Things is a communication paradigm
in which sensors and microcontrollers are extended
into the world of everyday objects: machines, buildings,
vehicles, plants, people themselves, etc. This technology
shift is deemed to be the next stage of the information
revolution after the massive spreading of the Internet
in every field, and its impact is expected to be
much heavier than that caused by the integration of
the Internet in our lives through smartphones and
other mobile devices. In fact, the IoT shall therefore
be able to seamlessly incorporate a large number
of heterogeneous end systems, while providing open
access to selected subsets of data for the development
of digital services [1]. The integration of potentially
any object into the Internet allows for new forms
of interactions between human beings and devices,
or directly among devices, according to what is

*Corresponding Author. Email: chiara.pielli@patavinatech.com

commonly referred to as the Machine-to-Machine
(M2M) communication paradigm [2].

A recent investigation from Juniper Research has
revealed that the number of IoT connected devices
is predicted to be 38.5 billion in 2020 and up from
13.4 billion already by the end of 2015, a rise of over
285% [3] whereas other studies [4] foresee 26 billions
of non-phone interconnected devices against 5 billions
of phone devices by 2020. According to the McKinsey
Global Institute analysis [5] the potential economic
impact of IoT is going to increase from $4 trillions up
to $11 trillions by 2025.

However, the heterogeneity of both end devices
and applications complicates the already challenging
development of the IoT [6] which needs to cope with
massive access to the transmission channels, security
issues and energy efficiency problems, which are
stressed by the use of constrained end devices. To cope
with these issues, the ongoing research in the scientific
community addresses all layers of the protocol stack,
from physical transmission up to data representation
and service composition.

Although it is not straightforward to describe a
unified scheme for the various IoT applications, it is

1 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

EAI Endorsed Transactions
on the Internet of Things

http://creativecommons.org/licenses/by/3.0/

possible to pinpoint the basic blocks that make up every
IoT architecture (Figure 1) [7]:

• Edge Technology layer: it is the hardware layer that
represents the things part of the IoT and consists
of sensors and actuators. The main function of
this layer consists in collecting information from
an environment or a system and processing this
information. The end devices must be able to
communicate with the Access Gateway layer in
order to transmit the collected observations and
to receive feedback from the upper layers. Several
solutions have been proposed for efficiently
managing communication among the end devices,
which typically are severely constrained in terms
of computational and storage capabilities, and
energy capacity;

• Access Gateway layer: it represents the point of
access to the Edge Technology layer and basically
revolves around data handling, i.e., forwarding
the information generated by the end devices to
the middleware layer and sending data produced
by the latter back to the devices. It must provide
all the functions that the constrained peripheral
nodes cannot bear and must support protocols for
communicating with the IP world, whilst coping
with the large variety of devices that may be
present in the network;

• Middleware layer: it is the intermediate layer
between the things and the Internet and is
mainly responsible for filtering and storing the
data received from the end devices. It is also
responsible for enforcing the security policy in the
IoT network. This layer must be able to cope with
the device heterogeneity and hide it to the IoT
applications in order to facilitate their access to
sensor data;

• Application layer: it is the layer responsible for
presenting the information to the final user. It
provides a high level management of all involved
devices in an integrated way, ensuring scalability,
high availability, and the reliable and secure
execution of the requested functionalities from
the devices.

To cope with the intrinsic constraints of IoT scenarios,
several challenges must be addressed at every layer
and the development of the whole architecture also
has to efficiently integrate every element without
interfering with the rest of the system. The goal of this
paper is to provide an introductory overview of the
protocols and technologies that can be employed in the
communication between the various elements of an IoT
system.

Application layer

Middleware layer

Edge Technology layer

Access Gateway layer

IoT edge network

IP network

Figure 1. IoT architecture
The rest of the paper is organized as follows. In

Section II we present a quick overview of the protocols
and technologies used for physical communication in
the constrained sensors networks. Section III discusses
the most popular IoT messaging protocols, which
are regularly used for communication between the
Access Gateway layer and the Middleware layer,
highlighting the strenghts and weaknesses of each
approach. The role of IoT middleware is discussed
in Section IV, together with the description of three
existing middleware solutions and a comparison of
their features. Section V provides a quick overview
of the security aspects in IoT systems. Section VI
introduces a use case; more specifically we describe a
complete IoT architecture built for Smart Cities that
makes use of LoRa™, a Low-Power Wide Area Network
(LPWAN) solution as the physical communication
protocol in the sensor network, MQTT as the messaging
protocol, and Sentilo as the middleware platform.
Conclusions are drawn in Section VII.

2. IoT wireless technologies
The basis of an IoT system is to be found in the
physical connection between the devices in the IoT
network. Most connections between things use wireless
technologies, since the number of devices to be
connected is usually large and, in many scenarios,
devices need to be mobile, e.g., in the case of wearable
technologies or for tracking purposes.

Multi-hop short-range wireless technologies have
been the first enabler of IoT networks. Things connected
to these networks usually run on dedicated protocol
stacks specifically designed to satisfy the device
constraints, although at least one of these devices must

2 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

Ch. Pielli et al.

Platforms and Protocols for the Internet of Things
be connected to an IP network. Devices connected to
both the IoT and an IP network act as access gateways,
as they allow users to communicate with things via
traditional devices like PCs and smartphones. In this
group, the most prominent technologies are the IEEE
802.15.4 family, including ZigBee™and 6LoWPAN,
and ZWave™. These kinds of networks operate in
the 2.4 GHz and 868/915 MHz unlicensed industrial,
scientific and medical (ISM) frequency bands, with
devices connected using a mesh topology. The distance
between these devices ranges from few meters up to
roughly 100 m, depending on the specific technology
used and on the surrounding environment. One of the
downsides of using a multi-hop technology is the need,
for nodes in the network, to keep the radio circuitry
on in order to forward the messages coming from
other nodes, thus reducing the power efficiency of the
network and reducing the battery life of mobile nodes.
These technologies have also proven to be inadequate
in scenarios where the network must provide a large
coverage range, as in Smart City applications.

To overcome these shortcomings, new technologies
have been proposed. They can be grouped in two
families: cellular IoT networks and LPWANs and,
unlike multi-hop short-range wireless technologies,
they enable a place-&-play connectivity [8], i.e., any
device can be connceted to the IoT network by simply
placing it in the desired location and switching it
on. In particular, the Third Generation Partnership
Project (3GPP), which is the body that developed
the specifications for the most popular cellular
technologies, is attempting to revamp GSM (Global
System for Mobile Communications) to support IoT
devices, thus implementing the Cellular IoT (CIoT)
architecture [9]. A possible issue that arises in these
types of networks is the massive number of devices that
need to access the transmission channel. Since cellular
technologies were not designed to provide machine-
type services to a huge number of devices, the signaling
and control traffic may become the bottleneck of the
system [6].

A possible alternative is represented by LPWANs,
which combine the use of dedicated protocol stacks
tailored to the device constraints, with a great coverage
range. In these kinds of networks, the end devices are
connected to a central aggregator, generally referred to
as gateway, which provides bridging to the IP world in
a fashion similar to the access gateway in multi-hop
networks. The gateway coverage range is in the order
of kilometers, making it possible to serve an entire city
with a limited number of gateways. A limit of these
networks is the low bitrate that, however, is expected
to be sufficient for many IoT services.

Table 1. Comparison among LPWAN radio technologies.
Technology SIGFOX™ Ingenu™ LoRa™Coverage rural: 30–50 ≈ 15

rural: 10–15range [km] urban: 3–10 urban: 3–5Frequency
868 or 902 2400 various, sub-GHzbands [MHz]Data rate [Kbps] 0.1 0.01–8 0.3–37.5Nodes per BS ≈ 106 ≈ 104 ≈ 104

The first LPWAN technology proposed in the
IoT market is SIGFOX™,1 founded in 2009. The
SIGFOX™physical layer uses an Ultra Narrow Band
(UNB) modulation coupled with sub-GHz bands to
ensure a great coverage range. SIGFOX™, which acts
as an operator for IoT services, already deployed
its nation-wide access networks in many European
countries, including France, Spain and the Netherlands,
thanks to the great coverage range of their gateways,
claimed to be 30–50 km in rural areas and 3–10 km in
urban areas [10].

A further LPWAN technology is LoRa™, designed
and patented by Semtech Corporation [11], which
also manufactures the chipsets. Its physical layer uses
a derivative of Chirp Spread Spectrum, operating
in the unlicensed sub-GHz bands. LoRa systems are
being deployed by telecommunication providers like
Orange and Bouygues Telecom in France, Swisscom
in Switzerland, and KPN in the Netherlands. While
the physical layer of LoRa™ is proprietary, the rest
of the protocol stack, known as LoRaWAN™ [12], is
being developed by the LoRa™Alliance2, an association
of industry partners dedicated to the development of
LoRa™ solutions.

Ingenu™,3 a trademark of On-Ramp Wireless, is
another example of LPWAN technology. Ingenu™ net-
works, unlike most of the other LPWAN technolo-
gies, operate in the 2.4 GHz band, but thanks to the
use of the patented Random Phase Multiple Access
technology [13], can still work over long distances. In
collaboration with Meterlinq, Ingenu™ is deploying a
nationwide network in Italy to enable smart water and
smart gas monitoring, with the long-term goal to scale
the network to include additional IoT applications.
Also, a nationwide network in the USA is planned to
be completed by the end of 2017.

Table 1 shows a comparison of these LPWAN radio
technologies, highlighting, in particular, the differences
in bitrate and declared coverage range [8].

1 http://www.sigfox.com/
2 https://www.lora-alliance.org/
3 https://www.ingenu.com/

3 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

http://www.sigfox.com/
https://www.lora-alliance.org/
https://www.ingenu.com/

3. Communication protocols
The interaction with the specific wireless transmission
technologies discussed in the previous section is typ-
ically realized by means of standard Application Pro-
gram Interfaces (APIs) and communication protocols
that can be logically placed on the Access Gateway layer
of Figure 1. The goal of this layer is to abstract the
specificities of the lower layers and provide common
ways to access the data collected by the IoT nodes. In
this section we describe the most important protocols
that are being proposed for this purpose. In particular,
we focus on REST, MQTT and AMQP, as all of them
are widely used and provide a comparable set of fea-
tures. However, these communication protocols have
been developed starting from different requirements
and with contrasting use cases in mind, thus providing
dissimilar performance in various scenarios.

REST. The Representational State Transfer (REST) is
a software architecture style for building scalable
web services, typically over the Hypertext Transfer
Protocol (HTTP) [14], and originated from the Ph.D.
thesis of Roy Fielding in the year 2000 [15]. For a
service to be identified as RESTful, the following five
constraints must be respected.

• Client-server: a RESTful service follows a client-
server model, with separation of concerns.

• Stateless: at the server side, no information about
session and client context is retained and each
request is an independent transaction that is
unrelated to any previous request. So, each client
request needs to contain all the information
necessary to serve the request and only the client
holds the session state. In this way servers are
simpler and scalability is enforced.

• Layered system: client and server may not be
directly interconnected. Intermediary servers may
improve system scalability by enabling load
balancing and providing shared caches, and may
also enforce security policies.

• Cacheable: clients and intermediaries can cache
responses, allowing an improvement in scalability
and performance.

• Uniform interface: the uniform interface between
client and server allows each part to evolve
independently. This constraint is based on two
notions: first of all, individual resources must
be identified in the requests and, secondly, these
resources can be manipulated according to the
CRUD pattern: Create, Retrieve, Update and
Delete.

A further optional requirement is that servers shall be
able to transfer executable code to clients.

The concept of resource is central in RESTful services:
every resource is globally and uniquely identified by a
Uniform Resource Identifier (URI) and is considered as
an abstract entity disconnected from its representation.
Since REST APIs are used almost exclusively over
HTTP, in this work we will consider only REST over
HTTP.

MQTT. The Message Queuing Telemetry Transport
(MQTT) protocol is a lightweight event and message
oriented protocol allowing devices to asynchronously
communicate across constrained networks to remote
systems. MQTT, version 3.1.1, has recently been stan-
dardized by the Organization for the Advancement
of Structured Information Standards (OASIS) consor-
tium [16] and has been submitted to the Interna-
tional Organization for Standardization (ISO) in order
to become an International Standard [17]. The MQTT
protocol has been initially designed to communicate
telemetry data in a M2M scenario, and therefore can
work in unreliable networks with small bandwidth and
high latency. The size of the message header can be as
small as 2 bytes, since, in IoT and M2M scenarios, mes-
sages are typically short and control information may
easily become the predominant part of the communica-
tion. The protocol has a client-server architecture: the
server part is represented by a central broker that acts
as intermediary among the clients, i.e., the entities that
produce and consume the messages. MQTT revolves
around the concept of topics, which are UTF-8 (Uni-
code Transformation Format, 8 bit) strings used by
the broker to filter messages for each connected client.
Topics are used by clients for publishing messages
and for subscribing to the updates from other clients.
This pub/sub mechanism avoids the need for consumer
entities to continuously poll the data producers for new
messages: through a topic subscription, an MQTT client
receives all the messages published by other clients for
that topic. MQTT libraries have been provided for all
major IoT development platforms, for the two major
mobile platforms, i.e., Android and iOS, and for several
programming languages (Java, C, PHP, Python, Ruby,
Javascript).

AMQP. The Advanced Message Queuing Protocol
(AMQP) is an open Internet protocol for message
exchange. AMQP version 1.0 has been standardized
by the OASIS consortium [18] and successively by the
ISO, as ISO/IEC 19464:2014 [19]. Its original goals
were to enable communication between systems of
different vendors, support messaging semantics needed
in the financial service industry, be extensible to new
queuing and routing strategies, and allow complete
configuration of the message routing. The initial
development of AMQP started from the initiative of
financial institutions that needed to reliably exchange
data between heterogeneous systems. Since then, this

4 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

Ch. Pielli et al.

Platforms and Protocols for the Internet of Things
protocol has been successfully used to exchange
messages in M2M scenarios. In an AMQP system, the
entities that produce and consume messages over the
network are linked to central messaging servers, called
brokers. At the broker, inbound messages are put in
different queues, waiting to be collected by message
consumers. The message routing is very flexible, as it
allows, e.g., to send messages in broadcast, to direct
them to a single entity, or to use a topic-based pub/sub
mechanism, as in MQTT.

In the rest of this section, we compare the protocols
performance with a focus on the IoT scenario. Hence,
we consider the following aspects: support of different
IoT traffic patterns, data encoding and manipulation,
reliability, and security.

3.1. Support of different IoT traffic patterns
In an IoT network many devices are linked to a
central aggregator that monitors and operates them.
An IoT network can be used to serve several purposes,
which may differ in the way the messages are
exchanged between network nodes. It is possible to
categorize the message exchanges of an IoT network
in four different communications patterns (Figure 2):
telemetry, notifications, inquiries, and commands [20].
The characteristics of each such traffic patterns, and the
suitability of the different communication protocols to
support them are discussed next. The result of such a
discussion is summarized in Table 2.

Telemetry: in the telemetry pattern, the device
autonomously sends data to the central aggregator
with a fixed time period or at the occurrence of some
events. The aggregator, upon data reception, simply
stores them for further analysis. Data messages are
usually small, with lengths of some tens of bytes,
but frequent. Depending on the use case, the average
interval between the data messages could range from
hours (e.g., for environmental monitoring) to fractions
of a second (e.g., for car telemetry). The HTTP protocol,
being ASCII-oriented, is too verbose for short messages,
since each optional header greatly increases the size of
the message. For this reason, the REST approach is not
very efficient in this case. MQTT, instead, was designed
to have a low overhead and to be very efficient in case
of short messages. AMQP, due to its many features, has
a larger header than MQTT, however it provides a flow
control mechanism, not present in HTTP and MQTT, to
slow down the source in case the destination is unable
to keep up to the rate of messages.

Notifications: refer to the central aggregator sending
messages to the devices to notify them about an
event. It has many characteristics in common with
the telemetry pattern, but it also requires all the
end devices, or their associated access gateway, to be
reachable from the central aggregator. Hence, if using

the REST architecture over HTTP, special attention is
required to connect nodes through Network Address
Translation (NAT) and firewall gates. Furthermore, each
device must host an HTTP server to be able to receive
the notifications, adding complexity to the device,
which is usually constrained in terms of memory and
computing power. None of these issues arise for MQTT
and AMQP because, in those protocols, connections are
always initiated by the client, so that only the message
broker needs to be publicly reachable. Furthermore,
to receive and send messages, nodes only need the
MQTT or AMQP client, which can run in a constrained
environment.

Inquiries: in this pattern the end device (or the
element in charge of connecting the end device to the IP
world) sends requests to the central aggregator, which
successively answers with the required information.
This is exactly the use case addressed by the REST
architecture, since it can be seen as a traditional
request-response pattern. Here the HTTP server must
be placed in the central aggregator, while the end
devices (or the access gateways) are equipped with
an HTTP client, which is less demanding in terms of
computing resources than the HTTP server. Instead,
the MQTT protocol does not formalize a way to
exchange messages in a request-response pattern, so
that the parties must agree beforehand on pair topics
for this pattern: a topic for publishing requests and
another for publishing responses. However, the OASIS
MQTT Technical Committee is currently working on
a mechanism to formally enable the request-response
messaging pattern in MQTT. AMQP, instead, already
supports a mechanism to enable the request-response
message exchange, thus providing the flexibility needed
to operate in this scenario.

Commands: in this case, the central aggregator sends
a message to the end device to trigger an action and
then waits for the reply by the end device containing
the outcome of the action. Besides the reachability
issue described in the notifications pattern, the REST
architecture also fails to manage the case in which
the end device is temporarily offline: messages sent
while the device is unavailable are simply lost. MQTT
addresses this problem with the introduction of the
optional retain flag in the published message, forcing
the message to be sent to all clients that, in the future,
will subscribe to the corresponding topic. As mentioned
before, it is also important to remark that MQTT
lacks a formalized request-response mechanism to
correlate the request to the end device with its response.
Regarding AMQP, its message broker always saves
incoming messages to the message queues, allowing
them to be retrieved at a later time even if the
recipients are temporarily unavailable. Furthermore,

5 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

Telemetry Notifications Inquiries Commands

Central aggregator End device

Figure 2. Communication patterns
AMQP introduces a refinement that consists in a Time-
to-Live indication, to remove stale messages from the
queues.

3.2. Data encoding and manipulation
Usually, message recipients elaborate the received
data depending on the type of the message content.
AMQP features a rich set of metadata to describe the
transmitted data, including a complete type system.
Actually, AMQP type system defines some primitive
types, togeteher with constructs to extend them in order
to allow the association of an AMQP value with an
external type that is not present as an AMQP primitive.
This feature is not present in REST nor in MQTT.
Actually, the REST architecture only allows to specify
the type of message content through the HTTP Content-
Type header, but lacks a more comprehensive metadata
set. The message content is, instead, completely opaque
to MQTT, which does not even allow the indication
of generic information such as the Content-Type. In
order to elaborate the message content, the parties must
therefore agree beforehand to the exact format of the
message, and a change in message format requires the
communicating parties to be manually updated.

3.3. Reliability
In the IoT field, reliability refers to the absence of
communication errors in the transmitted data and
the guarantee that transmitted messages have been
delivered to the recipients. REST over HTTP relies
only on the underlying Transmission Control Protocol
(TCP) to provide reliability of message exchanges, while
MQTT and AMQP offer more flexible mechanisms to
provide additional levels of reliability assurance [21].
In MQTT, Quality of Service (QoS) is an attribute of the
individual message being published. However, due to
device or link contraints, a subscribing client can set the
maximum quality of service a broker can use to send
messages to it, hence each message will be delivered
with a QoS value that is the minimum between the value

of the QoS attribute in the message and the maximum
QoS accepted by the client. The QoS attribute can
take three possible values: at-most-once (QoS level
0), in which no acknowledgement is needed, at-least-
once (QoS level 1), which requires the transmission
to be acknowledged, and exactly-once (QoS level 2),
that requires a more sophisticated acknowledgement
mechanism which involves the exchange of three
acknowledgement messages. QoS level 2 is the only
level that can be used for non-idempotent messages that
must be delivered reliably, since it guarantees that the
message is not delivered multiple times, unlike QoS
level 1. However, it is to be noted that, with the highest
QoS level, the overhead is large and sending messages
at a high rate may degrade the system performance.
AMQP has QoS properties similar to those of MQTT,
supporting message queuing and delivery semantics
that cover at-most-once, at-least-once and exactly-once
deliveries. Furthermore, the AMQP specification also
describes an optional transaction mechanism with a
multiphase commit sequence, to ensure that each
message is delivered as intended, regardless of failures
or reboots.

3.4. Security
REST over HTTP, MQTT and AMQP can all be placed
on top of Transport Layer Security (TLS) [22], which
provides confidentiality of the data exchanged. TLS
also supports authentication of the server, which is
the message broker in case of MQTT and AMQP,
or the HTTP server in case of REST. While TLS
could also be used to authenticate clients, this is not
commonly employed because it involves the generation
and management of a certificate for each client that
must be able to connect to the server. Instead, client
authentication is typically implemented in the protocol
running on top of TLS. With the REST architecture it
is possible to use HTTP Basic or Digest authentication
mechanisms. MQTT, instead, allows the clients to
specify the username and, optionally, a password while
connecting to the broker. AMQP does not provide an
authentication mechanism itself, but allows the use of
the Simple Authentication and Security Layer (SASL)
framework.

To conclude, the choice of the protocol to use depends
on the specific use case. The most important factors
to consider are: the rate at which new messages are
generated, the underlying network performance, the
reliability of links, the necessity of extensibility and
message semantic, and the quality of service required.
According to this analysis, in Section 6 we explain the
choices we made for a specific use case.

6 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

Ch. Pielli et al.

Platforms and Protocols for the Internet of Things
Table 2. Features of the various communication patterns and their support by the considered protocols.(X: fully supported; ∼: partially supported; 7: not supported.)

Features Telemetry Notifications Inquiries CommandsREST MQTT AMQP REST MQTT AMQP REST MQTT AMQP REST MQTT AMQPSmall overhead 7 X ∼ 7 X ∼ 7 X ∼ 7 X ∼Flow control 7 7 X 7 7 X Not required Not requiredReachability of nodes Not required 7 X X Not required 7 X Xbehind NAT or firewall gatesSupport for constrained
7 X X 7 X X 7 X X 7 X XdevicesRequest-response pattern Not required Not required X 7 X X 7 XPublish-subscribe pattern 7 X X 7 X X Not required Not requiredSupport for temporarily Not required 7 ∼ X Not required 7 ∼ Xoffline devicesOverall fit 7 X X 7 X X 7 ∼ X 7 ∼ X

4. Between the Things and the Internet: the
middleware

IoT systems often deal with different types of
devices, each with its own communication protocol
and different requirements, that need to somehow
interact with the final user. In order to meet this
demand, IoT architectures require a software platform,
called middleware (see Figure 1), which represents
an intermediate layer between the Internet and the
things and acts as a bond joining mixed applications
communicating over heterogeneous interfaces. The
middleware is also in charge of masking the system
complexity that is faced when interacting with the
end devices, so that even the average technology-
inexperienced user is able to enjoy IoT services
effortlessly.

The development of a middleware in the IoT context
requires the support of various functionalities. The
following list summarizes the crucial issues that the
middleware must address [23] [24]:

• Interoperability: the conceived middleware must
cope with the great heterogeneity of the smart
objects. Interoperability aims at device abstrac-
tion and is threefold: technical, syntactic and
semantic. According to the European Telecom-
munications Standards Institute (ETSI) [25], tech-
nical interoperability is defined as the associa-
tion of hardware or software components, sys-
tems and platforms that enable M2M commu-
nication to take place. Syntactic interoperability
deals instead with data formats and asks for an
agreed upon and well-defined common syntax
for messages. Finally, semantic interoperability is
associated with the ability of computer systems

to exchange data with unambiguous and shared
meaning, understandable to humans.

• Device discovery and management: bootstrapping
is a crucial phase in the IoT as it prepares
the smart objects to join the network and to
interact with the other end devices, detecting
all their neighbours and making their presence
known. Moreover, the middleware must be aware
of the context in order to work in smart
environments, as the smart objects may move
in a random fashion causing rapid changes in
the network topology. An IoT middleware must
be able to update routing information in an
efficient way without affecting the overall network
performance and indipendently of the routing
protocol used. Another issue related to device
management involves actuators, which may be
accessed simultaneously by different applications
in a contradictory way: the middleware is in
charge of solving such conflicts.

• Security and privacy aspects: security is a key
point in IoT architectures, which often deal with
sensitive data. Thus the middleware must ensure
authentication, confidentiality, data integrity and
non repudiation and must be able to manage
different roles and privileges.

• Application abstraction: the middleware should
provide an interface for both high-level appli-
cations and end users to interact with the end
devices without prior knowledge about the physi-
cal network and the implementation details.

• Data management: the IoT is leading to an
explosion of data exchanges, thus the middleware

7 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

needs to cope with enormous volumes of data.
It is also necessary to have historical data
stored, which allow the end user to retrieve old
observations and to display time-series graphs.

Other useful features concern modularity, i.e., the
possibility to add functionalities without altering the
existing core, which is essential to customize the
platform in a plug-and-play fashion for accomodating
missing features, and the capability of supporting
downlink traffic towards the end devices to enable
actions from the final users. Many challenges need
to be addressed in order to build an efficient, robust,
scalable and real-time platform. For these reasons, it
may be preferable not to develop a custom middleware
from scratch, but rather to use an existing and well
tested platform and adapt it to fulfill the specific
system requirements, if needed. There exist many
implemented middlewares; we selected and analyzed
three different frameworks, namely openHAB, Sentilo
and Parse, which are intended to be used along with
an access gateway to provide the described functions.
Their characteristics are detailed in the rest of this
section.

4.1. openHAB
The software platform openHAB4 targets home
automation and was born in 2008 from the need of its
creator, Kai Kreuzer, to integrate sensors and actuators
in his own house in Darmstädt (Germany).

OpenHAB is extensible through a plug-and-play
principle and interoperable thanks to the use of
modules to support different communication protocols
and mechanisms. Many modules have already been
implemented, such as the MQTT binding, a component
that allows openHAB to act as an MQTT client
and hence to support a pub/sub mechanism for
seamlessly interacting with the nodes. End devices are
registered in openHAB as items. An item is a data-
centric functional atomic building block: all openHAB
resources are represented using this abstraction, which
is independent of the technology used. In this way the
final user does not need to be aware of the physical
network technology employed, since he/she only needs
to dialogue with openHAB via HTTP. Historical data
can be stored in relational, NoSQL or round-robin
databases, in IoT cloud services or in simple log files,
according to the user needs. For what concerns security,
TLS can be enabled for all the protocols that support
it and user authentication is also possible. However,
openHAB targets home automation and therefore it is
designed to be used by a limited number of users,
all with complete access to the available information.

4 http://www.openhab.org/

The implementation of user differentiation according to
given roles is on the future work list and will make it
possible to assign different read and write permissions
to users.

The strenghts of the openHAB platform are its high
modularity and the presence of bindings that support
different protocols. Its main shortcomings, instead,
concern the lack of a user conditional access and
the internal items implementation, since items cannot
be bound to a specific time and geospatial context
nor customised according to the users needs. This
abstraction, for example, makes it impossible to store
location information to track mobile end devices; also,
past measures cannot be inserted at a later time, since
data cannot contain a custom timestamp.

The openHAB project gave rise to Eclipse
SmartHome, a flexible framework for the smart
home. Eclipse SmartHome will be the basis for the next
iteration of the openHAB project, namely openHAB 2,
which is still in its early stages of development.

4.2. Sentilo
Sentilo5 is the product of a project started in November
2012 by the Barcelona City Council and conceived
to make Barcelona a reference point in the field of
Smart Cities. The name Sentilo was chosen because it
means sensor in Esperanto, underlying the intention of
openness and universality in the use of a platform.

Sentilo is an extensible open source platform that
offers a REST API over HTTP, supporting all the com-
munication patterns described in Section 3. However,
Sentilo does not support other communication proto-
cols: it is necessary to implement a bridging module
for every other protocol to be used in the architecture,
in order to properly translate its messages into their
REST equivalent. Sensors and actuators are registered
in Sentilo as uniquely identifiable items and are orga-
nized according to a hierarchical structure. It is also
possible to track the location of mobile sensors. For
what concerns access control, Sentilo features a token-
based authentication system to identify the petitioner
of the request, coupled with a privilege policy based on
roles. Also, to provide confidentiality, the REST API can
be used over the secure HTTPS channel.

To recap, the selling points of Sentilo are the
possibility of extending its functionalities in a plug-
and-play fashion, the presence of a hierarchical and
slightly customizable item representation and the
implementation of an authorization and role-based
permission mechanism that facilitates the interaction in
the same context of multiple users with different roles.
Sentilo’s most important drawback, instead, is its weak

5 http://www.sentilo.io

8 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

Ch. Pielli et al.

http://www.openhab.org/
http://www.sentilo.io

Platforms and Protocols for the Internet of Things
interoperability, as it natively supports only the REST
API and cannot communicate via other protocols.

4.3. Parse
Parse6 is a cloud-based data management system
that allows people to quickly develop web and
mobile apps. More specifically, it is a Backend as a
Service (BaaS) solution, a turnkey service that adds
user authentication, push notifications, social media
integration, location data, and data analytics into any
app. It was acquired by Facebook in 2013 with the
aim of adding Mobile BaaS capabilities to the existing
platform and, as IoT backends are the logical extension
of mobile backends, at the end of March 2015 Facebook
announced Parse for IoT. Parse for IoT is a collection
of Software Development Kits (SDKs) for connected
devices, such as Arduino Yún, a microcontroller board
with built-in WiFi capabilities. Parse SDKs are directly
deployed on hardware platforms and provide a simple
REST API. Such SDKs make devices able to receive
push notifications, save data, and take advantage of
the Parse Cloud. All Parse resources are represented
as Parse Objects, uniquely identified and customizable.
Particular objects are the roles, which group users with
common access privileges in order to support role-
based access control. Even data storage on Parse is built
around a Parse Object: there is no need to explicitly
create databases or tables to use Parse, since data will be
automatically stored in the cloud. Finally, it is possible
to extend the functionalities of Parse for the IoT by
creating the so called Cloud Modules.

To sum up, the strengths of Parse are the great
customization available for Objects and the presence of
a solid permissions and roles structure to control user
access. The major weaknesses are instead the need of
installing the SDK on each device and the inability to
communicate in a way different from REST. Moreover,
being Parse for IoT so recent (it was officially announced
just a few months ago), this tool is not widely deployed,
so a proof of its real-world performance is still missing.

4.4. Platforms comparison
The above descriptions highlight the great effort
required to develop a complete middleware that simul-
taneously accomplishes all the listed requirements.

All three platforms represent valuable middleware
solutions for the IoT, but at the same time all of them
lack some useful features. They all provide modularity,
data management and application abstraction, which
is typically achieved by implementing a REST API
designed to be used by the user interface. Security
is achieved by means of authentication and message

6 https://parse.com

Table 3. Comparison among the platforms
platform openHAB Sentilo Parsemodularity X X Xapplication abstraction X X Xmultiple protocols

X × ×supportsemantic and syntactic
X X Xinteroperabilitydata management X X Xdata storage X X Xitems custom × X Xrepresentationuser conditional access × X Xadd timestamp to × X ×transmitted datasecurity X X Xgrowing community X X X

encryption, but, unlike the others, openHAB does not
offer user differentiation according to roles. However,
openHAB is the only middleware, among the three
described in this paper, capable of supporting different
communication protocols simultaneously. We deem
openHAB to be suitable for small deployments, where
there is no need to distinguish among end users,
whereas Sentilo, which supports user roles, may be
employed in wider deployments, although it may
require the implementations of protocol bridging
bindings. Parse for IoT is not the best suited platform
for large existing IoT networks, since it requires the
SDK installation on all the hardware devices, and
therefore depends on the particular sensors and the
network topology used.

5. Security in IoT systems
A central aspect of every IoT application is security,
which must be guaranteed at every level of the
system. IoT security, in particular, revolves around the
concepts of identification, confidentiality, integrity and
availability, and needs to meet the new requirements
implied by the pervasive presence of the Internet in
any aspect of daily life. Internet-facing services are in
fact under continual attack and this does not bode well
for the IoT, which relies on it and also incorporates
many constrained devices for which it is hard to
apply security mechanisms such as frequency hopping
comunication and public key encryption [26]. But as
the IoT also touches many sensitive areas, security
represents a challenge that cannot be neglected: attacks
and malfunctionings would just outweigh any of the IoT
benefits. Security experts are currently investigating

9 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

https://parse.com

whether current security mechanisms can be integrated
in the IoT or new designs are required to accomplish
security goals. What mainly introduces new threats
is the distributed nature of IoT architectures and
the use of fragile technologies, such as limited-
function embedded devices in public areas where
they are accessible by anyone and may be physically
harmed [27]. As sensors are typically simple low
power devices, they cannot even support ordinary
security measures: network firewalls and protocols
can manage the high-level traffic flowing through the
Internet, but the protection of the endpoint devices with
limited resources available to accomplish it raises new
challenges and demands for revolutionary solutions.

Key features for gaining security are the following.

• Identification: the things must be uniquely iden-
tified, indipendently of their underlying mech-
anisms, e.g., the IP address they are associated
to. Assigning a unique identifier to devices is the
basis for the authentication step and the conse-
quent authorization phase.

• Confidentiality: it refers to the guarantee that
information is not made available or disclosed to
unauthorized individuals, entities, or processes.
Confidentiality is fundamental in an IoT scenario,
in which a plethora of devices transmit messages,
leading to an explosion of data. Access to these
data must be controlled mainly by means of
cryptographic mechanisms and users access lists.

• Integrity: to maintain the consistency, accuracy,
and trustworthiness of data over its entire life
cycle, data must not be changed in transit or
altered by unauthorized people.

• Availability: for any information system to serve
its purpose, the information must be available
when it is needed. Availability may be hindered
by legitimate users too, if they flood the network
with requests that exhaust network resources,
interrupting services available to other legitimate
users.

Clearly, the IoT is prone to be more susceptible to
attacks than the rest of the Internet, since billions
of devices will be producing and consuming a large
number of different services. From a network perspec-
tive, the sensors should open a secure communication
channel with more powerful devices exploiting crypto-
graphic algorithms and using an adequate system for
exchanging the keys. A safe transmission over TCP/IP
connections can be achieved by enabling Transport
Layer Security (TLS), which asks the parties to authen-
ticate themselves and provides message encryption.
At the application level, security needs for different
application environments are different, although data

privacy, access control and disclosure of information are
likely common requirements. In [7] the authors stress
the crucial role of security and privacy and highlight
how the public acceptance of the IoT will happen only
when strong security and privacy solutions will be in
place. In fact, when the Internet first appeared, no
security infrastructure had been built for it. But, when
the first security problems came out, the only viable
solution to solve them was to treat security and privacy
as add-on features. In the IoT, instead, security has
to be intrinsic, hence we must find new fundamen-
tal solutions, shared among all interested parties, for
addressing this challenge.

6. A use case: an IoT system for Smart Cities
We participated in the development of a complete IoT
system that targets the Smart Cities context, a project
carried out by Patavina Technologies s.r.l.7 in the city of
Padova, Italy.

LoRa™ has been chosen as the wireless technology.
From the analysis carried out in [8] and summarized in
Section 2, it results that, although the declared coverage
range of LoRa is slightly lower than that of the other
two technologies, the transmission data rate achievable
with LoRa is higher. The LoRa™ network is typically
laid out in a star-of-stars topology, where the end devices
are connected via a single-hop LoRa™ link to one or
many gateways which, in turn, are connected to a
common Network Server (NetServer) via standard IP
protocols [12]. The NetServer represents the point of
access for the LoRa™ network as it can support other
communication protocols.

We chose to make the NetServer communicate with
the rest of the world using MQTT. As outlined in
Section 3, MQTT is a lightweight protocol that meets
IoT requirements thanks to its very small message
header and the pub/sub mechanism, features not
provided in HTTP. AMQP was discarded because it
is very complex and all of the features missing in
MQTT but provided in AMQP were not necessary for
the implemented architecture. Therefore, setting up
AMQP clients and broker would have required much
more work with very little benefit. An advantage of
AMQP over MQTT is the message queueing system that
allows the clients not to miss messages arrived whilst
they were unavailable. Anyway, when unmissable
data is sent, it is still possible to use the simple
retain mechanism available in MQTT, as explained
in Section 3. Patavina Technologies also developed
mechanisms for detecting the unavailability of any
MQTT element and activate it again within a short time,
assuring that no MQTT component is affected by an

7 http://www.patavinatech.com/en

10 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

Ch. Pielli et al.

http://www.patavinatech.com/en

Platforms and Protocols for the Internet of Things
extended downtime. Request and response topics and
the format of the message payload have been agreed
beforehand.

The selected middleware is Sentilo. In fact, Parse
for IoT demands the SDK installation on hardware
devices, restricting the freedom of choice on the
development environment, and mandating the use of
REST interfaces on the devices, a choice not well suited
for the constrained devices and network technology
used in our solution. On the other hand, openHAB
did not provide a mechanism for user differentiation
according to roles. Hence, the overall architecture sees
LoRa devices that communicate with the IP world
through the NetServer, which supports MQTT. The
messages sent by the NetServer are processed by an
Application Server (AppServer) and the new human-
readable MQTT messages are forwarded to Sentilo,
which is in charge of registering the nodes and their
data so that authorized users can access them. We also
developed a friendly website for interacting with the
nodes and displaying their readings.

The system deployment corroborated the choices
made by Patavina Technologies. LoRa network connec-
tivity has been tested by installing a private network in
a large and tall building (19 floors), with nodes placed
also in heavily shielded positions, e.g., inside eleva-
tors in order to put the connectivity condition under
strain. Other experimental tests have been carried out
in Padova with the purpose of assessing the worst case
coverage in an urban environment. It turned out that,
in harsh propagation conditions, the LoRa technology
allows to cover a cell of about 2 km of radius and,
even when assuming a radius of 1.2 km to take into
account a reasonable margin for interference and link
budget variations, the number of gateways needed for
assuring coverage in the municipality of Padova is much
lower than the number of sites required by one of
the major cellular operators in Italy to provide mobile
cellular access over the same area. MQTT has proved to
be an excellent communication protocol: the pub/sub
mechanism makes it possible to automatically receive
updates from nodes avoiding the polling procedure
of HTTP, while the extremely small header of MQTT
messages (which is even smaller than in AMQP) affects
the traffic intensity in a minimal way. However, the
use of MQTT required the implementation of an addi-
tional bridging module in Sentilo for the conversion of
MQTT messages into HTTP messages (and viceversa for
downlink traffic). Using this setting, we evaluated the
average delay experienced by a packet in uplink from
the NetServer to the final application and the average
uplink traffic intensity for a particular network setup.
Both metrics have been calculated as the average values
over more than 2.5 million packets. We did not consider
downlink traffic, mainly constituted of sporadic com-
mands targeting the sensors, as messages coming from

Figure 3. Simulation setup
the nodes are expected to be the predominant traffic in
the considered scenario.

The configuration we adopted is represented in
Figure 3 and sees the AppServer, the MQTT broker
and Sentilo deployed in a cloud service, hence with
very fast connections between the elements, while the
NetServer is placed close to the LoRa gateways in
order to minimize the latency in the LoRa network,
and is connected to the MQTT broker by means
of an Asymmetric Digital Subscriber Line (ADSL)
link. The propagation times are around 10 ms for the
connections in the cloud and 100 ms for the ADSL
link. It is worth noting that the use of TLS for security
reasons increases the traffic intensity because of the
preliminary authentication phase and the additional
message headers. Moreover, we used an MQTT QoS
level of 2 (see Section 3) in all exchanges, thus
affecting both the traffic intensity - because of the
acknowledgement messages - and the delay, since the
broker needs to wait for the acknowledgement from the
producer before sending the message to the subscribers
of the involved topic. It turned out that, in addition to
the LoRa traffic, each message generated by a peripheral
node produces about 22 kByte of traffic resulting from
the MQTT and HTTP messages exchanged in order to
process the node observation and deliver it to the final
user. About a quarter of such flow is comprised of HTTP

11 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

Table 4. Traffic intensity. Bytes exchanged at each link for onenode observation
traffic [kByte] NetS → brk AppS → brk brk → Sentilono TLS 0.6 3.9 11.1TLS 0.8 6.7 13.9

Table 5. Transmission delays
delay [ms] tpropagation (all) tbroker tAS tSentilono TLS 130 204 29 120TLS 130 203 28 120

traffic for dialoguing with Sentilo. The traffic associated
to each link is reported in Table 4, where brk refers
to the broker, NetS to the NetServer and AppS to the
AppServer. The global traffic highly depends on the
number of nodes employed and on the rate at which
they transmit their messages.

The average delay experienced by a packet can be
expressed as the sum of the various propagation times
and the processing times, namely the transmission
times from the NetServer to the broker, from the broker
to the AppServer and vice versa, from the broker to
Sentilo and from Sentilo to the final user, the time
needed by the broker for handling the QoS level and
identifying the interested subscribers, the processing
times of the AppServer and Sentilo. Table 5 shows the
average propagation and processing times we evaluated
in our simulations, resulting in an average transmission
time of about 480 ms. Notice that this value strongly
depends on the propagation times of the connection
links, especially that of the ADSL, that represents the
bottleneck of the transmission, whereas the processing
times of the AppServer and Sentilo are in the order of
just a few milliseconds.

Security in the Edge Technology layer is
granted by the LoRa™ technology: data frames
are encrypted with the scheme described in
IEEE 802.15.4/2006 Annex B [28] using the AES
algorithm with a key length of 128 bits. For each
end device there is a specific application session
key which is used by both the NetServer and the
end device to encrypt and decrypt the payload
field of application-specific data messages. Security
on the MQTT connections is granted by enabling
both authentication and TLS encapsulation: the
MQTT broker provides username and password
authentication and limits access to topics by using
access control lists, whereas TLS ensures confidential
transmission. Finally, Sentilo REST API is used over
the secure HTTPS channel and Sentilo validates all
HTTP requests according to the AAA architecture:
Authentication, Authorization and Accounting. This

means that the platform first identifies the petitioner
of the request, then checks whether it is authorized
to perform the requested action over the requested
resource, and it finally traces the request by auditing
the action and who performed it. Authentication is
enabled by the mandatory use of an identification
field in the HTTP headers, resulting in the so-called
token-based authentication, which also allows for the
authorization of a request by simply looking up the
privileges associated to the involved token.

However, a weakness in Sentilo’s security framework
is that tokens, which are necessary to guarantee a
secure and controlled access to resources, were stored
in the database in clear and, although the access to the
databases requires authorization, it is always a good
habit not to store passwords as they are, as a malicious
attacker may find a way to access the database. There
exist many hashing techniques commonly used for
storing passwords, such as the MD5 algorithm and the
family of the Secure Hash Algorithm (SHA). We opted
to use bcrypt, a cryptographic hash function (i.e., a
one-way hash function, practically impossible to invert)
which aims at being slow, or, more precisely, as slow
as possible for the attacker while not being intolerably
slow for the honest systems. It is derived from the
Blowfish block cipher which uses look up tables to
generate the hash, thus requiring a significant amount
of memory space. This discourages attacks based on
Graphics Processor Unit (GPU), which excels at doing
simple manipulations on a large set of data, as it will
become cumbersome to generate the hashes due to
memory restrictions.

Another leak of Sentilo concerns the generation
mechanism of tokens, based on the hashing of some
knowable values, namely, a prefix retrievable in the
source code, the name of the entity for which the token
is being generated, and the creation time of this entity
with a millisecond accuracy. Tokens are generated in
two steps: firstly, the three mentioned elements are
concatenated in a single string, and then the hash
function of such string is computed according to the
SHA-256 algorithm. The resulting token is a string
made of 26 hexadecimal numbers. Basically, knowing
the timestamp of the creation of a specific entity in
Sentilo, it is possible to calculate the token associated
to that entity. We tried to perform a brute-force attack
to retrieve the token associated to a particular Sentilo
role, and succeeded in a reasonable amount of time. We
implemented a non optimized single-threaded attack
that runs on Central Processing Unit (CPU) rather
than on GPU. We ran our brute-force attack on an
Intel® Core™ i7-2600 quad core processor and we
found that about 4 ms were needed for a single attempt.
Thus, knowing the creation day of the entity for which
the token has been generated, the token is retrievable in
4 days in the worst case.

12 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

Ch. Pielli et al.

Platforms and Protocols for the Internet of Things
The original token generation procedure is clearly

unsafe and represents a big leak in the security
of Sentilo. We hence decided to change it with
a completely random token generator. If a brute-
force attack is perpetrated by trying all possible
strings of 26 hexadecimal characters, the average
time for determining the correct token increases
considerably. There are 1626 ' 2.03 · 1031 possible
combinations, but the number of tries before a
success cannot be represented as a geometric random
variable as the attempts, despite being independent
of each other, are not identically distributed: after
k wrong attempts, 1626 − k combinations remain. If
we model the probability of needing at least k
attempts before succeeding with a random variable, it
is possible to estimate the lower and upper bounds
of its cumulative distribution function by assuming
identically distributed tries with the minimum and
maximum probabilities, respectively. Considering that
pj+1 ≤ pj∀j ≥ 0, the minimum probability of a try is
that of the first attempt, i.e., p0 = p = 16−26, whereas
the maximum probability of k tries is pk = 1/(1/p − k).
We evaluated that for k = 2 · 1030 the probability is still
low, about 0.1. With an average computing time of 4 ms
per attempt, about 1020 years would be needed for
trying k = 2 · 1030 combinations. It is evident that using
a random token certainly improves security against
brute-force attacks.

The described use case shows the extent of elements
that must be considered in an IoT system and the
effort needed for integrating them in a solid, robust and
secure system. Currently, there exist many solutions in
the literature and since there is no well-established and
widely-acknowledged best practice, developers should
analyze the available strategies and protocols to identify
those that best meet their requirements.

7. Conclusions
In this paper we identified the fundamental parts
of a generic IoT system, independently of its final
application. We outlined the requirements and features
of the different modules that compose an IoT
architecture and described the current solutions,
highlighting pros and cons of each approach. We also
depicted the security needs of any IoT system, stressing
the importance of security and the variety of aspects
that must be taken into consideration. Finally, we
reported a use case in which a complete IoT architecture
has been developed in the context of Smart Cities. We
found that the used solutions have great performance,
but still have several issues regarding, in particular,
the security aspects. Furthermore, integration of the
different layers in an IoT architecture is difficult due
to the different interfaces, which required bridging
modules to translate messages between them.

Future work may focus on a more comprehensive
performance evaluation of the architecture described
in Section 6, both for what concerns LoRa™ and
the IP network. For instance, further experimental
tests in even harsher environments may allow to
sharpen the values about LoRa™ coverage range.
Moreover, by deploying the system for a longer
observation time and in a wider area, we could carry
out perfomance measures concerning, e.g., scalability,
reliability, robustness and energy efficiency.

Acknowledgement. The authors would like to thank Nicola
Bressan and Ivano Calabrese from Patavina Technologies, for
their fundamental contributions in the implementation of the
LoRa™ system.

References

[1] Zanella, A., Bui, N., Castellani, A., Vangelista, L. and
Zorzi, M. (2014) Internet of Things for Smart Cities.
IEEE Internet of Things Journal 1(1): 22–32.

[2] Anton-Haro, C. and Dohler, M. (2015) Machine-to-
Machine (M2M) Communications: Architecture, Perfor-
mance and Applications (Woodhead Publishing Ltd.), 1st
ed.

[3] (2015) Internet of Things’ connected devices to
almost triple to over 38 billion units by 2020.
Tech. rep., Juniper Research. URL http://www.

juniperresearch.com/press/press-releases/

iot-connected-devices-to-triple-to-38-bn-by-2020.
[4] (2015) Ericsson mobility report. On the pulse

of the networked society. Tech. rep., Ericsson.
URL http://www.ericsson.com/res/docs/2015/

ericsson-mobility-report-june-2015.pdf.
[5] (2015) The Internet of Things: mapping the value beyond

the hype. Tech. rep., McKinsey Global Institute. URL
http://www.mckinsey.com/insights/business_

technology/the_internet_of_things_the_value_

of_digitizing_the_physical_world.
[6] Biral, A., Centenaro, M., Zanella, A., Vangelista,

L. and Zorzi, M. (2015) The challenges of M2M
massive access in wireless cellular networks. Digital
Communications and Networks 1(1): 1–19.

[7] Tan, L. and Wang, N. (2010) Future Internet: The
Internet of Things. In 2010 3rd International Conference
on Advanced Computer Theory and Engineering (ICACTE),
5: 376–380.

[8] Centenaro, M., Vangelista, L., Zanella, A. and
Zorzi, M. (submitted for publication) Long-Range
Communications in Unlicensed Bands: the Rising
Stars in the IoT and Smart City Scenarios. IEEE
Wireless Communication URL http://arxiv.org/abs/

1510.00620.
[9] Vodafone Group Plc. (2014) New Study Item on Cellular

System Support for Ultra Low Complexity and Low
Throughput Internet of Things. Tech. rep. gp-140421,
3GPP TSG GERAN.

[10] M2M and IoT redefined through cost effective and
energy optimized connectivity. Tech. rep., SIGFOX.

13 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

http://www.juniperresearch.com/press/press-releases/iot-connected-devices-to-triple-to-38-bn-by-2020
http://www.juniperresearch.com/press/press-releases/iot-connected-devices-to-triple-to-38-bn-by-2020
http://www.juniperresearch.com/press/press-releases/iot-connected-devices-to-triple-to-38-bn-by-2020
http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf
http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf
http://www.mckinsey.com/insights/business_technology/the_internet_of_things_the_value_of_digitizing_the_physical_world
http://www.mckinsey.com/insights/business_technology/the_internet_of_things_the_value_of_digitizing_the_physical_world
http://www.mckinsey.com/insights/business_technology/the_internet_of_things_the_value_of_digitizing_the_physical_world
http://arxiv.org/abs/1510.00620
http://arxiv.org/abs/1510.00620

URL http://www.sigfox.com/static/media/Files/

Documentation/SIGFOX_Whitepaper.pdf.
[11] Sforza, F. (2013), Communications system, US Patent

8,406,275.
[12] (2015), LoRaWAN™ Specification V1.0. URL

https://www.lora-alliance.org/portals/0/specs/

LoRaWAN%20Specification%201R0.pdf.
[13] Myers, T. (2010), Random phase multiple access communi-

cation interface system and method, US Patent 7,782,926.
[14] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and Berners-Lee, T. (1999)
Hypertext Transfer Protocol–HTTP/1.1. Ietf rfc 2616.

[15] Fielding, R.T. (2000) Architectural Styles and the Design
of Network-based Software Architectures. Ph.D. thesis,
University of California, Irvine.

[16] (2014), OASIS: MQTT Version 3.1.1. URL
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/

mqtt-v3.1.1.html.
[17] (2015), ISO/IEC DIS 20922 Information technology–

Message Queuing Telemetry Transport (MQTT)
v3.1.1. URL http://www.iso.org/iso/home/store/

catalogue_tc/catalogue_detail.htm?csnumber=

69466.
[18] (2012), OASIS Advanced Message Queuing Protocol

(AMQP) Version 1.0. URL http://docs.oasis-open.

org/amqp/core/v1.0/os/amqp-core-complete-v1.

0-os.pdf.
[19] (2014), ISO/IEC 19464:2014 Information technology–

Advanced Message Queuing Protocol (AMQP)
v1.0 specification. URL http://www.iso.org/iso/

home/store/catalogue_tc/catalogue_detail.htm?

csnumber=64955.
[20] Patierno, P. (2014) Internet of Things: protocols war! In

Betterembedded 2014 (Florence, Italy).
[21] Foster, A. (2013) Messaging Technologies for the Industrial

Internet and the Internet of Things. Tech. rep., PrismTech.
[22] Dierks, T. and Rescorla, E. (2008) The Transport Layer

Security (TLS) Protocol Version 1.2. Ietf rfc 5246.
[23] Fersi, G. (2015) Middleware for Internet of Things: a

study. In IEEE International Conference on Distributed
Computing in Sensor Systems.

[24] Bandyopadhyay, S., Sengputa, M., Maiti, S. and Dutta,

S. (2011) Role of Middleware for Internet of Things.
International Journal of Computer Science & Engineering
Survey 2(3): 94–105.

[25] (2012) Electromagnetic compatibility and Radio spectrum
Matters (ERM); Short Range Devices (SRD); Radio
equipment to be used in the 25 MHz to 1000 MHz frequency
range with power levels ranging up to 500 mW; Part 1:
Technical characteristics and test methods. Tech. Rep. EN
300 220-1 V2.4.1, ETSI.

[26] Suo, H., Wan, J., Zou, C. and Liu, J. (2012) Security in
the Internet of Things: A Review. In 2012 International
Conference on Computer Science and Electronics Engineer-
ing (ICCSEE), 3: 648–651.

[27] Roman, R., Najera, P. and Lopez, J. (2011) Securing the
Internet of Things. IEEE Network 44(9): 51–58.

[28] (2012), IEEE Standard for Local and metropolitan area
networks–Part 15.4: Low-Rate Wireless Personal Area
Networks (LR-WPANs) Amendment 3: Physical Layer
(PHY) Specifications for Low-Data-Rate, Wireless, Smart

Metering Utility Networks.

Chiara Pielli received the Bachelor’s degree in Information
Engineering in 2013 and the Master’s degree in Telecom-
munication Engineering in 2015, both from the University
of Padova, Italy, where she is currently pursuing her Ph.D
degree since October 2015. Her research interests include
the Internet of Things, with particular focus on security and
energy efficiency.

Daniel Zucchetto He received the Bachelor’s degree in
Information Engineering in 2012 and the Master’s degree
in Telecommunication Engineering in 2014, both from the
University of Padova, Italy. Since October 2015 he is a Ph.D.
student at the Department of Information Engineering of
the University of Padova, Italy. His research interests include
Low Power WAN technologies and next generation cellular
networks (5G), with particular focus on their application to
the Internet of Things.

Andrea Zanella (S’98-M’01-SM’13) He received the Laurea
degree in computer engineering and Ph.D. degree in
electronic and telecommunications engineering from the
University of Padova, Padova, Italy, in 1998 and 2000,
respectively. He was a Visiting Scholar at the Department
of Computer Science, University of California, Los Angeles
(UCLA), Los Angeles, CA, USA, in 2000. He is an Associate
Professor with the Department of Information Engineering
(DEI), University of Padova. He is associate editor of the
IEEE Internet of Things Journal. His long-established research
activities are in the fields of protocol design, optimization,
and performance evaluation of wired and wireless networks.

Lorenzo Vangelista (S’93-M’97-SM’02) He received the Laurea
and Ph.D. degrees in electrical and telecommunication
engineering from the University of Padova, Padova, Italy,
in 1992 and 1995, respectively. He subsequently joined the
Transmission and Optical Technology Department, CSELT,
Torino, Italy. From December 1996 to January 2002, he was
with Telit Mobile Terminals, Trieste, Italy, and then, until May
2003, he was with Microcell A/S, Copenaghen, Denmark. In
July 2006, he joined the Worldwide Organization of Infineon
Technologies as Program Manager. Since October 2006, he
has been an Associate Professor of Telecommunications
with the Department of Information Engineering, Padova
University. His research interests include signal theory,
multicarrier modulation techniques, cellular networks and
wireless sensors and actuators networks.

Michele Zorzi (S’89-M’95-SM’98-F’07) He received his Laurea
and PhD degrees in electrical engineering from the University

14 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

Ch. Pielli et al.

http://www.sigfox.com/static/media/Files/Documentation/SIGFOX_Whitepaper.pdf
http://www.sigfox.com/static/media/Files/Documentation/SIGFOX_Whitepaper.pdf
https://www.lora-alliance.org/portals/0/specs/LoRaWAN%20Specification%201R0.pdf
https://www.lora-alliance.org/portals/0/specs/LoRaWAN%20Specification%201R0.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=69466
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=69466
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=69466
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64955
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64955
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64955

Platforms and Protocols for the Internet of Things
of Padova in 1990 and 1994, respectively. During academic
year 1992-1993 he was on leave at UCSD, working on multiple
access in mobile radio networks. In 1993 he joined the
faculty of the Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Italy. After spending three years
with the Center for Wireless Communications at UCSD, in
1998 he joined the School of Engineering of the University
of Ferrara, Italy, where he became a professor in 2000.
Since November 2003 he has been on the faculty of the
Information Engineering Department at the University of
Padova. His present research interests include performance
evaluation in mobile communications systems, random access
in wireless networks, ad hoc and sensor networks, Internet-
of-Things, energy constrained communications protocols,
cognitive networks, and underwater communications and

networking. He was Editor-In-Chief of IEEE Wireless
Communications from 2003 to 2005 and Editor-In-Chief of
the IEEE Transactions on Communications from 2008 to 2011,
and is the founding Editor-In-Chief of the IEEE Transactions
on Cognitive Communications and Networking. He has also
been an Editor for several journals and a member of the
Organizing or the Technical Program Committee for many
international conferences, as well as guest editor for special
issues in IEEE Personal Communications, IEEE Wireless
Communications, IEEE Network and IEEE Journal on Selected
Areas in Communications. He is an IEEE Fellow, served as
a Member-at-Large of the Board of Governors of the IEEE
Communications Society from 2009 to 2011, and is currently
its Director of Education and Training.

15 EAI Endorsed Transactions on
Internet of Things

10 - 2015 | Volume 1 | Issue 1| e5

	1 Introduction
	2 IoT wireless technologies
	3 Communication protocols
	REST
	MQTT
	AMQP

	3.1 Support of different IoT traffic patterns
	3.2 Data encoding and manipulation
	3.3 Reliability
	3.4 Security

	4 Between the Things and the Internet: the middleware
	4.1 openHAB
	4.2 Sentilo
	4.3 Parse
	4.4 Platforms comparison

	5 Security in IoT systems
	6 A use case: an IoT system for Smart Cities
	7 Conclusions

