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Abstract 
This paper presents a selective survey of papers, books, and reports that articulate recent trends of Security Constrained 
Economic Dispatch (SCED) of integrated renewable energy systems (IRES). The time-period under consideration is 2008 
through 2020. This is done to provide an up-to-date review of the recent, major advancements in the SCED, and state-of-the-
art since 2008. This helps identify further challenges needed in adopting smarter grids, and indicate ways to address these 
challenges. The study was conducted in three areas of interest that are relevant for articulating the recent trends of SCED. 
These areas are (i) SCED of power systems with IRES, (ii) SCED mathematical formulation and solution methods, and (iii) 
SCED challenges. The review results and research directions deduce that the state of the art research is not enough and needs 
special attention on following the path of artificial intelligence-based optimization. 
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Nomenclature 

ai = constant coefficient measure of losses   
bi= constant coefficient representing fuel cost 
Bij= active power loss coefficients  
c = Weibull probability distribution factor 
Ch = Hydropower generation cost 
Ci = constant coefficient including salary and wages  
Cs= solar power generation cost 
Csp= solar power penalty cost  
Csr= solar power reserve cost 
Cw= wind power generation cost 
Cwp= wind power penality cost 
Cwr= wind power reserve cost  
DRI = ramp rate limit 
f(x)   = function to be minimized 
FBth= biomass and waste to energy generation cost  
FGth= Geothermal power generation cost  
fpw= wind power probability distribution function 
Fsth= solar thermal power generation cost  
Fth= thermal power generation cost 
g l (x) = Inequality constraints  

G= solar irradiance 
Gstd= solar irradiance in a standard environment 
h k(x) =  Equality constraints 
Hi= average head 
K = Number of equality constraints 
k= Weibull probability distribution factor 
L= Number of inequality constraints 
Ncc= Number of Credible contingencies 
NG= Number of generating units 
NL = Number of security levels 
Npoz = Number of prohibited zones  
ɸ = Credible contingencies  
Phr= Hydropower output 
PBth= biomass and waste to energy power output 
PD= Power demand 
PGth= geothermal power output 
Phgi = Hydropower unit output 
Pimax= maximum power generation limit 
Pimin= minimum power generation limit  
PL = Power loss 
Psg = solar power output 
Psr= rated solar power output 
Psth= solar thermal power output 
Pth= thermal power output 
Pwr= wind power output 
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Qi= discharge outflow  
Rca= certain irradiance point set at 150 w/m2 
Sl = Security level 
Slmax = maximum Security level  
SRi= spinning reserve limit  
SSR= maximum spinning reserve limit  
Vi= cut in wind speed 
Vo= cut out wind speed 
Vr= rated wind speed 
Vwt= forecasted wind speed 
x i (1)= Security constraint 
α = weight factors of unit costs between 0&1 
ψ = penetration rate 

1. Introduction

The importance of electricity in our daily lives is noticed 
when sudden blackouts occur. Moreover, sudden and 
uncontrolled power outages can threaten the socio-
economic endeavours of electricity-addicted community. 
Considering the Ethiopian electric power network, which 
is a power system of integrated renewable energy 
systems, the supply of power interrupts every time it 
rains. The resulting blackouts impose substantial damage 
to Ethiopian production plants, service centers, and home 
appliances.  
    According to the blackout report of the Ethiopian 
electric power network from 2013 to 2016, 15 major 
blackouts were reported. Production plants and service 
centers were down for an average of four months a year. 
Natural incidents, equipment failure, and power mismatch 
collectively known as contingencies cause these sudden 
interruptions and blackouts. A contingency is an event, 
which removes one or more generators or transmission 
lines from the power system, increasing the stress on the 
remaining network [1]. One of the main challenging 
aspects of power system operation is that electrical energy 
is difficult to economically store in significant amounts. 
This aspect requires a continuous balance between 
generation and demand considering generation limits, 
security constraints, and contingencies i.e. Security 
Constrained Economic Dispatch (SCED). SCED is a 
process of allocating generation levels to generating units 
to entirely and economically supply the load while 
satisfying security constraints [2]-[3].  
    In the energy market context, the main objective of 
SCED is to minimize the power operation cost, while 
continuously respecting the operational constraints of the 
power system. Some methods have been used to solve this 
problem since its introduction, for example, iterative 
method, gradient-based techniques, interior points 
method, linear programming, and dynamic programming 
[3]. A substantial number of articles reported SCED in the 
perspective of Artificial intelligence [4], integrated 
renewable energy source, and post-disturbance corrective 
actions. F. Capitanescu et al [5] examine the recent trends 
towards stochastic search techniques and hybrid methods 
for OPF.  
    The other challenge is related to the intermittency 
renewables. With increasing emphasis on utilizing more 

renewable energy to mitigate climate change, the power 
industry is confronted with many new challenges [6].  
   A sudden change in a variable renewable source can 
cause a large surplus or lack of power output and 
subsequently affect the security of some power system 
networks with limited flexibility. The objective of this 
review is therefore to:  

 Present papers, books, and reports published in
the years 2008 through 2020 and finding ways to
increase power system flexibility and security.

 Identify challenges posed to SCED reformulation
due to the integrated renewable energy systems.

 Propos a hybrid computational intelligence based
optimization method for SCED of integrated
renewable energy sources.

   Articulation of research gaps, providing an up-to-date 
review of the recent major advancements in the SCED 
state-of-the-art since 2008, identification of further 
challenging developments needed in the adoption of 
smarter grids, and indicating ways to address these 
challenges are also the novelty of this review. 

2. Integrated Renewable Energy
Systems

The contribution of renewable resources to the energy 
portfolio across the world has been steadily increasing 
over the past few years [7]. IRES is a system that 
harnesses two or more forms of locally available 
renewable energy resources to supply a variety of energy 
needs in a most efficient, cost-effective, and practical 
way, with the ultimate goal of amalgamating the 
advantages at the end-user [8]-[9]. The increasing level of 
uncertainties introduced by renewable energy sources 
(RESs) such as wind and solar energy made SCED 
complex. Traditional deterministic decision making in the 
electric power industry is gradually shifting towards 
stochastic decision making which explicitly takes into 
account the uncertainty in the power output of RES 
generators [10]. 

Integrating intermittent and non-dispatchable 
generators like wind and solar exhibit sub-hourly 
fluctuations [11]. This motivates the need for optimization 
at multiple timescales with a probability distribution 
function. Renewable energy resources are highly site-
specific, stochastic, and evenly distributed around the 
world with little or no costs. They depend on the climatic 
conditions, geographical factors, and seasons of the site 
under consideration [10].  

 A substantial number of renewable integration studies 
have focused on optimization requirements of power 
systems with high renewable penetration such as wind 
[11] gas [12] natural gas [13] photovoltaic(PV) [14]. The
most widely used and easily available renewable
resources as inputs to IRES are biomass, hydro, solar,
wind, and geothermal The figure below schematically
describes IRES considered for this review.
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Figure 1.  Proposed schematic diagram of IRES 

   Such a system can operate well in both stand-alone 
mode and when connected to a centralized grid. The 
prime significance of IRES is its focus to energize and 
electrify remote rural areas promoted by hybrid systems. 
This helps to achieve sustainable development and 
improve the basic living environment of rural masse [16]-
[17]. This paper presents IRES comprising biomass, large 
and micro-hydro plants, solar PV, solar thermal, waste to 
energy plant, wind farm, and geothermal altogether with 
their problem formulation and constraint handling 
mechanisms that take into account credible contingencies. 

3. SCED problem formulation

3.1. Problem formulation 

Relations between generation cost and operation cost rely 
on power flow output and forecasted values [13]-[14]. 
Problem formulation starts with the optimization 
perspective of the SCED mathematical model. The 
general optimization problem form for SCED is therefore: 

( ),
n

optimizef x x R∈     (1) 

Subject to  
( ) 0 1, 2...kh x m= ∀  (2) 

( ) 0 1, 2...lg x L≤ ∀           (3) 

   In a practical power system, the SCED problem is non-
linear and multi-objective due to operation constraints 
[12]. Objective function should minimize the non-detailed 
formulation of the SCED problem due to unnecessary 
assumptions that can lead to a limitation in the modeling 
of large-scale power systems. In light of this, multi-
objective optimization is favored. The general form of 
multi-objective optimization is thus: 

( ) ( )1 2( ) ,  ,( ( ) NobjOptimizef x f x f x f x=  (4) 
Subject to 

 ( ) 0 1, 2...lg x i m= ∀ =

( ) 0 1, 2, ...kh x k K≤ ∀ =

( ) ( )1 0i i ix x x≤ ≤      (5) 
   The multi-objective optimization approach in the SCED 
context refers to minimizing generation cost and 
maximizing the security level of the operating system 
while considering a variable and intermittent generation 
[10]-[13]. This paper uses renewable resources as inputs 
to IRES such as biomass, hydro, solar, wind, and 
geothermal.  
  Each of these sources requires problem formulation, and 
constraint handling mechanisms as separate objective 
functions to construct a single multi-objective function 
detailed below [14]. 
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    Hydro: To formulate an economic dispatch problem, 
the first objective function f1(x) can represent the 
objective function of hydropower generation plants [15]-
[16]-[17]. 

1
1

min ( ) ( )
hgN

h hgj
i

f x C P t
=

= ∑             (6) 

Where         
24

1 1

( ) 0.00981
G

N

hgj i ij ij

t i

t H QP η
= =

= ∑∑       (7) 

    Wind:  the power for assumed wind speed is given 
by[18] [19][20]: 

0, 0

( ),

,

wt i out

wt i

wr wr i wr out

r i

wr r wt out

forv v andv

v v
P P forv v v

v v

P forv v v

≤ ≥

−
= ≤ ≤

−

≤ ≤

 
  
 
 
  

 (8) 

In addition, its corresponding objective function (f2(x)) 
that can be  considered as a second objective function is: 

24

2

1 1 1

( ) ( )
WG WG

N N

w wgj

i t i

R Pf x C P t C C
= = =

= + +∑ ∑∑     (9) 

   CR and CP represent reserve cost and penalty cost 
coefficients of wind power generation respectively. The 
cost of renewable generation rises with reserve cost and 
penalty cost coefficients. The reserve cost coefficient 
helps to determine the debit that can be produced from the 
probability distribution function of variable wind speed. 
  The penalty cost coefficient helps to determine the debit 
that are produced from overestimation or underestimation 
of available wind speed [21]. The probability distribution 
function for the power output of variable wind in the 
range of (vi ≤ v ≤ vr) can be determined by: 

1

( )

( )
1

Pw t

wr

K

Pw t
h v

P Krvi wr
pw

wc

h v

K P
f xe

P C

−

 
  

+

=

 
 
 
 
  

   (10) 

Where K and C are Weibull probability distribution 
factors 

1.086( )
m

K
v

σ −=      (11

1
(1 )

mV
C

T
K

=

+

 (12) 

Solar PV:  the solar power output that can be extracted 
from a given solar irradiance G is [10]-[21]: 

2

( ) ( ) ( )sg sg sr

std ca

G
P j t P G P j

G R
= =

+
 (13

Where for 0 <G< R ca: 
24

1 1

( ) ( )
sgN

sg R P
t i

P j t C C
= =

= +∑∑              (14) 

And its corresponding objective function (f3(x)) is 
represented by:  

24

3
1 1 1

( ) ( )
sg sgN N

s sg R P
i t i

f x C P j t C C
= = =

= + +∑ ∑∑   (15) 

    CR and CP represent reserve cost and penalty cost 
coefficients of solar PV generation respectively. The 
reserve cost coefficient determines the debit produced 
from the probability distribution function of variable solar 
radiation.   
    The penalty cost coefficient helps to determine the 
debit that is produced from the overestimation or 
underestimation of solar irradiance. The probability 
distribution function for the power output of variable solar 
irradiance can also be determined using the Weibull 
probability distribution function [21]-[22]-[23].  
     Thermal: Despite the difference in their constraints, 
renewable energy systems adapted from thermal power 
plants have similar objective function [7]-[24]-[25]. REs 
adapted from thermal power plants considered in this 
study include geothermal power plants, solar thermal 
power plants, biomass, and waste to energy plants.   

4 1 2 3

1 1 1 1

( ) ( )
th Gth Sth Bth

N N N N

th th Gth Gth Sth Sth Bth Bth

i i i i

f x C P j t F P F P F Pα α α
= = = =

= + +
 
  

∑ ∑ ∑ ∑

    (16) 

Where 
2

th i th i th iF a P b P c= + +     (17)
2

Gth i Gth i Gth iF a P b P c= + + (18)    
2

Sth i Sth i Sth iF a P b P c= + +     (19)
2

Bth i Bth i Bth iF a P b P c= + +    (20) 

3.2. Constraint formulation 

In power systems, continuously respected operation 
constraints and limits ensure the reliable and secure 
operation of the system.  

1. Demand and generation balance:
 Demand is equal to the sum of generation and power lost 
transporting it. 

1 1 1 1

hgg wg sg thN N N N

D L hg wg sg th
i i i i

P P P P P P
= = = =

+ = + + +∑ ∑ ∑ ∑    (21) 

2. Generation limits
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min max
i i iP P P≤ ≤  (22) 

min max0.00981 i ij ijP H Q Pη≤ ≤  (23) 

0 ( )w wrP j t P≤ ≤  (24) 

  0 ( )s srP j t P≤ ≤  (25) 

   0 ( )h hrP j t P≤ ≤   (26) 

3. Prohibited operating Zones
min 1, 2...Lj

i i i PozP P P j N≤ ≤ ∀ =   (27)    
1jV lj

i i iP P P− ≤ ≤   (28)   
1 maxJV

i i iP P P− ≤ ≤  (29) 
4. Transmission constraints:

   For transmission constraints, Kron’s loss equation is 
considered as data for B coefficients are easily accessible 
and this eqaution is favored by most of the researchers 
cited in this review. 

1 1 1 1 1

n m n n m

L gi ij gj oo io gi gi ij gj
i j i i j

P P B P B B P P B P
= = = = =

= = + +∑∑ ∑ ∑∑                               

     (30) 
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cos cos
i j ij
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i j i J

R
B

VV

θ θ

φ φ

−
=  (31) 

1 1

n m

oo Di ij Dj
i j

B P B P
= =

= ∑∑    (32) 

( )
1

m

ij ij ji
j

B B B
=

= − +∑    (33) 

5. Security limits
max

1 1 1, 2... LS S l N≤ ∀ =  (34) 

( ) 1, 2...j CP t o j Nφ > ∀ =
  (35) 

6. Generator ramp rate limits
min 1 max 1max( , ) ( ) min( , )t t

i i i i i i iP P DR P t P P DR− −− ≤ ≤ +

     (36) 

7. Spinning reserve limits

1

GN

Ri Sr
i

S S
=

≥∑  (37) 

8. Water discharge and reservoir limits:

min max

i i iX X X≤ ≤    (38) 

min max

i i iV V V≤ ≤  (39) 

min max

i ij jQ Q Q≤ ≤     (40) 

min max

i ij jV V V≤ ≤   (41) 

( ), 1 ( )
j

i j ij ij i ij ij kij j
K K

V V Q q S t Q S I t
+

∈

= − − + ∆ + + + ∆∑

    (42) 

9. Renewable energy penetration rate
constraints

( ) ( ) ( ) ( )w s h th DP j t P j t P j t P j t P+ + + ≤ Ψ                       (43) 

   Constraint (9) considers thermal (biomass, solar 
thermal, geothermal), hydro, wind, and solar PV 
penetration ratios. Hasnae Bilil et al [26] formulated a 
multi-objective problem that allows optimization of both 
the annualized renewable energy cost and the system 
reliability defined as the renewable energy load disparity 
considering the lack of energy as well as the exceed 
weighted by a penalty factor. 
   The instability created by the integration of variable 
renewable energy sources made SCED a complex 
optimization problem [27]. Regarding wind energy 
penetration several methods have been used to solve this 
problem [3]-[14]. W. Zhang [7] generally gives a state of 
the art, recent developments, and future trends of power 
flow and examines the recent trend towards stochastic, or 
non-deterministic, search techniques, and hybrid methods 
for OPF.  
   A substantial number of SCED with respect to 
renewable integration studies have focused on 
optimization requirements of power systems with high 
renewable penetration such as wind [3]  natural gas [7] 
photovoltaic (PV) [28]-[29]. 

4. SCED solution methods

Many approaches were established to optimize the 
economic dispatch of modern power systems with 
integrated renewable energy systems. Some proposed 
approaches do not pay much attention to the impacts of 
generation uncertainty, which affects the system security, 
and only consider renewable energy to serve the spot 
market in these methods. 

Solution methodologies of SCED widely vary from 
simple analytical to highly complex and theoretically 
sophisticated computations according to different 
approaches in the objective function formulation. This 
section discusses the different solution methods studied so 
far by grouping them into three main categories.  

4.1. Analytical methods 
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Usually, refer to the approximate solution obtained by 
variations of linear programming techniques or gradient 
and quadratic based methods. Several authors have 
presented efficient algorithms in the applications of linear 
and nonlinear programming methods. Analytical methods 
include Gradient Methods, Newton’s Method, Linear 
Programming Method, Quadratic Programming Method, 
and Interior Point Method [30].  
   Even though they have considerable drawbacks, 
analytical methods are efficient methods of determining 
local optimum of unconstrained ideal optimization 
problems. However, practically SCED problems are 
multi-objective, highly non-convex, and global 
optimization problems. To overcome these drawbacks 
intensive studies have been conducted on alternative 
computational intelligence methods. 

4.2. Computational intelligence methods 

For the last two decades, researches have been looking for 
an optimization method with better global optimum 
searching performance and fast convergence. This quest 
paved a way to the understanding of heuristic, or random 
search, optimization methods. 
     These methods are used for the solution of highly non-
convex, global optimization problems. They have the 
advantage of finding global optimum much faster than 
analytical methods but their inability to guarantee 
convergence causes skepticism for some practical 
problems.  
     Many of these techniques have been applied to SCED 
problems, including Ant Colony Optimization (ACO)[31] 
[23], Artificial Neural Networks (ANN) [32]-[31]-[33] 
Bacterial Foraging Algorithms (BFA) [34], Chaos 
Optimization Algorithms (COA) [35], various 
Evolutionary Algorithms (EAs)[36]-[37], and Tabu 
Search (TS) [13]. 
   Due to the drawbacks of deterministic criteria and 
unguaranteed convergence, hybrid methods, which model 
uncertainties, have been proposed to overcome these 
challenges.  

4.3. Hybrid methods 

Hybrid methods are a merger of two or more optimization 
algorithms to improve the overall performance of a single 
or multi-objective optimization problem.  The main goal 
of developing hybrid methods is to achieve an 
improvement in terms of complexity and computational 
effort reduction on one hand, and increasing the accuracy 
and robustness of the solution on the other had.  
    With the increasing interest in hybrid optimization 
methods, substantial articles have been published. Hybrid 
methods including bacterial foraging optimization that is 
Nelder- Mead hybrid algorithm [38], improved harmonic 
search, and hybrid ACO-ABC HS algorithm [39] have 
clearly introduced an efficient and effective optimal 
solution to SCED problem.  

    Stephen Frank et al [34] have chronicled a 
bibliographic survey of papers with a perspective of non-
deterministic hybrid methods for solving optimal power 
flow problems. Irina [40] proposed a novel heuristic 
optimization algorithm called GAAPI, a hybridization 
between a special class of Ant Colony Optimization and 
Genetic Algorithm, to solve a large and complex 
optimization problem. This review proposes optimization 
SCED for IRES using a robust GAHNN method, a 
Hybridization Hopfield neural network, and an improved 
genetic algorithm, which takes into account the 
intermittency of renewable energy sources and handles 
probable contingencies.   

5. SCED Challenges and future work

SCED challenges identified in this paper are grouped into 
three main categories. Challenges concerning to IRES, 
challenges regarding handling constraints or 
contingencies and challenges respective to computational, 
and optimization problems are discussed below.  

5.1.  IRES challenges 

With the increasing use of renewable generation, many 
approaches have been established to optimize modern 
power systems with integrated renewable energy systems. 
Some proposed approaches do not pay much attention to 
the impacts of generation uncertainty, which will affect 
system security, and renewable energy is only considered 
to serve the spot market in these methods. 
   Renewable energy resources are highly site-specific, 
stochastic, and they are highly dependent on the climatic 
conditions, geographical factors, and seasons of the site 
under consideration. The main challenging aspects of 
integrated renewable energy systems are variability, 
intermittency, uncertainty, and non-dispatch ability. 

5.2. Constraints handling challenges 

In a real power system, the SCED problem is a non-linear 
and multi-objective problem due to power-system 
operation constraints. SCED is classified into two 
different types: preventive SCED (PSCED) and corrective 
SCED (CSCED).  In post contingency states, PSCED 
does not consider the rescheduling of control variables. 
On the other hand, CSCED can correct rescheduling 
within a certain limit to satisfy more contingency 
scenarios.  
   Although PSCED can secure the system against all 
contingencies, the strategy is viewed as conservative in 
that it leads to a higher operational cost [5]. Approaches 
of increasing the security level of a power system in post 
contingency state have been reported. Wang et al [13] 
clearly chronicled the advantages and application of the 
probabilistic N-1 security criterion. P. Kaplunovich and 
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K. Turitsyn [23] deployed a method for fast selection of
N-2 contingencies of online security assessment.

Considering, European transmission network composed
of 13,000 busses and 20,000 branches, there will be 
13,000 voltage constraints and 20,000 flow constraints. 
For N-1 security of 20,000 contingencies we must 
consider 20,000 x (13,000 + 20,000) = 660 million 
inequality constraints.  
   However, not all contingencies create limit violations. 
Some contingencies have only a local effect. The problem 
with the N-1 security criterion is it does not ensure a 
consistent level of risk. Probabilistic security analysis 
which considers system operation at a given risk level is 
proposed to alleviate these challenges [41]. 
   In connection with handling contingencies, recent 
advances have been made along two major avenues: (i). 
Contingency filtering (CF) techniques [42]-[43] to 
effectively reduce the problem size and (ii). 
Decomposition and parallel algorithms [3]-[44] to obtain 
approximate global solutions efficiently. Generally, the 
main constraint handling challenges posed to SCED 
include the higher cost of preventative dispatch, non-
predictability of contingencies, and higher fluctuation of 
variable generation.  

5.3. Optimization and computational 
challenges 

In a practical power system, the SCED problem is a non-
linear and multi-objective problem due to power system 
operational constraints.  
   Apart from the size, non-linearity, and non-convexity of 
the SCED problem for IRES is a highly challenging 
problem. Considering the above equations of SCED, 
optimization problems with such number of equality, and 
inequality constraints, face considerable computational 
challenges.  
  Other challenges in connection with optimization and 
computation of SCED are difficulties with the stochastic 
nature of objective functions. Due to this, most multi-
objective functions consume immense computation time. 
All these challenges require figuring out a way of 
analyzing varying operating conditions under multiple 
and intermittent contingency scenarios to ensure no 
sudden cascade failures from overloading and disasters 
occur. The following table presents papers and reports 
reviewed in this paper with respect to the type of 
optimization tools used, the type of objective function, 
and the type of test system or case study they used. 

Table 1. Literature Survey/Review Summary 

Ref. Optimization  
Type 

Objective 
 function 

Case  
study 

[2] MOSCED-LP, 
QP, NFP,

Minimize the cost of 
generation, Minimize cost 

IEEE 5, 30 Bus 
systems 

NCLFP, GA of power loss and 
Maximize security level 

[28] MOSMPC
SCED-OCD 

Optimize the operating 
cost and  
Optimize security level 

Modified WECC 
9-bus test system 

[29] MOSCOPF,
HPSO-APO

Minimize total production 
cost, Minimize active 
power loss and Maximize 
security level 

IEEE 30 bus 
system,  Practical 
Indian 75 Bus 
system 

[30] MOSCED Minimize deviation of 
transactions and Minimize 
operating cost of 
generation 

IEEE 24 Bus 
system 

[7] SCED,
GAMS,
SNOPT

Minimize production cost 
and Maximize security 
level 

IEEE 30 Bus 
system 

[31] MO SCED- 
EA,HOMER,
MATLAB

Minimize the cost of 
electricity Maximize 
utilization of resources 

IEEE test systems 

[8] MO RELD- 
(NSGA-II)

Optimize annualized cost 
and Optimize renewable 
energy load disparity 

Belgium’s 
electricity 
transmission 
system 

[5] SCED-
IRESIO 

Optimize operating cost 
and 
Optimize security level 

IEEE 39 Bus 
system 

[32] SCED-SDP 
ACF-SDP 

Maximize security 
level(Identify feasible post 
contingency operating 
point ) 

IEEE 30, 57 and 
118 Bus systems 

[33] MRSCED- 
IBD, GAMS,
CPLEX

Maximize security level 
and Minimize operating 
cost 

IEEE 30, 57 and 
118 Bus systems 

[34] MOSCELD- 
MATLAB and
CPLEX 

Minimize operating cost IEEE 30 Bus 
system, Finish 
Transmission 
system 

[25] CSCOPF,
MCSCOP,
ICF

Minimize operating cost 
Maximize security level 

IEEE 300 Bus 
system, Chinese 
543-bus power
grid system

[4] SC-SCED,
CPLEX ,API 

minimize the base-case ED 
cost and maximize security 
level 

Polish 2383-bus 
system 

[35] LMP SCED- 
GA 

Minimize bus LMP and 
Minimize total fuel cost 

IEEE 14 Bus 
system, Indian 75 
Bus system New 
England 39 Bus 
system 

[36] ELD, CSO Minimize total fuel cost 3-Generating 
Units, 6 
Generating Units 

[37] PED, IIA MU Minimize total operating
cost 

5- Unit system 
15-Unit system

[21] MO SCED- 
HGAAPI 

Minimize cost of 
generation and Maximize 
security level 

Cyprus Power
System 

5.4. Future work 

Figuring out a way of solving this multi-objective 
optimization problem that considers variable loads & 
intermittent generation is a challenge that requires 
substantial attention during the integration of renewables. 
    As a future work, hybrid computational intelligence 
based optimization of SCED for IRES with predictive 
control and post contingency corrective actions is 
proposed. This could alleviate the challenges related to 

A Review on Security Constrained Economic Dispatch of Integrated Renewable Energy Systems 

EAI Endorsed Transactions on 
Energy Web 

01 2021 - 03 2021 | Volume 8 | Issue 32 | e13



Shewit Tsegaye, Fekadu Shewarega and Getachew Bekele 

8 

the intermittency and unpredictability of renewable 
energy sources. 
   Besides using physical power systems, applying 
computationally intelligent and self-adaptive optimization 
tools of SCED for renewable microgrids, smart grids, and 
hybrid energy systems is also suggested. As long as the 
power system is renewables fuelled, advanced SCED 
mathematical formulation can result in a promising 
optimal solution. 
     Enhanced genetic algorithms are the best solution 
methods of obtaining a global optimum solution of multi-
objective SCED given their efficient, and parallel 
computing features. Hybrid options can also be taken to 
increase the convergence problem of genetic algorithms 

6. Discussions and research directions

Researchers and graduate scholars can use this review to 
help them understand the state of the art and identify the 
research direction of SCED. In this review, papers on 
power systems with higher penetration of renewable 
energy and relevant multi-objective stochastic 
optimization problem are discussed. The total number of 
publications related to this review and their trend is 
depicted in the figures below. 

Figure 2. State of the Art of SCED publications 

In one decade, more than 50 papers of SCED for IRES 
have been reported. It has been tried to include as many 
descriptions of the contents as possible in order to show 
the important and unique aspects of each paper. This 
review is not directed at evaluating and comparing 
relative performances of the existing algorithms but at 
presenting a clear picture of the state of the art of SCED. 
It is obvious from the survey that, SCED of a power 
system with IRES and corresponding ways of addressing 
their challenges are important areas of future research.    

Considering post-disturbance corrective actions, 
formulating an intelligent searching algorithm with fast 

convergence, and taking into account the intermittency of 
all recently innovated renewable energy systems, figuring 
out a way of optimal dispatch is the future t research area 
of SCED of IRES. Most of the recent algorithms are 
tested on IEEE test systems and real-time power system 
networks. 

7. Conclusions

This paper presents a survey of papers, books, and 
reports, which articulate the recent trends, and aspects of 
Security Constrained Economic Dispatch (SCED) of 
IRES. The period under consideration is 2008 through 
2018. This is done to provide an up-to-date review of the 
recent major advancements in the   SCED of IRES   state-
of-the-art since 2008, identify further challenging 
developments needed in adoption smarter grids, and 
indicate ways to address these challenges.  

The study has been conducted in three categories of 
perspectives and areas of interest that are very important 
and relevant for articulating the recent trends of SCED. 
The novelty of this review lies in the articulation of 
research gaps, providing an up-to-date review of the 
recent major advancements in the SCED of IRES state-of-
the-art since 2008, identification of further challenging 
developments needed in the adoption of smarter grids, and 
indicating ways to address these challenges altogether 
with their recommendation. 
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