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Abstract. This paper presents definitions and implementations of ‘Artificial Intelligence’ 

that have been discussed academically and applied in different fields such as 

Engineering, Medicine, and Manufacturing industries. Furthermore, the paper outlines 

the development of AI systems since its emergence to the present. With the emergence of 

black box of data acquired by systems that are processed during the system, it is 

necessary to transfer the black and the grey box into the white box to introduce enhanced 

machines and services for patients, customers, and clients. Explainable Artificial 

Intelligence XAI is able to transfer the black and the grey box into the white box. XAI 

can learn, explain Why, When, and How to solve problems involving huge datasets 

through various classifiers. This enables manufacturing industries to create new 

advanced products that meet the current market needs. 
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1 Introduction 
Science and technology have dominated the world in many fields not only to save the 

lives of people suffering from illnesses or poverty, but also to create a more comfortable and 

luxurious life for rich and wealthy people. Artificial Intelligence (AI) was integrated from the 

field of Computer Science and merged with other fields such as Engineering and Medicine to 

create new equipment and tools that continued to enable humans to utilise them for the welfare 

of people.  

Evolving since the 1950s, it is now predicted that, within a few years, AI systems will be 

able to replicate human behaviour in all its forms including such features as cognitive, 

emotional, and social intelligence [1]. Firstly, it is important to present some definitions of AI 

drawing on the relevant literature. Colom et Al. [2] defined ‘intelligence’ in this context in 

terms of a “general mental ability” for reasoning, problem solving, and learning, while Allen 

Newell [3] asserted that ‘intelligence’ was the degree to which a system approximated a 

knowledge-level system. Many perspectives are related to the definitions of AI. For instance, 

AI is defined as “a system’s ability to interpret external data correctly to learn from such data, 
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and to use those learnings to achieve specific goals and tasks through flexible adaptation”[1], 

while Kok et al.[4] presented four definitions of AI shedding light on different angles of AI 

such that, as a field of computer science, AI was restricted to the evolution of computers that 

were able to connect in human-like reasoning processes. Such processes included learning, 

thinking, and self-correction. AI signifies the proposition that machines can be developed 

which possess the capability of simulating aspects of human intelligence such as learning, 

acquiring, and self-correction. Furthermore, AI can serve as an addition to human intelligence 

through utilizing digital tools such as computers. This has already been happening since it was 

used to create mechanical tools which then replaced human physical power. The fourth 

definition is that AI represents the study of techniques to use computers more effectively 

through enhancing programming approaches. Similarly, Stuart Russel and Peter Norvig set 

different definitions of AI that collapse into four classifications: acting like human, thinking 

like human, thinking with rationale, and acting based on rationale [5]. On the other hand, 

Grewal [6] has different a different perspective in defining AI as including the acquisition of 

knowledge relevant to a given subject. This knowledge included an ‘understanding’ the 

universe based on the five human biological senses through simulated mechanical sensors and 

non-biological sensors such as T.V, robot, camera, radar, computers, ...etc. Therefore, AI “is 

the mechanical simulation system of collecting knowledge and information and processing 

intelligence of universe: (collating and interpreting) and disseminating it to the eligible in the 

form of actionable intelligence”. 

Overall, all definitions fall in the same context and present similar ideas and functions of 

intelligence by means of tools and instruments, providing the required understanding and 

simulation for the desired human interactions. 

 
2 The Emergence of AI 

AI was first given attention in 1942 in the American short story “Runaround” by the 

famous author Isaac Asimov. This story was about a robot created by the engineers Gregory 

Powell and Mike Donavan who postulated the Three Laws of Robotics which were: (1) a 

robot may not harm or cause harm to a human; (2) a robot must execute orders and demands 

given to it by humans except orders that contradict with the First Law; (3) a robot must defend 

itself from attack as long as the defence does not contradict the First and Second Laws[1].  

Concurrently, Alan Turing, the English mathematician, was developing a code breaking 

machine called “The Bombe” for the British government for the purpose of decoding the 

mystery Enigma code used by the German army in War World II. The Bombe which was very 

large and weighed a ton is considered to have been the first designed electro-mechanical 

computer. The Bombe had the capacity to break the Enigma code which was considered a 

mission impossible for even the greatest human mathematician. In 1950, Turing published his 

influential article “Computing Machinery and Intelligence”[7], in which he described how to 

develop and test intelligent machines. This Turing Test is still used today as a standard for 

identifying the intelligence of artificial systems such that: if a human is interacting with 

another human and a machine, and is unable to differentiate between the response of the 

machine and the human, then the machine is said to be intelligent[1]. 

In 1956, Marvin Minsky and John McCarthy who were computer scientists at Stanford 

University, hosted an eight week long workshop entitled the ’Dartmouth Summer Research 

Project on Artificial Intelligence’ (DSRPAI) at Dartmouth College in New Hampshire. At this 

workshop, the term ’Artificial Intelligence’ was officially coined. This workshop marks the 

initiation of AI and was funded by the Rockefeller Foundation. The main purpose of the 



DSRPAI was to bring together researchers from different fields to create new research areas 

that aimed at constructing machines which were able to imitate human intelligence. Thus, it 

brought together those who would later be considered as the founding fathers of AI. 

Participants included the mathematician Claude Shannon, who is acknowledged as the founder 

of ‘information theory’. Also in attendance was the computer scientist, Nathaniel Rochester, 

who went on to design the IBM 701 - the first commercial scientific computer. A few years 

later, between 1964 and 1966, Joseph Weizenbaum created the famous ELIZA computer 

programme, which was a natural language processing tool capable of imitating a conversation 

with a human [1]. Subsequently, many attempts at Expert systems were invented such as 

IBM’s Deep Blue chess playing programme, in 1997, which defeated the world chess 

champion Gary Kasparov. However, these Expert systems could not be trained to identify 

faces or to recognise pictures of an apple or a tree. This is because, for such tasks, the systems 

must understand data correctly to learn from that data and then to use those ‘understandings’ 

to achieve particular aims and tasks through flexible adaption[8]. The flexible adapt is 

reflected in Artificial Neural Networks relying on the replication of the process of neurons in 

the human brain. 

In 2015, Artificial Neural Networks appeared as AlphaGo, a program which was 

initiated by Google to defeat the world champion in the board game ‘Go’, which is more 

complicated than chess. AlphaGo reached the highest rate of performance using a particular 

type of Artificial Neural Network called ‘Deep Learning’ [9]. Recently, Artificial Neural 

Networks and Deep Learning have become the basis of most applications under the umbrella 

of AI. They represent the spine of image recognition algorithms used by Facebook, speech 

recognition algorithms that process smart speakers and self-driven cars. 

 
3 The Concept of Artificial Intelligence AI 

AI is a branch of computer science and, based on different definitions AI, it includes a 

broad range of perspectives. Accordingly, AI is often referred to as machine intelligence [10] 

to differentiate it from human intelligence [11]. Relying on the practical successes of machine 

learning (ML), AI has continued to attract significant interest since 1958 when McCarthy 

presented the Advice Taker as “a program with common sense” [12], which is considered a 

key dimension of AI. Therefore, current researches ensure that AI systems should be able to 

construct causal patterns of the world that advocate explanation and understanding rather than 

solving recognition problems [13]. 

According to the High-Level Expert Group [14], AI refers to systems that show smart 

behaviour through analysing their environment and taking actions with some autonomy to 

attain particular goals. Therefore, AI-based systems either can be basically Programmes that 

work in the virtual world such as voice assistants, image analysis software, search engines, 

speech and face recognition systems, or can be implants in hardware devices such as robots, 

autonomous cars, drones, and Internet of Things (IoT) applications [15]. 

Practically, ML is extracted from AI to enhance software that can learn from previous 

data automatically, in order to acquire knowledge from experience and to develop its learning 

behaviour slowly. The purpose is to build accurate predictability by continuously 

incorporating new data [16]. ML depends on large data sets and the development of new 

statistical learning algorithms with low-cost calculations [17]. On the other hand, Deep 

Learning (DL) as a family of ML is recently the most common method that is used to learn 

from data, because it relies on deep convolutional neural networks with long histories of 

information [18]. 



 

4 AI in Scientific Fields 
Since intelligence depended on six key factors, which are: reasoning, understanding 

knowledge, capability to set plans, capability to learn, successful communication and 

amalgamation of competencies [19], different domains can be extracted from the general AI as 

shown in Figure1.  

 
Fig.1. Different fields that are considered today as a subfield of AI/closely related to AI by [20] 

 

According to Blake [20], AI has three main levels of evolution that are divided into 

stages: Stage 1- Artificial Narrow Intelligence (ANI), which is considered the lowest level of 

intelligence such that it works successfully for the task that it was designed for; however, ANI 

may fail for more complex tasks. The most common examples of ANI deployments are: 

speech & image recognition, Facebook’s facial recognition, and Google map applications. 

Experts predict that Stage 2 of AI will be achieved by 2040/2050 and will be known as 

Artificial General Intelligence (AGI). In Stage 2, the systems are much stronger than those of 

ANI because AGI will be able to argue rationally, organise, and solve critical problems in a 

wider context [21]. With respect to Stage 3 - Artificial Super Intelligence (ASI), which is also 

known as High-Level Machine Intelligence (HLMI) - this is predicted to be achieved by 2080. 

ASI’s are designed to reach higher levels of intelligence than human’s cognitive capabilities in 

almost all domains and fields [22]. Therefore, Muller & Bostrom [23] believed that if Stage 3 

is achieved, then ASI’s might be the last human-made inventions and that all future inventions 

would be accomplished by ASIs. Drawing on the latest AI literature, all fields have still only 

reached Stage 1 of the AI levels. Different AI algorithms and systems have been used in many 

fields such as engineering, medicine, bioengineering, and other fields. In the following 

sections section, some AI implementations in the engineering and medical fields are 

presented. 

 

4.1 AI in Engineering 

Thon et al. [24] deployed AI in Engineering to find and construct approaches to 

reducing the number of experiments and simulations applied for the modelling to be as few as 

possible; more specifically, in process engineering and chemical engineering fields. Process 

Engineering is an area that is concerned with many subordinated fields such as mechanical, 

thermal, bio, electrochemical, and system-process engineering besides nanotechnology. In the 

field of process engineering, AI systems and algorithms are integrated in order to direct the 

change of raw materials into commercial solutions to be used in manufacturing industries, 

where these intermediary products and other products are combined to create discrete new 

products [25]. 

ML, and particularly DL, as branches of AI, were employed to solve such problems. 

DL empowers AI to reach its earlier expectations and to enhance developments in all fields of 



sciences resulting in the raising of the number of applications and increasing its usability [26]. 

The concepts of AI, ML, and DL are described clearly in Figure 2.  

 
Fig. 2. Paradigms of Artificial Intelligence and related use-cases by [24] 

 

When utilising AI methods in chemical processes, for example, several steps are 

required that necessitate breaking the process into aggregates or sub-modules. Then, the 

predictive AIs can then be trained, aligned and linked at a later stage. Therefore, appropriate 

data foundation must be explored before AI training to achieve a successful implementation of 

AI applications. Furthermore, pre-processing strategies and the final evaluation of the AI with 

different testing data, applications, and advantages of hybrid models are examined. The last 

step is to examine reverse engineering strategies for the purpose of splitting the trained 

practical black box or hybrid grey box models to mechanistic white box models. Thon [24] 

presented fields of activity in process engineering with significant tasks and achievements 

modified from Grossmann et al. [27] as shown in Table 1.  

ML is a subtype of AI that enables the machine to reach conclusions or make 

predictions without being fully programmed for particular responses [39], where the machine 

is able to make changes and enhancements to algorithms without intervention from a 

programmer. On the other hand, DL is a subtype of ML that demands larger computing power 

and yields more reliable results. DL imitates the human brain and composed of several layers 

and operate as a set of connections between neurons such that the more layers available, the 

more complex is the machine’s explanation [40]. Therefore, as many layers as the machine 

has, the human is stuck with difficulties in retracting and following the logic of the machine’s 

conclusion, resulting in the “black box” problem: as a program becomes more independent, its 

algorithms become less comprehensible to users, including the original programmers [41]. As 

a result, these layers are considered “hidden” because of no reliable way to trace the 

machine’s performance through these layers of reasoning as data is operated [33]. 

The term eXplainable Artificial Intelligence (XAI) denotes a set of techniques and 

approaches that can be used to transform the black-box AI algorithms to white-box 

algorithms, where the outcomes accomplished by these algorithms, variables, parameters, and 

steps taken by the algorithm to satisfy the acquired results, are explicit and explainable [28]. In 



1987, Mercedes adopted the “Prometheus project” to invent the first robotic car to track lane 

markings and other vehicles [29]. Subsequently, ML and DL are being extensively used in 

autonomous cars for lane and object detection, perception, mapping, planning, route 

computation, and actuation [29-31], as well as the cloud fog computation which are the key 

components for many technologies and applications.  

 
 

Table 1. Fields of activity in process engineering with important respective tasks and achievement; 

reproduced and modified from [27]. 

 
  

The significance of XAI technology is evident in its applications for vehicle inventions, 

relying on available autonomous car as a use-case and considering different integrals of 

autonomous driving from the explainability and transparency points of view, providing 

obvious interpretable and explainable solutions. The main purpose of integrating XAI into 

vehicle manufacture is to achieve high safety standards for drivers through presenting precise 

perceptions, planning, and activation including depiction of surrounding environment in the 

navigation decision making. The system should provide enough intelligence to predict 

possible future conversions besides being adaptable to current conversions [32]. 

The transparency and explanation of the AI-related solutions in vehicle manufacturing 

include some cases such that when the autonomous car makes unexpected decisions such as a 

wrong turn or direction, sudden brakes, inaccurate object recognition, or collision with other 

objects, then it is important to understand why it occurred in order to enhance the XAI model 

[28]. 

 

4.2 AI in Medicine 

It is believed that AI systems have many deficiencies rather than benefits. For example, 

there is the AI systems’ lack of peer-reviewed examined case-studies that are related to the 



roots of medical procedures and drugs. Besides, it may diminish the human interaction 

components of healthcare. Thus, AI currently lacks the development of personal relationships 

with patients. Furthermore, issues of human rights and security need to be considered when 

medical mistakes occur by the application of AI tools. There is no precise AI decision when or 

where liability will be allocated when AI system causes injury to a patient. Legal communities 

are required to overcome both internal resistance by experts and identify legal responsibilities 

to injured patients. Nevertheless, AI can contribute to the medical field through filling the gap 

between fallible human performance and perfection [33].  

In 1960s, the field of radiology used programming to diagnose and detect the subtle signs 

of cancer or other abnormalities [34, 35]. Many years later, in 1998, The U.S. Food and Drug 

Administration [34] has approved the use of Computer-aided Detection (CADe)  software for 

clinical purposes for the first time; then the Venters for Medicare & Medical services CMS 

also has approved its use in 2002. Digital mammography became possible in the early 2000s 

[36, 37]. Digital imaging allowed long-term enhancements in diagnostic care, through the 

collection of mammography results into training datasets to use in ML algorithms. Through 

digital images, radiologists can zoom and focus images during the estimation process, 

resulting in releasing the first version of computer programmes that enabled physicians to use 

image diagnosis. For instance, the CADe achieved 164% accuracy in detecting small invasive 

cancers which previously had reached an average of 5.3 years before detection [35]. Similarly, 

in 4,191 cases which were reviewed by radiologists who used CADe software as a double 

reader, the radiologists modified only 100 cases of their diagnosis [38], revealing that CADe is 

effective in detecting abnormalities but inaccurate in diagnosing the cancer [33]. 

According to relevant studies, AI systems have achieved accurate diagnosis equivalent to 

or better than physicians, and the elimination of human radiologists from diagnostic process 

presents an existential threat. Nevertheless, due to the fact that many medicolegal 

considerations are involved in AI system implementations for both diagnosis and treatment 

plans, there is, as yet, no successful integration of AI systems into complex healthcare. 

However, AI systems contribute minimising risks and ensuring the quality of healthcare.  

The application of AI in the medical field has, so far, proved to be successful. The best 

example of such success is a current work of the Thrun group in which, using a DL approach 

doctors in the medical field found that such methods were able to categorise skin cancer more 

accurately in comparison to human dermatologists [42]. Another example is its successful 

application in identifying diabetic retinopathy and relevant eye diseases [43]. Within the 

medical field, the most desirable algorithm that AI might offer is usable intelligence, which is 

difficult to reach due to the problem of untangling the explanatory factors in the data to 

understand the conditions in an application domain besides learning from primary data, 

extracting knowledge, and generalisation tasks [44]. 

Holzinger [45] emphasised causability for medical applications rather than the 

eXplainability of AI systems, such that the causability is the property of a person whereas 

eXplainability is a property of a system. In medical decision support, datasets suffer from 

uncertainty, unknown, unfinished, imbalanced, diverse, wrong, lost and inaccurate data in 

random high-dimensional spaces [46, [47]. Therefore, challenges appeared in the integration, 

combining, and drawing plans for different distributed and random data to present visual 

analysis of these random data [48]. Thus, explainable-AI (XAI) must consider that different 

data may lead to a relevant result. Therefore, medical experts must have the possibility to 

understand how and why a particular medical decision has been made [49]. Consequently, 

XAI advocates confidence, safety, security, privacy, ethics, and trust [50], and presents 

usability [51] and Human-AI interaction into new significant contexts [52]. Thus, in the 



medical field, a system causability scale is urgently needed to evaluate the quality of an 

explanation [53], including social aspects of human communication [54]. 

 

5 AI in Manufacturing Industries 
In this study, manufacturing means using AI systems with autonomous products to make 

desired things or offer engineering and medicine software. Machines, robots, and conveyors 

promote maintenance and material handling. Industries and manufacturers have a method to 

increase production, sell more goods, and make more money [55].  

Manufacturing history is linked to machine tool dependability to reduce unplanned 

downtime [55]. Manufacturing system control influences factory decisions, physical duties, 

quality, and efficiency to build current items. The system's algorithms may determine what 

and how to create at the conclusion of the production process, when to utilise and gain 

resources, and when to release vacancy/operation sequence [56]. Industries aim to discover 

and isolate component antecedents or incipient defects, anticipate performance, and promote 

rational decision-making. Additionally, maintenance, prognosis, and health management are 

crucial. PHM systems revealed the health condition of machines and/or the production system 

in real time, diagnosed the source of deviations, and prevented failures to achieve near-zero 

downtime [57]. Machine manufacturing has moved from manual to automation using AI and 

ML [58]. 

The first use of AI in manufacturing is ML-based fault diagnosis [59], and the success of 

ML techniques depends on understanding a machine and its process, which produces physics-

informed features from time, frequency, and time-frequency domain data [60]. SVM, KNN, 

and RF have been researched for induction motor defect diagnostics. Input signals included 

vibration, current, voltage, and flow. Statistical regression model parameters and temporal and 

frequency domain variables were retrieved [61]. Naïve Bayes, KNN, and SVM algorithms 

were used to diagnose induction motor faults using recent sensor information. Each approach 

is sensitive to various characteristics, although SVM performed best [62]. 

Similarly, selective laser melting SLM uses deep conventional neural network (DCNN) 

to assess surface textures and detect process errors. To prevent low-quality goods, process 

flaws may be properly diagnosed in time [63]. 

 

6 Results and Discussion  
AI systems have dominated not only such scientific fields as Medicine and Engineering, 

but has also reached commercial industries where AI system have been used for wised 

production as well as to produce developed products and items such as tools and equipment 

that can be used by hospitals and profitable manufacturers. AI systems are currently splitting 

into more specific subfields, such as that which was started as general programming in 

Radiology to diagnose and detect the subtle signs of cancer and abnormalities as shown in 

Table2.  

 

Table 2. AI Employment in Scientific Fields and Manufacturing Industries 

Field/ Author AI Algorithm/ system Purpose of AI 

Process Engineering AI systems & algorithms Change raw materials into 

commercial solutions 

Engineering AI systems & algorithms Reduce number of experiments 

and simulations for modelling 

Chemical Engineering ML, DL Change black box & grey box 

into white box 



Process Engineering XAI Transfer black box into white 

box 

Medicine- Radiology Programming Diagnose and detect the subtle 

signs of cancer/ abnormalities 

Medicine DL Categorise skin cancer/ identify 

diabetic retinopathy & eye 

disease 

Manufacturing Industries AI systems Improve productivity/ lessen 

unexpected downtime/ Decision 

making 

 

Specific engineering sectors use AI systems to improve outcomes. The AI system's main 

purpose is to transfer the black box and grey box into white box, as used in process 

engineering and chemical engineering. Process engineering used eXplainable XAI to improve 

results, while chemical engineering used ML and DL. DL was also used to diagnose cancer 

and diabetic retinopathy. However, manufacturing industries have been using AI systems to 

improve productivity and reduce downtime, direct factory tasks, develop more efficient and 

high-quality products, detect part errors, and predict performance. The development of AI 

systems has been involved with different innovations as shown in Table 3.  

 
Table 3. Inventions created using AI algorithms and Systems 

Invention Year of 

Invention 

AI Algorithm/System Purpose 

ELIZA between 1964-

1966 

Natural language 

programming 

To imitate a conversation with a 

human 

Autonomous 

cars: Mercedes 

1987 ML, DL Lane & object detection, mapping, 

cloud fog computations, …. etc. 

IBM’s Deep Blue 1997 Expert system: chess 

playing program  

To defeat the world champion 

Gary Kasparov 

CADe 1998 ML Detecting cancer 

Digital 

mammography  

2000s ML Zoom & focus images 

AlphaGo 2015 Artificial Neural 

Networks: DL 

To defeat the world champion in 

the board game Go 

Vehicle  Recently XAI Safety for drivers/ predict possible 

conversions 

Medical 

applications 

Recently XAI, Causability Decision making/evaluate the 

quality of an explanation 

Manufacturing 

industries 

Recently AI systems Manufacture: machines/robots/ 

conveyors 

PHM Recently AI systems Disclosing the health state 

Motors Recently ML: SVM, KNN, RF, 

Naïve Bayes 

Fault diagnosis 

SLM Recently  DCNN Analyse surface textures/ identify 

process fault detection 

 

Between 1964 and 1966, ELIZA mimicked human communication as the first 

innovation. Mercedes production integrated the robotic technology in 1987, creating the first 

robotic automobile that tracked lane markers and other cars. Later, AI systems were developed 

to answer the questions “what, how, and when” for manufacturing, “how and why” for 

medicine, and “why” for engineering. Thus, contemporary inventions like cars and medical 



apps use the XAI algorithm to explain their decisions. Medical applications want 'Causability' 

reasoning for more exact XAI algorithm findings. Even if ML is the most frequent algorithm 

for all advancements, including autonomous automobiles, digital mammography, and motors, 

XAI is becoming the next branch of AI required in scientific and industrial domains. 

ML and DL have been used to develop autonomous automobiles for customer-requested 

functionalities including lane and object identification, vision, mapping, route computation, 

actuation, and cloud fog computing. XAI is used in automobile manufacture to ensure driver 

safety and anticipate conversions, together with ML algorithms like SVM, KNN, RF, and 

Naïve Bayes for defect detection. 

 

7 Conclusion 
Implementations of AI systems have been extensively used in many fields and 

particularly, in engineering and medicine. Industries have been involved in acquiring AI 

systems to manufacture equipment and tools that enhance their services and achieve critical 

innovations in the fields of medicine and engineering. Consequently, industries study the 

needs of the market and tailor their systems to be aligned with their profits. For the present 

time, XAI is the most popular algorithm that is used in engineering, medicine, and 

manufacturing industries. As long as the need for more precise results of the XAI algorithm, 

new dimensions of AI continue to emerge for AI experts to create and innovate more efficient 

algorithms that satisfy their needs such as the ’Causability’”in the field of medicine. 

This paper shows how the fields of engineering and medicine are competing in 

implementing the latest versions of AI systems to be applied in their innovations. In the future, 

most fields such as psychology, astronomy, embryology, and hospitality will be involved in 

integrating AI systems into their projects. The innovation of AI can present prediction, 

imitation, learning, and decision-making functions; however, it cannot represent human 

feelings, emotions, and intentionality. 
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