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Abstract 
This paper presents Security Constrained Economic Dispatch (SCED) of Renewable Energy Systems (RES) using Hopfield 
Neural Networks (HNN) to address power mismatch problems of the Ethiopian power grid. The mathematical formulations 
of SCED for RES comprising biomass, hydro, solar PV, waste to energy plant, wind, and geothermal are presented. Each of 
these sources requires problem formulation and constraint handling mechanisms considering security limits and credible 
contingencies. This enables renewable energy systems to provide secure and reliable electric service. Modified IEEE 118 bus 
system and Ethiopian renewable energy systems were used as case studies. Modelling and simulation were conducted on 
MATLAB. According to the results obtained, it can be deduced that employing HNN based SCED is a promising step in 
connection to developments needed in the adoption and realization of smarter grids as it reduces execution time, production 
cost and the number of blackouts while increasing the security level of a power system of RES. 
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Nomenclature 

ai = constant coefficient measure of losses   
bi= constant coefficient representing fuel cost 
Bij= active power loss coefficients  
c = Weibull probability distribution factor 
Ch = Hydropower generation cost 
Ci = constant coefficient including salary and wages  
Cs= solar power generation cost 
Csp= solar power penalty cost  
Csr= solar power reserve cost 
Cw= wind power generation cost 
Cwp= wind power penality cost 
Cwr= wind power reserve cost  
DRI = ramp rate limit 
f(x)   = function to be minimized 
FBth= biomass and waste to energy generation cost  
FGth= Geothermal power generation cost  
fpw= wind power probability distribution function 
Fsth= solar thermal power generation cost  
Fth= thermal power generation cost 
g l (x) = Inequality constraints  

G= solar irradiance 
Gstd= solar irradiance in a standard environment 
h k(x) =  Equality constraints 
Hi= average head 
K = Number of equality constraints 
k= Weibull probability distribution factor 
L= Number of inequality constraints 
Ncc= Number of Credible contingencies 
NG= Number of generating units 
NL = Number of security levels 
Npoz = Number of prohibited zones  
ɸ = Credible contingencies  
Phr= Hydropower output 
PBth= biomass and waste to energy power output 
PD= Power demand 
PGth= geothermal power output 
Phgi = Hydropower unit output 
Pimax= maximum power generation limit 
Pimin= minimum power generation limit  
PL = Power loss 
Psg = solar power output 
Psr= rated solar power output 
Psth= solar thermal power output 
Pth= thermal power output 
Pwr= wind power output 
Qi= discharge outflow  
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Rca= certain irradiance point set at 150 w/m2 
Sl = Security level 
Slmax = maximum Security level  
SRi= spinning reserve limit  
SSR= maximum spinning reserve limit  
Vi= cut in wind speed 
Vo= cut out wind speed 
Vr= rated wind speed 
Vwt= forecasted wind speed 
x i (1)= Security constraint 
α = weight factors of unit costs between 0&1 
ψ = penetration rate 

1. Introduction

The importance of electricity in our daily lives is noticed 
when sudden blackouts occur. Sudden and wide-scale 
power outages can result in a highly regarded threat to the 
socio-economic endeavours of the community. 
Considering the Ethiopian electric power network, which 
is a power system of renewable energy sources, entertains 
recursive blackouts and power supply frequently 
interrupts. An estimated 85% of customers participated in 
an interview say that these blackouts have devastating 
effect whenever it rains, during holidays and weekends. 
Consequently, these blackouts impose substantial damage 
to production plants, service centers, and home appliances 
[1] [2].

Blackout report of the Ethiopian electric power
network from 2013 to 2016, reported 15 major blackouts. 
Production plants and service centers were down for an 
average of four months a year. Natural incidents, 
equipment failure, and power mismatch, collectively 
known as contingencies caused these sudden interruptions 
and blackouts [1] .  

Tens of gigawatts of wind, hydropower, geothermal, 
biomass waste to energy and solar photovoltaic capacity 
are installed worldwide every year into the renewable 
energy market [3]. Intensive studies are being conducted 
on alternative energy sources including the newly 
emerging  Nanotube technologies [4], electric vehicles 
[5], smart roads [6] and sustainable road pavement based 
green energy source [7]. 
    One of the main challenging aspects of power system 
operation is that electrical energy is difficult to 
economically store in significant amounts. This aspect 
requires a continuous balance between generation and 
demand that considers security constraints, contingencies 
[8]. The other challenge is related to the integration of 
intermittent renewable energy sources [9] [10] [11]. With 
increasing emphasis on utilizing more renewables to 
mitigate climate change, the power industry confronts 
many new challenges. For example, in the Ethiopian 
power grid, day-to-day operation decision is done 
manually without the employment of economic dispatch 
[10]. 

One of the daily power system operation tasks that 
coins these challenges is security-constrained economic 
dispatch (SCED) [12] [13]. SCED is a process of 
allocating generation levels to generating units to entirely 
and economically supply the load while satisfying 
security constraints [14] [9]. A comprehensive literature 
review reveals that SCED is an optimization problem that 
addresses more than three conflicting objectives, which 
make it a challenging computational problem [15].  
  Some methods have been used to solve this problem 
since its introduction, such as the iterative method, 
gradient-based techniques, interior point method, linear 
programming, and dynamic programming [12] [13]. A 
substantial number of articles used HNN to solve 
economic dispatch of conventional thermal generators 
[16] and in the perspective of Artificial intelligence [5]
[10], renewable energy generation [17], and post-
disturbance corrective actions [7].
   Having predictive control features, accurate uncertainty 
forecasting abilities and feedback-consuming attributes 
HNN is the best solution method for SCED of RES [16] 
[18]. This study utilized primary data such as forecasted 
load, interchange schedule, reserve requirements, 
transmission limits and parameters, generation cost 
offering, reserve limits, ramp rates and pre-scheduled 
generation output level collected from generation-station 
control rooms and Ethiopian electric utility for the 
physical power system and Modified IEEE 118 bus 
system as a test system. 
 In this paper, it is put the choice on a firm basis on: 

 Formulating the SCED problem of RES with
security constraints and credible contingencies as
separate objective functions.

 Predictive control and anticipation of intermittent
renewable generation using neural networks.

 Solving the SCED of RES using continuous
Hopfield Neural Networks (HNN).

Articulation of the challenging aspects of economic 
dispatch along with security constraints and intermittency 
of renewable energy generation is also the novelty of this 
study. 

2. Mathematical Framework

2.1. Problem formulation 

Relations between the power generation cost and the 
operating cost rely on power flow output and forecasted 
values [19] [20] [21]. Problem formulation thus starts 
from the optimization perspective of the SCED 
mathematical model. The general optimization problem 
form for SCED is: 

( ),
n

optimizef x x R∈      (1) 
Subject to   

( ) 0 1, 2...kh x m= ∀ (2)
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( ) 0 1, 2...lg x L≤ ∀            (3) 

Where ( )kh x  represents a set of equality constraints ( )
l

g x , 
represents a set of inequality constraints, and ( )f x is the 
objective function that optimizes x. 
    In a practical power system, the SCED problem is non-
linear and multi-objective due to operational and design 
constraints. Objective function should minimize the non-
detailed formulation of the SCED problem due to 
unnecessary assumptions that can lead to a limitation in 
the modelling of large-scale power systems [22]. In this 
regard, multi-objective optimization is favoured. The 
general form of multi-objective optimization is then: 

( ) ( )1 2( ) ,  ,( ( ) NobjOptimizef x f x f x f x=   (4) 
Subject to 

 ( ) 0 1, 2...lg x i m= ∀ =

( ) 0 1, 2, ...kh x k K≤ ∀ =

( ) ( )1 0i i ix x x≤ ≤  (5) 

   Where ( ) ( )
1 2

),  , (
Nobj

f x f x f x are different objective 

functions denoting the involved RES and 
i

x denotes the 
security level constraints of the power system.  The multi-
objective optimization approach in the SCED context 
refers to minimizing generation cost and maximizing the 
security level of the operating system while considering a 
variable and intermittent generation [14] [23] [24]. This 
paper uses renewable resources such as biomass, hydro, 
solar, wind, and geothermal as inputs to RES. Each of 
these sources requires problem formulation and constraint 
handling mechanisms. 

Hydro: At the design stage, the available power at the 
hydraulic turbine (

h
P ) depends on the effective area 

( effectivea ) at the tip of the penstock hitting the turbine and 
velocity of water ( v ). 

31
2h effectiveP a vρ=          (6) 

   To formulate an economic dispatch problem, the first 
objective function f1(x) in equation (4) represents the 
objective function of hydropower generation plants [20] 
[25]. 

1
1

min ( ) ( )
hgN

h hgj
i

f x C P t
=

= ∑             (7) 

   Where hC denotes hydropower generation cost, Phgj

represents hydropower output at the i th unit, and hgN is the 
number of committed hydropower plants. Hydropower 
generation also depends on the average head ijH and 

water discharge outflow ijQ . 
24

1 1

( ) 0.00981
G

N

hgj i ij ij

t i

t H QP η
= =

= ∑∑       (8) 

Wind: The behaviour of wind speed at a given area or 
location can be quantified as a probability distribution 
function F (v). 
  The Weibull PDF method is a better quality probabilistic 
model for wind speed at any condition. It has two 
parameters, that is the dimensionless shape parameter and 
the scale parameter [26] [27]. The average wind power 
( wavP ) is determined by: 

0

( ) ( )
T

wav w w w wP P v P v dv= ∫       (9) 

 In compliance with the Weibull probability distribution 
function, the deviation of individual wind speed averages 
(

wvσ ) should be first calculated to determine the average 
wind speed. 

( )
var

2

1

1 vw

w a age

w

N

v wi w
iv

v v
N

σ
=

= −∑     (10) 

   Accordingly, the average wind speed for first stage 
decision can thus be determined by: 

v
1

1 vw

a ge

w

N

w wi
iv

v v
N =

= ∑  (11) 

   For a particular site, the power output of assumed wind 
speed is given by [9] 21]: 

0, 0

( ),

,

wt i out

wt i

wr wr i wr out

r i

wr r wt out

forv v andv

v v
P P forv v v

v v

P forv v v

≤ ≥

−
= ≤ ≤

−

≤ ≤

 
  
 
 
  

 (12) 

   Here, iv , outv  , rv , wtv  , and wrP represent cut-in wind 
speed, cut-out wind speed, rated wind speed, forecasted 
wind speed, and wind power output respectively. Dispatch 
wise, its corresponding objective function is f2(x).  

24

2

1 1 1

( ) ( )
WG WG

N N

w wgj

i t i

R Pf x C P t C C
= = =

= + +∑ ∑∑                              (13)

   Where
w

C ,
wgj

P  and WGN represent wind power generation
cost, wind power output at the ith unit, and the number of 
committed wind generating units. CR and CP represent the 
reserve cost and penalty cost coefficients of wind power 
generation respectively. 
    The reserve cost function helps to determine the debit 
that can be produced from the probability distribution 
function of variable wind speed [28] [29]. The probability 
of extracting desired power output from variable wind in 
the range of (vi ≤ v ≤ vr) can be determined by: 

1

( )

( )
1

Pw t

wr

K

Pw t
h v

P Krvi wr
pw

wc

h v

K P
f xe

P C

−

 
  

+

=

 
 
 
 
  

 (14) 
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Where K and C are Weibull probability distribution 
factors 

1.086( )
m

K
v

σ −=  (15

1
(1 )

mV
C

T
K

=

+

    (16) 

Solar PV:  the solar power output that can be extracted 
from a given solar irradiance G is [30]: 

2

( ) ( ) ( )sg sg sr

std ca

G
P j t P G P j

G R
= =

+
 (17

   In this equation G , 
std

G , 
sg

P , srP and caR denote solar 
irradiance, solar irradiance in a standard environment, 
solar output, rated solar output, and certain irradiance 
point set at 150 W/m2 respectively [29].  Moreover, solar 
PV’s objective function considered as the third objective 
function is represented by f3(x): 

24

3
1 1 1

( ) ( )
sg sgN N

s sg R P
i t i

f x C P j t C C
= = =

= + +∑ ∑∑  (18) 

Where for 0 <G< R ca: 
24

1 1

( ) ( )
sgN

sg R P
t i

P j t C C
= =

= +∑∑           (19) 

CR and CP represent the reserve cost function and penalty 
cost function of solar PV generation respectively. The 
reserve cost function determines the debit produced from 
the probability distribution function of variable solar 
radiation. The probability of producing power output from 
variable solar irradiance can also be determined using the 
Weibull probability distribution function [31] [23].  
   Renewable Thermal: Renewable thermal plants in this 
context refer to plants adopted from conventional thermal 
plants that are prime moved by renewable sources. 
Despite the difference in their constraints, renewable 
energy sources adapted from thermal plants have similar 
objective functions [19] [32].  REs adapted from thermal 
plants considered in this study include geothermal power 
plants, solar thermal power plants, biomass, and waste to 
energy plants.  

   The economic dispatch objective function of thermal 
power generation cost ( Fth ) is a quadratic function of a 
coefficient measure of losses ( ia ), coefficient 

representing fuel cost (
i

b ), and coefficient representing 
operating and maintenance costs that include salary and 
wages ( ic ). Denoting solar thermal power generation 
cost, geothermal generation cost, and biomass generation 
cost by SthF , GthF and BthF  respectively; the total objective 
function for renewable thermal power generators with 
their corresponding power outputs, SthP , GthP , and BthP is 
given by: 

4 1 2 3

1 1 1 1

( ) ( )
th Gth Sth Bth

N N N N

th th Gth Gth Sth Sth Bth Bth

i i i i

f x C P j t F P F P F Pα α α
= = = =

= + +
 
  

∑ ∑ ∑ ∑

 (20) 

   Where  
2

th i th i th iF a P b P c= + +  (21) 

2
Gth i Gth i Gth iF a P b P c= + +  (22)    

2
Sth i Sth i Sth iF a P b P c= + +   (23)

2
Bth i Bth i Bth iF a P b P c= + +  (24) 

    Where thP , GthP , SthP and SthP  denote thermal power 
output, geothermal power output, solar power output, and 
biomass power output. Weight factors of unit costs 
between 0 and 1 are represented byα . 
Security index; as an objective function that shows the 
severity of contingency during outages can be formulated 
using the following equation. The security index is 
introduced as an extension and improvement of SCED 
problem formulation in [33]. 

5

2

max
1

( )

m
NL

Gactive
SL

i Gactive

x
P

f f
P=

= =
 
 
 

∑  (25) 

    Where NL denotes the total number of transmission 
lines 

Gactive
P and max

GactiveP represent active power flow and 
maximum active power flow at the kth line respectively.    

2.2. Constraint formulation 

In power systems, continuously respected operation 
constraints and limits ensure the reliable and secure 
operation of the system. 
1. Demand and generation balance

1 1 1 1

hgg wg sg thN N N N

D L hg wg sg th
i i i i

P P P P P P
= = = =

+ = + + +∑ ∑ ∑ ∑ (26) 

    Demand and generation balance clarifies that the total 
generation of hydro generating units (Phg), wind 
generating units(Pwg), solar units(Psg), and thermal 
units(Pth) should be equal to the sum of total 
demand(PD)and power loss(PL). 

2. Generation limits
min max

i i iP P P≤ ≤    (27)

 min max0.00981 i ij ijP H Q Pη≤ ≤    (28) 

0 ( )w wrP j t P≤ ≤   (29) 

  0 ( )s srP j t P≤ ≤  (30) 

   0 ( )h hrP j t P≤ ≤  (31) 
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The generation capacity of each generating unit should be 
within the upper and lower limits of rated output power. 
Pwr, Psr, Phr, and Pi denote the rated wind power output, 
rated solar power output, rated hydropower output, and 
power output of the ith generating unit respectively. 

3. Prohibited operating Zones
min 1, 2...Lj

i i i PozP P P j N≤ ≤ ∀ =   (32)    
1jV lj

i i iP P P− ≤ ≤   (33)  
1 maxJV

i i iP P P− ≤ ≤  (34) 
    Modern generators have prohibited operating zones 
(Npoz) for determining feasible operating zones. Prohibited 
operating zones constraints are added to the SCED 
problem, when generating units prohibit operating zones 
due to the design restrictions or vibrations in a shaft 
bearing. For optimization purposes, these constraints can 
be understood as upper and lower bounds. 

4. Transmission constraints: For transmission
constraints, Kron’s loss equation is considered.

1 1 1 1 1

n m n n m

L gi ij gj oo io gi gi ij gj
i j i i j

P P B P B B P P B P
= = = = =

= = + +∑∑ ∑ ∑∑           

     (35)                                                                                             
Where 

cos( )

cos cos
i j ij

ij

i j i J

R
B

VV

θ θ

φ φ

−
=     (36) 

1 1

n m

oo Di ij Dj
i j

B P B P
= =

= ∑∑  (37) 

( )
1

m

ij ij ji
j

B B B
=

= − +∑  (38) 

   The power transmission losses depend on the flows in 
the branches and thus on the net injections and Kron’s 
loss equation better describes power injection parameters. 
5. Security limits
Security limits refer to the principle of secure operation

power system, i.e. apparent power flow through the
transmission line (

1
S ) must be restricted by its upper limit 

( max

1
S ) for all security levels (

L
N ). The security level 

depends on the credibility of contingencies ( ( )j P tφ ). 

max

1 1 1, 2... LS S l N≤ ∀ =  (39) 

( ) 1, 2...j CP t o j Nφ > ∀ =  (40) 

6. Generator ramp rate limits

min 1 max 1max( , ) ( ) min( , )t t

i i i i i i iP P DR P t P P DR− −− ≤ ≤ +

 (41) 

    Increasing and decreasing the output of renewable 
generation is limited to the amount of dependable power 
due to the physical and mechanical restrictions of each 
generating unit. Generator ramp limits change the 
effective operating limit to extend the life span of 
generators. 
7. Spinning reserve limits

To have a primary frequency response to variable
demand, a minimum spinning reserve value must be set 
aside.  

1

GN

Ri Sr
i

S S
=

≥∑  (42) 

Where RiS  is the fraction of the total spinning reserve of

the power system ( SrS ) allocated to the generating unit i.
8. Water discharge and reservoir limits:

For hydrothermal generating units, bounds by the
restrictions of their storage reservoirs must be considered. 
Hydropower plants can discharge a limited quantity of 
water in a pre-defined dispatch period. 

min max

i i iX X X≤ ≤  (43) 

min max

i i iV V V≤ ≤   (44) 

min max

i ij jQ Q Q≤ ≤     (45) 

min max

i ij jV V V≤ ≤  (46) 

( ), 1 ( )
j

i j ij ij i ij ij kij j
K K

V V Q q S t Q S I t
+

∈

= − − + ∆ + + + ∆∑

     (47) 
9. Penetration rate constraints

( ) ( ) ( ) ( )w s h th DP j t P j t P j t P j t P+ + + ≤ Ψ                       (48) 
   Constraint (9) considers thermal (biomass, solar 
thermal, geothermal), hydro, wind, and solar PV 
penetration ratios,ψ .As it is indicated in [27] a
penetration rate of 67% is considered for the NREL-118 
bus system and 98% for Ethiopian Renewable Energy 
Systems. 
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3. SCED using Hopfield Neural Network

Hopfield Neural Network (HNN) is a recurrent artificial 
neural network popularized by John Hopfield in 1982, in 
which networks serve as associative memory systems 
with binary threshold nodes [34] [35]. All neurons are 
both input and output, and each neuron is connected to all 
other neurons in both directions with equal weights.  
  The output of each neuron is then supplied to all other 
neurons. The process continues until a stable state that 
represents the network output is reached. HNN is a widely 
used model for solving combinatorial optimization 
problems [19]. 
    These networks have three major forms of parallel 
organization found in neural systems, namely, parallel 
input, parallel output channels, and a large amount of 
interconnectivity between the neural processing elements. 
Two types of Hopfield neural network models are widely 
used namely the binary (discrete) model and the analogue 
(continuous) model [16] [36] .  
   Economic dispatch using a Hopfield neural network 
requires a continuous neural model. A continuous 
Hopfield neural network has been used for the economic 
dispatch of a traditional generation with quadratic 
objective functions [19] [20] [21].  

3.1. General Hopfield neural networks 
search mechanism formulation 

The Initialization and running: Setting values of the units 
to the desired start pattern initializes the Hopfield neural 
networks. Repeated updates are then performed until the 
network converges to an attractor pattern as givin in 
equation (49). Convergence is guaranteed, as Hopfield 
networks proved that the attractors of the nonlinear 
dynamical system are stable, not periodic, or chaotic as in 
some other systems [19].  
   Training: Training Hopfield neural networks involves 
lowering the energy of states that the net should 
remember. This allows the net to serve as an associative 
memory system. This implies the network will converge 
to a remembered state if it is only part of the state.  
   The net can be used to recover from a distorted input to 
the trained state that is most similar to that input. Thus, 
the network is properly trained when the energy of states 
that the network should remember is local minima. These 
properties are desirable, since a learning rule, satisfying 
them is more biologically plausible [22]. 

3.2. Hopfield neural networks flowchart 

Figure 1. Flow chart for HNN 

3.3. Parameter Set-Up and Initialization 

In Hopfield Networks, an attractor pattern is a final stable 
state, a pattern that cannot change any value within it 
under the updating limit. 

0 min max min( )i Gi Gi GiV P rand P P= + −    (49) 
  The initial values of inputs for these neurons are 
calculated by the inverse sigmoid functions based on the 
initial outputs of the continuous neurons representing 
power outputs of generating units [16]. 

0 min
0

max 0

1
ln

2
i Gi

i

Gi i

V P
u

P Vσ

−
=

−

 
 
 

      (50) 

 The inputs to the neuron come from two sources, one 
from the external inputs Ii and the other from the other 
neurons Vj. Where: U i is the total input to neuron i, Tij is 
the interconnection conductance from the output of 
neuron j to the input of neuron i, Ii denotes external input 
to neuron i, and Vj stands for the output of neuron j. The 
continuous model of the HNN is based on continuous 
variables [36]. 
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3.4. Mapping Economic Dispatch to 
Hopfield Neural Network 

The most important point in solving any optimization 
problem using HNN is the mapping of the problem 
objectives and constraints to the energy function of the 
network.  
   The Hopfield model of neural networks was employed 
to solve ED problems for units having continuous or 
piece-wise quadratic fuel cost function, and even for units 
having prohibited zones constraint. 
  The objective function for the economic dispatch 
problem has two parts i) the operation and generation cost 
minimization part ii) the generation and computation error 
minimization part. To solve the economic dispatch 
problem the energy function is defined by combining the 
objective function with constraints as [36] [37]: 

2 2 2

1

( ) ( )
2

N

D L G i i Gthi i Gthi L

i

C
E A P P P B a b P c P P

=

= + − + + + +   
 

∑ ∑
     (51) 

  The synaptic strength and external input are obtained by 
mapping the energy function. By changing the output of 
unit i from PGio to PGi, and the transmission loss change 
from P Lo to PL the loss can be represented by [16]: 

1

( )
N

L Lo L Lo Lio Gi Gio
i

P P dP P I P P
=

= + ≅ + −∑ (52)

  The energy function of HNN is defined by combining 
the objective function and the corresponding constraint 
function, utilizing weight coefficients, which determine 
the weightage of each factor. This starts with the energy 
function of HNN given by: 

1 1 1

1

2

N N N

Ij i j i i

i j i

E T VV I V
= = =

= − −∑∑ ∑       (53) 

  The time derivative of this energy function should be 
negative so the network always moves in such a direction 
that the function converges to a minimum.  
   To solve SCED using HNN, the penalty function 
method is used. 

( ) ( )2

2

1 1

( )
2 2

N N

i Gthi i Gthi L D Gthi

i i

A B
E a P b P c P P P

= =

= + + + + −∑ ∑
     (54) 

  This energy function consists of an objective function 
also known as a cost function and design constraints 
function. 

1

( )
N

L Lo L Lo Lio Gi Gio

i

P P dP P I P P
=

= + ≅ + −∑      (55) 

1

2 ( )
Gio

N
L

ij Gjo Gi Gio

iGi

P
B P P P

P P =

∂
= −

∂
∑                (56) 

1 1 1 1

2 ( )
N N N N

L Gio ij Gjo ij Gjo Gi Gio

i j i j

P P B P B P P P
= = = =

= + −∑∑ ∑∑ (57)

  To map this equation into HNN the computation should 
start with equating (53) and (54), so that the following set 
of equations is obtained. 

,ii i ijT Aa B T B= − − = −           (58) 

( )
2

i D L i
I B P P b

λ
= − −  (59) 

( )
2

i

i D L

Bb
I A P P= + −    (60) 

    A and B being weighting factors, A varies from 0.1 to 
3, B is set to 1, and is set to 0.000055. A&B should be 
greater than or equal to zero. The relation that updates 
these values is called an adaptive calculation of weighting 
factors. 

0.5
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I Bb
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+
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   Where,
1

M ED
i

G

I I
N

=
 
 
 

∑ ,
1

im

G

b b
N

=
 
 
 

∑ and 
G Gi

P P= ∑ ,

NG is the number of committed generating units. In the 
selection procedure of weighting factors, A is associated 
with power mismatch (Pm), as it is assigned the highest 
priority over the other terms [25]. 

2( ) ( )
m T

A P B f≥ ∆  (63) 
2( ) / ( )

T m
A B f P≥ ∆  (64) 

This means A is determined from any value of B. To 
determine the value of weighting factor C.  

2
m

C AP=  (65) 
   In this paper, modified IEEE 118 Bus System with high 
renewables penetration features and Ethiopian energy 
systems were used as case studies. This study used 
MATLAB, and MATLAB/ MATPOWER 6.0 simulation 
tools. First, objective functions and their respective 
equality and inequality constraints were coded. Then 
training, validation, and creating neural networks were 
performed. 

4. Results and discussions

The following figures depict the simulation results 
including the behaviors of a particular Hopfield Neural 
Network. 
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Table 1. Comparison table between solution 
methods 

Unit Generation 
(MW) 

Newton 
Raphson 

MVMO 
solution 

HNN 
solution 

P1 450 450 450 
P2 325 324.66 322.85 
P3 200 200.38 201.98 
Pm (Mw) 0 -4.6x10-5 -4.6x10-5

Cost($/hr) 8236.25 8236.20 8236.18
Run time (sec) 0.2 0.125 0.105

A comparison between different solution methods of 
economic dispatch for a 3 unit renewable generation is 
presented in Table 1. The execution time and production 
cost of the system solved using HNN is less than that of 
conventional methods. This comparison was done to 
indicate the robustness of HNN. 

(a) 

(b) 

Figure 2. Predictive control of variable renewable energy resources using neural networks for the NREL-118 test 
system (a) and Ethiopian renewable energy systems (b). 

Predictive control enables the Hopfield net to lower the 
energy state that the net should remember. This way the 
net can recover from a distorted input to a trained state 
that can withstand contingencies as shown in Figure 2.    

Based on the errors shown in Figure 2 credible 
contingencies with higher error value are selected as 
credible contingencies for training. Only after training the 
net accordingly can the credible contingencies be selected  
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Table 2. Daily dispatch of Ethiopian renewable energy system 

Time Renewable 
thermal  units 

Hydro 
units 

Geothermal 
units 

Wind 
units 

Solar PV 
units 

Total 
Dispatch 

1 546.7296 6908.483 1904.445 2486.384 0 11847.04 
2 499.5382 7045.734 1726.221 2273.633 0 11547.13 
3 482.9468 7175.419 1694.141 2256.416 0 23394.17 
4 474.9739 7201.357 1679.883 2301.918 0 11662.13 
5 473.2475 7164.612 1726.221 2399.07 0 11768.15 
8 482.1889 7106.254 1817.709 2460.559 0 11866.71 
7 504.0089 7040.33 1936.525 2554.022 0 12034.89 
8 522.4075 7003.586 2032.766 2661.012 0.019708 12219.79 
9 554.7832 7021.958 2164.651 2739.718 62.82363 12543.93 
10 596.0196 7399.127 2241.881 2770.462 122.9886 13130.48 
11 622.5524 7722.261 2232.376 2729.88 90.85627 13397.93 
12 637.691 7958.937 2169.404 2653.634 120.6441 13540.31 
13 640.6281 7773.054 2096.926 2619.2 131.1142 13260.92 
14 636.7224 7446.679 2017.32 2642.566 116.2665 12859.55 
15 631.3324 6957.115 1941.278 2808.586 93.34304 12431.65 
16 622.4717 6426.485 1885.434 3309.105 69.32081 12312.82 
17 646.6324 5898.015 2003.062 3448.069 21.67235 12017.45 
18 721.2445 5408.452 2415.352 3496.031 0 12041.08 
19 736.383 5064.785 2513.969 3441.92 0 11757.06 
20 724.5716 4977.247 2483.077 3268.522 0 11453.42 
21 712.7245 5254.99 2435.551 3021.337 0 11424.6 
22 681.7838 5901.257 2344.063 2727.42 0 11654.52 
23 625.5703 7088.962 2164.651 2488.844 0 12368.03 
24 569.0832 7684.436 1967.417 2421.206 0 12642.14 

Total 14346.24 162629.5 49594.32 65979.51 829.0492 305175.9 
Pmax 736.383 7958.937 2513.969 3496.031 131.1142 23394.17 
Pmin 473.2475 4977.247 1679.883 2256.416 0 11424.6 

Ploss(MW) 423.5 8502 1235 4325.36 2501 1700.86 
Total Cost      265401 
  ($/Kwh )     

1814782.5905 421551.72 791754.12 9932.009416 3303421.439916 

Table 2 compares the multi-variable multi-objective 
solution and HNN solution of committed power plants for 
the NREL- 118 test system selected zones of operation. 
The ‘units’ column describes generator type and unit 
designation. As can be seen from the table, generating 
units with 0-unit commitment value are not displayed on 
the table.  

To practically interpret the results, unit commitment 
input, forecasted data evaluated by predictive control of 
HNN, the number of recursive blackouts, and demand 
profile are integrated within the proposed SCED solution. 
From weight positions plotted in Figure. 3, the attractor 
pattern on the final state (equations 49 and 50), penalty 
function weights (equation 54), and adaptive calculation 
of weighting factors (equations 61 to 65) can be obtained. 

Figure 3. Weight positions of created HNN 
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Figure 4. Time series response of training the created HNN 

Figure 3. Depicts with positions and network 
architecture of the HNN created using ‘newhop’ 
command. As HNN trains and learns from feedback, 
every input is connected with every output. The 
simulation results of the HNN including the training 
targets, training outputs, errors, responses, and validation 
are presented in Figure 4. In this study, errors and result 
fluctuations are considered as dispatch losses due to 
contingencies.  
   This consideration helps in allocating contingency 
reserves. Based on the errors obtained from the time 
series response of training the created HNN, credible 
contingencies are identified and selected for constraint 
formulation.  
   SCED is important for scheduling when/which 
generator to dispatch, determining how much reserve is 
need for spinning, standby, ramping, and contingency. 
Figure 5.  Dispatch contributions from Ethiopian existing 
power plants participated in alleviating the recursive 
blackouts. As it is indicated in Figure.6, the energy 
function of HNN representing the whole SCED problem 
is stabilizing and converging as the number of iterations 
increase. Staring from epochs 300, the best performance 
is attained.  NREL 118 test system provides a researcher 
with the privilege of choosing and editing renewable 
penetrated zones based on their resemblance to a 
particular project.   

Accordingly, Figure 7 presents the dispatch share of 
renewable generation technologies and Figure 8 depicts 
ERS adopted from NREL 118 test system zones 2&3. 
    There is an important difference in load between 
weekdays and weekends.  Furthermore, Mondays and 
Fridays being adjacent to weekends can have structurally 
different loads than Tuesday through Thursday.  Day and 
night also, have a different share of load and generation 
effects.  Figure 9 thus helps to grasp the effect of weekend 
demand profiles on SCED of ERES 
    In Ethiopia, the weather does not significantly vary 
throughout the year.  Apart from solar PV generation. 
Therefore, demand seasonality on the grid is minimal. 
Here, the residential demand is characterized by lighting, 
cooking, and heating and since the peak is in the evening, 
their contribution to the system peak is significant. 
The composition of the load is a bit different from the 
state cities’ commercial and public services as large 
infrastructure, industries, schools, and hospitals operate 
mainly between 8:00 Am and 6:00 Pm. 
    Additionally, the country’s suburbs can largely consist 
of small shops, hotels, bars, cafés, and restaurants that 
stay open throughout the evening Available data is used to 
understand SCED and the dispatch contribution of each 
generating unit. Figures 9 and 10 depict energy share and 
dispatch of each Ethiopian generating unit committed so 
far to supply 10.023GW of power. 
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Figure 5. Dispatch contributions from Ethiopian existing power plant

Figure 6. Best HNN training performance 

Figure 7. Dispatch value of generating units by technology 
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Figure 8. Dispatch value of NREL 118 bus system

Figure 9. SCED results of Ethiopian renewable power plants with complete and public data 

Figure 10. Power Dispatch MW share of Ethiopian generating units 
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5. Conclusions

This paper presents Security Constrained Economic 
Dispatch (SCED) of renewable energy systems (RES) 
using Hopfield neural networks (HNN) to address power 
mismatch problems of the Ethiopian power grid. 
Reformulation of SCED for IRES comprising biomass, 
large and micro-hydro plants, solar PV, solar thermal, 
waste to energy plant, wind farm, and geothermal is 
presented. Each of these sources requires problem 
formulation and constraint handling mechanisms 
considering security limits and credible contingencies. 
This enables renewable energy fuelled power systems to 
provide secure and reliable service.  
    Modified IEEE 118 bus system (NREL-118 test 
system) with high renewable penetration features and 
Ethiopian renewable energy systems were used as case 
studies. Modelling and simulation were conducted on 
MATLAB simulation platform.  
   According to the simulation results obtained, it can be 
deduced that economic dispatch of IRES using HNN is a 
promising step in connection to developments needed in 
the adoption and realization of smarter grids as it is an 
excellent solution method of anticipating intermittent 
fluctuating and predictive control. 

 It has also a feature for involved multi-objective 
functions to share feedback and train from them. HNN is 
an excellent solution method of variability. However, 
premature convergence and the inability to provide global 
optimum solutions still is its drawback that needs 
intensive research and improvements. Hybrid solutions 
such as hybrid HNN-Genetic Algorithm methods can 
overcome these drawbacks.  
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